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Multiplexed coded illumination for

Fourier Ptychography with an LED

array microscope

Lei Tian,1,∗ Xiao Li,1 Kannan Ramchandran,1 and Laura Waller1

1Department of Electrical Engineering and Computer Sciences,

University of California, Berkeley USA

∗lei tian@alum.mit.edu

Abstract: Fourier Ptychography is a new computational microscopy tech-

nique that achieves gigapixel images with both wide field of view and high

resolution in both phase and amplitude. The hardware setup involves a sim-

ple replacement of the microscope’s illumination unit with a programmable

LED array, allowing one to flexibly pattern illumination angles without any

moving parts. In previous work, a series of low-resolution images was taken

by sequentially turning on each single LED in the array, and the data were

then combined to recover a bandwidth much higher than the one allowed

by the original imaging system. Here, we demonstrate a multiplexed illu-

mination strategy in which multiple randomly selected LEDs are turned on

for each image. Since each LED corresponds to a different area of Fourier

space, the total number of images can be significantly reduced, without

sacrificing image quality. We demonstrate this method experimentally in a

modified commercial microscope. Compared to sequential scanning, our

multiplexed strategy achieves similar results with approximately an order of

magnitude reduction in both acquisition time and data capture requirements.

© 2014 Optical Society of America

OCIS codes: (170.1630) Coded aperture imaging; (170.0180) Microscopy; (110.1758) Com-

putational imaging; (100.5070) Phase retrieval; (110.3010) Image reconstruction techniques.
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1. Introduction

The LED array microscope is a powerful new platform for computational microscopy in which

a wide range of capabilities are enabled by a single hardware modification to a traditional

brightfield microscope - the replacement of the source with a programmable LED array [1, 2]

(Fig. 1). This simple, inexpensive hardware modification allows patterning of the illumination

at the Fourier plane of the sample (assuming Köhler geometry). Thus, each LED in the array

corresponds to illumination of the sample by a unique angle. Conveniently, the range of illu-

mination angles that can be patterned is much larger than the range of angles that pass through

the objective [set by its numerical aperture (NA)]. This means that illumination by the central

LEDs produces brightfield images, whereas illumination by the outer LEDs (outside the NA

of the objective) produces dark field images [1]. Alternatively, by sequentially taking a pair

of images with either half of the source on, we obtain phase derivative measurements by dif-

ferential phase contrast (DPC) [3–5]. Finally, a full sequential scan of the 2D array of LEDs

(angles), while taking 2D images at each angle, captures a 4D dataset similar to a light field [6]

or phase space measurement [7]. This enables all the computational processing of light field

imaging. For example, angular information can be traded for depth by using digital refocusing

algorithms to get 3D intensity [1] or 3D phase contrast [3]. When the sample is thin, angular

information can instead be used to improve resolution by computationally recovering a larger

synthetic NA, limited only by the largest illumination angle of the LED array [2]. This method,

named Fourier Ptychography, enables one to use a low NA objective, having a very large field

of view (FoV), but still obtain high resolution across the entire image, resulting in gigapixel



images. The aberrations in the imaging system can also be estimated without separate charac-

terization [8]. All of these imaging modalities are achieved in the same optical setup, with no

moving parts, simply by choosing the appropriate LEDs to turn on.

The main limitations of Fourier Ptychography are the large amount of data captured and the

long acquisition times required. An image must be collected while scanning through each of the

LEDs in the array, leading to hundreds of images in each dataset. This is compounded by the

fact that each LED has limited intensity, requiring long exposures. The multiplexed illumination

scheme that we propose here is capable of reducing both acquisition time and the number of

images required by orders of magnitude.

We demonstrate two different multiplexing schemes in which multiple LEDs from the array

are turned on for each captured image. First, we describe the case where we take the same num-

ber of images as in the sequential scan, but reduce the exposure time for each, since turning on

more LEDs provides more light throughput. As long as the random patterns are linearly inde-

pendent, the resulting images can be interpreted as a linear combination of images from each of

the LEDs, implying that the data contains the same information as in the sequential scan. The

more interesting multiplexing situation involves reducing the total number of images. In this

second scheme, we show that a random coding strategy is capable of significantly reducing the

data requirements, since each image now contains information from multiple areas of the sam-

ple’s Fourier space. To solve the inverse problem, we develop a modified Fourier Ptychography

algorithm that applies to both multiplexing situations.

2. Theory and method

2.1. Fourier Ptychography

In microscopy, one must generally choose between large FoV and high resolution. Where both

are needed (e.g. in digital pathology [9]), lateral mechanical scanning of the sample is the most

common solution. Fourier Ptychography (FP) [2] is a new computational illumination technique

that achieves the same space-bandwidth product, but by scanning of the source in Fourier space

with a programmable LED array. The setup involves no moving parts, so can be made fast. FP

involves an embedded phase retrieval algorithm and so also produces high resolution, large FoV

quantitative phase images [10]. In addition, FP uses a low NA objective, which is less expensive

and provides a longer working distance and larger depth of field than high NA objectives.

The process of sequential FP is summarized in Fig. 1. For each image captured, the sample is

illuminated from a unique angle by turning on a single LED. In Fourier space, this corresponds

to a shift proportional to the angle of illumination. Thus, for each LED, a different area of

Fourier space passes through the pupil. An example is given in Fig. 1(c), showing the Fourier

space areas covered by three LEDs. The goal of the FP algorithm is to stitch together the images

from different areas of Fourier space in order to achieve a large effective NA. The final NA is

the sum of the objective NA and illumination NA. The caveat of using Fourier space stitching is

that phase information is required. Typically, this is done with coherent methods by measuring

phase for each angle via synthetic aperture methods [11,12]. In FP, however, phase is inferred by

a phase retrieval optimization [13] based on angular diversity, analogous to Ptychography based

on spatial translation [14–17]. For such algorithms to converge, significant overlap (> 60%) is

required between the Fourier space areas of neighboring LEDs [2, 18] (see Section 2.4).

Both mechanical scanning and Fourier scanning result in huge datasets, on the order of gi-

gapixels, presenting data storage and manipulation challenges. In FP, the overlap requirement

means that sequential Fourier scanning requires much more data than mechanical scanning.

However, by using the multiplexing methods described here, data capture requirements be-

come comparable to or even lower than those of mechanical scanning. Analogous multiplexing

in the spatial domain for traditional Ptychography would be very difficult to achieve.
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Fig. 1. Summary of Fourier Ptychography (FP) in an LED array microscope. (a) A sample

is illuminated from different angles by turning on different LEDs of an array. (b) Our exper-

imental setup on a Nikon TE300 microscope. (c) Images taken with different LEDs contain

information from different spatial frequency areas of the sample. The central (brightfield)

LED fills an area defined by the NA (0.1) of the objective. Images taken with top and left

(dark field) LEDs result in accentuated edges along the corresponding orientations. (d) FP

reconstructs a high resolution image from many LEDs, while simultaneously estimating

aberrations.

2.2. Coding strategies for multiplexed Fourier Ptychography

There are many choices of coding strategies for multiplexed measurements. In computational

photography, multiplexed illumination has been evaluated for reflectance images [19, 20], but

differs from our system in that FP involves a phase retrieval algorithm which is nonlinear. This

makes it difficult to analytically derive the optimal coding strategy.

By turning on M LEDs for each image, we can linearly reduce the exposure time by a factor

of M while maintaining the same photon budget. Since each image covers M times more area of

Fourier space, we may also be able to reduce the total number of images by a factor of M. Thus,

the possible reduction in total acquisition time is M2, as long as the algorithm does not break.

Clearly, we cannot go to the extreme case of turning on all the LEDs at once and capturing only

one image, since there will be no diversity for providing phase contrast. Intuitively, we would

like each pattern to turn on LEDs which are far away from each other, such that they represent

distinct (non-overlapping) areas of Fourier space. However, we still need overlap across all the

images captured, so later coded images should cover the overlapping areas.

Here, we choose a general random coding scheme in which the number of LEDs on is fixed,

but their location varies randomly for each captured image, subject to some simple rules. We

need to use each LED at least once in each dataset, even when we reduce the number of images.

Thus, the first image in the set chooses which M LEDs to turn on randomly (with uniform
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Fig. 2. Sample datasets for multiplexed illumination coding in Fourier Ptychography. (Top)

Four randomly chosen LEDs are turned on for each measurement. (Middle) The captured

images corresponding to each LED pattern. (Bottom) Fourier coverage of the sample’s

Fourier space for each of the LED patterns (drawn to scale). Turning on multiple well-

separated LEDs allows information from multiple areas of Fourier space to pass through

the system simultaneously. The center unshaded circle represents the NA of the objective

lens.

probability), but later images will exclude those already used LEDs in choosing which to turn

on. This process generates a set of NLED/M patterns which fully cover all LEDs. To generate the

additional images needed for matching the number of images to the sequential scan, we repeat

this process M times. This scheme achieves good mixing of information and balanced coverage

of Fourier space for each image. As an example, illumination patterns designed according to

our random codes and their resulting images are shown in Fig. 2.

2.3. Forward problem for multiplexed Fourier Ptychography

Consider a thin sample described by the complex transmission function o(r), where r = (x,y)
denotes the lateral coordinates at the sample plane. Each LED generates illumination at the

sample that is treated as a (spatially coherent) local plane wave with a unique spatial frequency

km = (kxm,kym) for LEDs m = 1, · · · ,NLED, where NLED is the total number of LEDs in the

array. The exit wave from the sample is the multiplication of the two: u(r) = o(r)exp(ikm · r).
Thus, the sample’s spectrum O(k) is shifted to be centered around km = (sinθxm/λ ,sinθym/λ ),
where (θxm,θym) define the illumination angle for the mth LED and λ is the wavelength.

At the pupil plane, the field corresponding to the Fourier transform of the exit wave O(k−
km) is low-pass filtered by the pupil function P(k). Therefore, the intensity at the image plane

resulting from a single LED illumination (neglecting magnification and noise) is

im(r) =
∣∣F[O(k−km)P(k)](r)

∣∣2 , (1)

where F[(·)](r) is the 2D Fourier transform.



For multiplexed images, the sample is illuminated by different sets of LEDs according to

a coding scheme. The pth image turns on LEDs with indices Lp chosen from {1, · · · ,NLED}.

When multiple LEDs are on at once, the illumination must be considered partially coherent,

with each LED being mutually incoherent with all others, representing a single coherent mode.

The total intensity of the pth multiplexed image Ip(r) is the sum of intensities from each:

Ip(r) = ∑
m∈Lp

im(r) = ∑
m∈Lp

∣∣F[O(k−km)P(k)](r)
∣∣2 , (2)

where the symbol ∈ denotes that m is an element from the set Lp.

Assuming that the entire multiplexed FP captures a total of Nimg intensity images, the multi-

plexing scheme can be described by a Nimg ×NLED binary coding matrix A = [Ap,m], where the

element of the matrix is defined by

Ap,m =

{
1, m ∈ Lp

0, otherwise
, m = 1, · · · ,NLED, p = 1, · · · ,Nimg. (3)

Any coding matrix should satisfy the following general requirements: (1) any column of A

should contain at least one non-zero element, meaning that each LED has to be turned on at least

once; (2) any row of A should contain at least one non-zero element, excluding the trivial case

that no LEDs are turned on in a certain measurement; (3) all the row vectors should be linearly

independent with each other, implying that every new multiplexed image is non-redundant.

2.4. Inverse problem formulation

For the multiplexed illumination case, we develop a new algorithm to handle multi-LED illu-

mination. Our algorithm is similar in concept to that of [8], which jointly recovers the sample’s

Fourier space O(k) and the unknown pupil function P(k). We split the FoV into patches whose

area is on the order of the spatial coherence area of a single LED illumination and incorporate

our multi-LED forward model in the optimization procedure. To improve robustness, we also

add new procedures for background estimation and regularization for tuning noise performance.

The least squares formulation for reconstruction is a non-convex optimization problem. We

minimize the square of the difference between the actual and estimated measurements, based

on the forward model [Eq. (2)], with an additional term describing the background offset bp,

min

O(k),P(k),{bp}
Nimg
p=1

Nimg

∑
p=1

∑
r

∣∣∣∣∣Ip(r)−

(

∑
m∈Lp

∣∣F[O(k−km)P(k)](r)
∣∣2 +bp

)∣∣∣∣∣

2

. (4)

Since there are multiple variables involved in the optimization, we take a divide-and-conquer

approach which optimizes for each sequentially. First, we estimate the background in a single

step for each image b̂p and subtract it to produce the corrected intensity image

Îp(r) = Ip(r)− b̂p. (5)

Next, we start an iterative process which estimates both the object and the pupil functions

simultaneously. We initialize O(k) to be the Fourier transform of the square root of any of the

images which contain a brightfield LED, and initialize P(k) to be a binary circle whose radius

is determined by the NA. We introduce the auxiliary function Ψm(k) defined as

Ψm(k) = O(k−km)P(k), (6)
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Fig. 3. Flow chart of the reconstruction algorithm.

which is the field immediately after the pupil from the mth-LED illumination. Then, using the

corrected intensity image Îp(r), we iteratively update Ψm(k) for all m, along with the estimates

of O(k) and P(k). The algorithm is derived in Appendix A and summarized below and in Fig. 3.

The basic structure of the reconstruction algorithm is to update the auxiliary function in-

crementally from image p = 1 to Nimg in each iteration, and then to repeat the same process

iteratively until the value of the merit function [the quantity from the minimization in Eq. (4)]

falls below a certain tolerance. Each incremental update consists of the following two steps.

(1) Update the auxiliary function Φ
(i)
m (k) using the pth intensity image:

Let the estimate of the mth auxiliary function in the ith iteration be Ψ
(i)
m (k) = O(i)(k−

km)P
(i)(k). First, compute the real space representation of the mth auxiliary function

ψ
(i)
m (r) = F[

Ψ
(i)
m (k)

](r), m ∈ Lp. (7)

Then, perform a projection procedure similar to the Gerchberg-Saxton-Fienup type of

update by rescaling the real space auxiliary function by an optimal intensity factor and



returning back to the Fourier space representation [13, 21–23]:

Φ
(i)
m (k) = F

−1[
φ
(i)
m (r)

](k) with φ
(i)
m (r) =

√√√√√√
Îp(r)

∑
m∈Lp

∣∣∣ψ(i)
m (r)

∣∣∣
2

ψ
(i)
m (r), m ∈ Lp. (8)

(2) Update the sample spectrum O(i+1)(k) and the pupil function P(i+1)(k):

O(i+1)(k) = O(i)(k)+

∑
m∈Lp

∣∣∣P(i)(k+km)
∣∣∣
[
P(i)(k+km)

]∗ [
Φ

(i)
m (k+km)−O(i)(k)P(i)(k+km)

]

∣∣P(i)(k)
∣∣
max

·

(

∑
m∈Lp

∣∣∣P(i)(k+km)
∣∣∣
2

+δ1

)

(9)

P(i+1)(k) = P(i)(k)+

∑
m∈Lp

∣∣∣O(i)(k−km)
∣∣∣
[
O(i)(k−km)

]∗ [
Φ

(i)
m (k)−O(i)(k−km)P

(i)(k)
]

∣∣O(i)(k)
∣∣
max

·

(

∑
m∈Lp

∣∣∣O(i)(k−km)
∣∣∣
2

+δ2

) ,

(10)

where δ1 and δ2 are some regularization constants to ensure numerical stability, which

is equivalent to an ℓ2-norm/Tikhonov regularization on O(k) and P(k). The particular

choice of updating step size, determined by the ratio between |P(i)(k)| and its maximum

(|O(i)(k)| and its maximum), is shown to be robust [14].

3. Experimental results

The experimental setup is shown in Fig. 1. All samples are imaged with a 4× 0.1NA objec-

tive and a scientific CMOS camera (PCO.edge). A programmable 32×32 LED array (Adafruit,

4mm spacing, controlled by an Arduino) is placed at 67.5mm above the sample to replace the

light source on a Nikon TE300 inverted microscope. The central 293 red (central wavelength

629nm and 20nm bandwidth) LEDs are used for all the experiments reported here, resulting

in a final synthetic NA of 0.6. In principle, our LED array could provide larger NA improve-

ments, but it is practically limited by noise in the dark field images from high angle LEDs. To

bypass these limitations, a better geometry would be a dome of LEDs, all pointed at the sam-

ple and covering the full hemisphere. Such an illumination unit was built in [24], but was not

programmable and so not directly amenable to FP.

We first image a resolution target, whose low resolution image (from the central LED) is

shown in Fig. 4(a) with a zoom-in in Fig. 4(b) to show that the smallest group of features (cor-

responding to 0.5 NA) are not resolvable. In Fig. 4(c-e), we show our recovered high-resolution

images under three different coding strategies. The first, sequential scanning of a single LED

across the full array, was taken with a 2s exposure time, resulting in a total acquisition time of

T=586s. The coding matrix for sequential scanning is written as the NLED ×NLED identity ma-

trix. Next, we use random multiplexed illumination with 4 LEDs on for each image (i.e. M = 4)

and a shorter exposure time (1s). Sample illumination patterns and images are shown in Fig. 2.

The reconstruction result with the same number of images as the sequential scan Nimg = 293

is shown in Fig. 4(d). As expected, the same resolution enhancement is achieved with half the
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Fig. 4. Experimental results for multiplexed illumination of a resolution target. (a) The

original low resolution image from a 4× 0.1 NA objective taken with only the central

LED on. (b) A zoom-in on the smallest features. (c) Reconstruction result from sequential

FP with Nimg = 293 single LED images having a total acquisition time of T=586s. (d)

Multiplexing 4 LEDs for each image while preserving the number of measurements Nimg =
293 reduces the total acquisition time to T=293s. (e) The multiplexed illumination also

allows reduction of the number of measurements to Nimg = 74 with T=74s.

acquisition time. Finally, we test our partial measurement scheme in which the total number of

images is reduced by a factor of 4. This cuts the number of images used in the reconstruction

to 74 and the total time to 74s, without sacrificing the quality of the result [see Fig. 4(e)].

The same multiplexing scheme was also tested on a stained biological sample (Fig. 5). During

post-processing, the final image was computed in 200×200 pixel patches. The background is

estimated for each dark field image by taking the average intensity from a uniform region

of the sample. FP reconstructions are compared with the different illumination schemes in

Fig. 5(b) and 5(c). The sequential scan is the same as previously used, but the multiplexed

measurement now uses 8 LEDs (i.e. M = 8). The reduced measurement is demonstrated in the

second case with only 40 images used, corresponding to approximately 1/8 of the data size in a

full sequential scan, and reducing the total acquisition time by a factor of 14.7.

4. Discussion

To summarize, by exploiting illumination multiplexing, we experimentally demonstrated that

both the acquisition time and data size requirements in Fourier Ptychography are significantly

reduced. We achieved ∼ 2mm field of view with 0.5µm resolution, with data acquisition times

reduced from ∼10 minutes (for sequential scanning) to less than 1 minute. By making the

LEDs in the array brighter, we expect to be able to achieve sub-second data acquisition with

our multiplexed scheme. Our data capture was reduced from 293 images to only 40 images.



Fig. 5. Experimental results for multiplexed illumination of a stained dog stomach cardiac

region sample. (a) The original low resolution image from a 4× 0.1NA objective taken with

only the central LED on. (b1, c1) Zoom-in of the regions denoted by red and green squares.

(b2, c2) Amplitude and (b5, c5) phase reconstructions from sequential FP with Nimg = 293

single LED images and a total acquisition time of T=586s. (b3, c3) Amplitude and (b6, c6)

phase reconstructions from multiplexing 8 LEDs with Nimg = 293 and T=293s. Amplitude

(b4, c7) and phase (b4, c7) reconstructions for multiplexing 8 LEDs with Nimg = 40 and

T=40s.



The reason that we are able to reduce the number of images taken with our multiplexing

scheme (vs. sequential capture) is that each image contains information from multiple non-

overlapping areas of Fourier space. Due to the nonlinear nature of the reconstruction algorithm,

convergence of our algorithm is difficult to prove or optimize for a given coding strategy. The

illumination patterns used in our experiment follow a random coding scheme, and we offer

here only empirical evidence of successfully reducing the number of images. Designing an

optimal coding strategy is left as future work, as it will depend on complicated interactions

between many parameters (e.g. noise, dynamic range and the sample itself). For example, we

found in our experiments that dynamic range problems in the FP data also tend to be allevi-

ated by illumination multiplexing. Since light from different LEDs are mutually incoherent,

illuminating with multiple LEDs means that each image has reduced spatial coherence. Thus,

the diffraction fringes which often cause high dynamic range variations are smoothed out due

to the reduced coherence. Another interesting avenue to explore will be methods for exploiting

the data redundancy by considering priors about the sample, such as sparsity [25,26]. A gallery

of interactive full FoV high resolution images from our experimental system can be found at

http://www.gigapan.com/profiles/WallerLab_Berkeley.

Appendix A: derivations of the reconstruction algorithm

Since the original optimization in (4) involves P images which contain massive amounts of

pixels, an efficient way is to use the incremental method in optimization theory that updates

Ψm(k) “incrementally” for m ∈ Lp in a sequential manner for each p = 1 to Nimg.

For each image Îp(r), we further exploit the framework of alternating projection (also

known as projection onto convex sets (POCS)) methods to estimate the auxiliary functions

{Ψm(k)}m∈Lp
involved in the pth image. Specifically, the estimates of {Ψm(k)}m∈Lp

associ-

ated with the pth image are projected back and forth between the following two sets:

Cp,1 ,

{
{Ψm(k)}m∈Lp

: Îp(r) = ∑
m∈Lp

∣∣F[Ψm(k)](r)
∣∣2 , ∀r

}
(11)

Cp,2 ,

{
{Ψm(k)}m∈Lp

: Ψm(k) = O(k−km)P(k), m ∈ Lp, O(k),P(k) ∈ C,∀k
}
. (12)

Let the estimate of the mth auxiliary function in the ith iteration be Ψ
(i)
m (k), with the ith incre-

mental iteration proceeds sequentially with the image index as

i ≡ p mod Nimg. (13)

The projection procedures are derived as follows:

1. Projection onto Set Cp,1: By introducing an intermediate variable Φ
(i)
m (k) in the ith iter-

ation, the alternating projection procedure onto the set Cp,1 can be translated mathemati-

cally into the following optimization:

{
Φ

(i)
m (k)

}
m∈Lp

= arg min
Φm(k)

∑
m∈Lp

∑
k

∣∣∣Φm(k)−Ψ
(i)
m (k)

∣∣∣
2

, s.t. {Φm(k)}m∈Lp
∈ Cp,1.

(14)

This difficulty of the optimization lies in the total intensity constraint on the inverse

Fourier transforms, which couples different auxiliary functions m ∈ Lp. Fortunately, be-

cause of the unitary nature of Fourier transform, it is obvious that the objective function



can be equivalently transformed into the real space as

{
φ
(i)
m (r)

}
m∈Lp

= arg min
φm(r)

∑
m∈Lp

∑
r

∣∣∣φm(r)−ψ
(i)
m (r)

∣∣∣
2

, s.t. Îp(r) = ∑
m∈Lp

|φm(r)|
2 ,

where φ
(i)
m (r) and ψ

(i)
m (r) are the real domain variables corresponding to Φ

(i)
m (k) and

Ψ
(i)
m (k). The merit of viewing the optimization in the real space is that the optimization

now becomes completely separable in the pixel r, which can be simplified as

{
φ
(i)
m (r)

}
m∈Lp

= arg min
φm(r)

∑
m∈Lp

∣∣∣φm(r)−ψ
(i)
m (r)

∣∣∣
2

, s.t. Îp(r) = ∑
m∈Lp

|φm(r)|
2 ,

Therefore, the optimization can be solved via the Lagrangian multiplier method by in-

corporating the constraint into the Lagrangian with a multiplier λ :

{
φ
(i)
m (r),λ ⋆

}
m∈Lp

= arg min
φm(r),λ

∑
m∈Lp

∣∣∣φm(r)−ψ
(i)
m (r)

∣∣∣
2

+λ

(
Îp(r)− ∑

m∈Lp

|φm(r)|
2

)
.

By setting the derivatives with respect to λ and φm(r) for m ∈ Lp to zero, we arrive at

the solutions for each auxiliary function in the set m ∈ Lp in this projection step:

φ
(i)
m (r) =

√√√√√√
Îp(r)

∑
m∈Lp

∣∣∣ψ(i)
m (r)

∣∣∣
2

ψ
(i)
m (r), m ∈ Lp. (15)

Therefore finally, the resulting solution for the intermediate variable in the frequency

domain can be directly obtained by

Φ
(i)
m (k) = F

−1[
φ
(i)
m (r)

](k), (16)

where F
−1
[(·)]

(k) is the inverse Fourier transform. This resembles the classic Gerchberg-

Saxton update in phase retrieval by forcing an identical intensity Îp(r)/∑m∈Lp

∣∣ψ(i)
m (r)

∣∣2
for each auxiliary function.

2. Projection onto Set Cp,2: The projection onto set Cp,2 can be equivalently obtained by

solving for O(i+1)(k) and P(i+1)(k) separately and updating the auxiliary function as the

product of the two:

Ψ
(i+1)
m (k) = O(i+1)(k−km)P

(i+1)(k),∀m ∈ Lp (17)
{

O(i+1)(k),P(i+1)(k)
}
= arg min

O(k),P(k)
∑

m∈Lp

∑
k

∣∣∣O(k−km)P(k)−Φ
(i)
m (k)

∣∣∣
2

. (18)

This optimization is clearly separable in k (but not in m), which can be simplified as

{
O(i+1)(k),P(i+1)(k)

}
= arg min

O(k),P(k)
∑

m∈Lp

∣∣∣O(k−km)P(k)−Φ
(i)
m (k)

∣∣∣
2

. (19)



The gradients of the objective function f (O(k−km),P(k)), ∑m∈Lp
|O(k−km)P(k)−

Φ
(i)
m (k)|2 can be obtained as:

∂ f (O(k−km),P(k))

∂O(k−km)
= 2 ∑

m∈Lp

[
O(k−km)P(k)−Φ

(i)
m (k)

]
[P(k)]∗ (20)

∂ f (O(k−km),P(k))

∂P(k)
= 2 ∑

m∈Lp

[
O(k−km)P(k)−Φ

(i)
m (k)

]
[O(k−km)]

∗
(21)

By setting the derivatives with respect to O(k) and P(k) to zero, we can obtain the opti-

mality conditions that need to be satisfied by the updates
{

O(i+1)(k),P(i+1)(k)
}

:

O(i+1)(k) =
∑m∈Lp

[
P(i+1)(k+km)

]∗
Φ

(i)
m (k+km)

∑m∈Lp

∣∣P(i+1)(k+km)
∣∣2 (22)

P(i+1)(k) =
∑m∈Lp

[
O(i+1)(k−km)

]∗
Φ

(i)
m (k)

∑m∈Lp

∣∣O(i+1)(k−km)
∣∣2 . (23)

However, the updates depend on each other and hence cannot be obtained directly since

they are both unknown. Therefore, instead of solving for the updates in one shot, we per-

form another numerical sub-optimization with sub-iteration indexed by ℓ to numerically

obtain the pair of updates
{

O(i+1)(k),P(i+1)(k)
}

. For this sub-optimization, we choose

to use Newton’s method (i.e., second order), which further requires the computation of

the second order derivative of the objective function:

∂ 2 f (O(k−km),P(k))

∂O(k−km)
2

= 2 ∑
m∈Lp

|P(k)|2 (24)

∂ 2 f (O(k−km),P(k))

∂P(k)2
= 2 ∑

m∈Lp

|O(k−km)|
2 . (25)

The updates by Newton methods are written below by evaluating the first and second

order derivatives with the previous iterates O(i,ℓ)(k) and P(i,ℓ)(k):

O(i,ℓ+1)(k) = O(i,ℓ)(k)+ step-size ·

[
∂ 2 f (O(k−km),P(k))

∂O(k−km)
2

]−1
∂ f (O(k−km),P(k))

∂O(k)

P(i,ℓ+1)(k) = P(i,ℓ)(k)+ step-size ·

[
∂ 2 f (O(k−km),P(k))

∂P(k)2

]−1
∂ f (O(k−km),P(k))

∂P(k)
.

Generally speaking, Newton methods are preferred in non-linear least squares problems

(precisely our formulation) due to their fast convergence and stability compared with

first order methods such as gradient descents. Furthermore, we employ the Levenberg-

Marquardt algorithm, which is a variant of the Gauss-Newton algorithm by superimpos-

ing a constant δ to the second order derivative, to avoid the singularity of possible zeros

in the denominator. Here for the stability concerns, we also impose a constant on the

second order derivative in the Newton’s method, which is equivalent to introducing an



ℓ2-norm regularization on O(k) and P(k).

Let the ℓth sub-iterate pair be
{

O(i,ℓ)(k),P(i,ℓ)(k)
}

, then the Levenberg-Marquardt ver-

sion of the Newton’s algorithm updates can be computed with step-sizes α(i,ℓ)(k) and

β (i,ℓ)(k) as

O(i,ℓ+1)(k) = O(i,ℓ)(k)+
α(i,ℓ)(k+km)

∑
m∈Lp

∣∣∣P(i,ℓ)(k+km)
∣∣∣
2

+δ1

× ∑
m∈Lp

[
P(i,ℓ)(k+km)

]∗ [
Φ

(i)
m (k+km)−O(i,ℓ)(k)P(i,ℓ)(k+km)

]

P(i,ℓ+1)(k) = P(i,ℓ)(k)+
β (i,ℓ)(k)

∑
m∈Lp

∣∣∣O(i,ℓ)(k−km)
∣∣∣
2

+δ2

× ∑
m∈Lp

[
O(i,ℓ)(k−km)

]∗ [
Φ

(i)
m (k)−O(i,ℓ)(k−km)P

(i,ℓ)(k)
]
.

For simplicity the step-sizes can be chosen as constants α(i,ℓ)(k) = α and β (i,ℓ)(k) = β for all

k and all iterations. Then finally, after L passes of the Levenberg-Marquardt updates, the final

updates of
{

O(i+1)(k),P(i+1)(k)
}

are obtained as

{
O(i+1)(k),P(i+1)(k)

}
=
{

O(i,L)(k),P(i,L)(k)
}
. (26)
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