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ABSTRACT Candida auris has emerged as a multidrug-resistant pathogen of great

clinical concern. Approximately 90% of clinical C. auris isolates are resistant to

fluconazole, the most commonly prescribed antifungal agent, and yet it remains

unknown what mechanisms underpin this fluconazole resistance. To identify

novel mechanisms contributing to fluconazole resistance in C. auris, fluconazole-

susceptible C. auris clinical isolate AR0387 was passaged in media supplemented

with fluconazole to generate derivative strains which had acquired increased flu-

conazole resistance in vitro. Comparative analyses of comprehensive sterol profiles,

[3H]fluconazole uptake, sequencing of C. auris genes homologous to genes known

to contribute to fluconazole resistance in other species of Candida, and relative ex-

pression levels of C. auris ERG11, CDR1, and MDR1 were performed. All fluconazole-

evolved derivative strains were found to have acquired mutations in the zinc-cluster

transcription factor-encoding gene TAC1B and to show a corresponding increase in

CDR1 expression relative to the parental clinical isolate, AR0387. Mutations in TAC1B

were also identified in a set of 304 globally distributed C. auris clinical isolates repre-

senting each of the four major clades. Introduction of the most common mutation

found among fluconazole-resistant clinical isolates of C. auris into fluconazole-

susceptible isolate AR0387 was confirmed to increase fluconazole resistance by

8-fold, and the correction of the same mutation in a fluconazole-resistant isolate,

AR0390, decreased fluconazole MIC by 16-fold. Taken together, these data demon-

strate that C. auris can rapidly acquire resistance to fluconazole in vitro and that mu-

tations in TAC1B significantly contribute to clinical fluconazole resistance.

IMPORTANCE Candida auris is an emerging multidrug-resistant pathogen of global

concern, known to be responsible for outbreaks on six continents and to be com-

monly resistant to antifungals. While the vast majority of clinical C. auris isolates are

highly resistant to fluconazole, an essential part of the available antifungal arsenal,

very little is known about the mechanisms contributing to resistance. In this

work, we show that mutations in the transcription factor TAC1B significantly con-

tribute to clinical fluconazole resistance. These studies demonstrated that muta-

tions in TAC1B can arise rapidly in vitro upon exposure to fluconazole and that a

multitude of resistance-associated TAC1B mutations are present among the ma-

jority of fluconazole-resistant C. auris isolates from a global collection and appear

specific to a subset of lineages or clades. Thus, identification of this novel genetic

determinant of resistance significantly adds to the understanding of clinical antifun-

gal resistance in C. auris.
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First identified in 2009, Candida auris has rapidly become a health care-associated

and multidrug-resistant pathogen of global concern (1, 2). While originally found to

be the causative pathogen of virtually simultaneous outbreaks of invasive candidiasis in

Asia, South Africa, and South America, C. auris has now been identified in more than 30

countries across 6 continents, including more than 900 confirmed clinical cases of C.

auris infections in the United States (3). Further contributing to the clinical significance

of this organism are its proclivity to colonize both environmental surfaces and patients,

challenges associated with reliable identification in the clinical microbiology laboratory,

and the markedly decreased susceptibility to currently available antifungal agents

found in a large proportion of C. auris clinical isolates (4, 5). While epidemiological data

and clinical experience pertaining to the treatment of infections caused by C. auris are

currently inadequate to support the establishment of epidemiological cutoff values and

true clinical breakpoints, the Centers for Disease Control and Prevention (CDC) has

proposed tentative breakpoints to help guide clinicians on the basis of available

susceptibility data for C. auris clinical isolates. Applying these tentative breakpoints,

approximately 3% of C. auris clinical isolates are resistant to echinocandins, one-third

are resistant to amphotericin B, and 90% are resistant to fluconazole (MIC, �32mg/liter;

modal MIC, �256mg/liter) (6). Additionally, one-third of clinical isolates show multidrug

resistance, with elevated MIC levels for agents from two or more different classes of

antifungals, and clinical isolates resistant to all available agents have been repeatedly

reported (7, 8).

The extent of fluconazole resistance among C. auris isolates is particularly concern-

ing as this agent remains the most commonly prescribed antifungal, and many of the

outbreaks of C. auris have occurred in resource-limited settings (2, 8–11). While the

pervasiveness of fluconazole resistance among C. auris clinical isolates substantially

limits therapeutic options of C. auris infections, relatively little is known about the

molecular mechanisms underpinning this resistance. One mechanism of fluconazole

resistance repeatedly identified in C. auris is mutation of the gene encoding the

sterol-demethylase enzyme targeted by the triazoles, ERG11. Three such mutations,

encoding the amino acid substitutions VF125AL (commonly referred to as F126L),

Y132F, and K143R, are frequently reported among fluconazole-resistant clinical isolates,

and associations between these mutations and specific genetic clades of C. auris have

been observed (2). Additionally, the mutations encoding the Y132F and K143R substi-

tutions correspond to mutations known to contribute to triazole resistance in other

species of Candida such as Candida albicans (12). While the direct impact of these ERG11

mutations has not been delineated in C. auris, heterologous expression of C. auris

ERG11 alleles carrying mutations encoding either the Y132F or K143R amino acid

substitution on a low-copy-number episomal plasmid was observed to decrease flu-

conazole susceptibility in a haploid strain of Saccharomyces cerevisiae (13). However,

clinical isolates harboring the same ERG11 mutations and exhibiting a fluconazole MIC

as low as 1 mg/liter have been described previously, as have fluconazole-resistant

isolates of C. auris with no mutation in ERG11, suggesting the presence of yet-to-be-

identified mechanisms of fluconazole resistance (8, 14).

In addition to mutations in ERG11, increased expression of efflux pump-encoding

genes is a common contributor to clinical triazole resistance among multiple species of

Candida (15). Most notable of these is C. glabrata, in which nearly all of the clinical

triazole resistance is attributable to overexpression of the ATP-binding cassette (ABC)-

type efflux pump-encoding genes C. glabrata CDR1 (CgCDR1), CgPDH1, and CgSNQ2

(16). The C. auris genome has recently been revealed to include a substantial number

of efflux pump-encoding genes of both the ABC and major facilitator superfamily (MFS)

classes, and triazole-resistant isolates of C. auris have been observed to exhibit efflux

pump activity greatly exceeding (up to 14-fold higher) that of C. glabrata (17–19).
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Furthermore, the increased expression of the C. auris ABC-type efflux pump-encoding

gene CDR1 has previously been shown to substantially contribute to clinical triazole

resistance (20, 21). At present, however, the genetic determinants underpinning the

increased expression of efflux pump-encoding genes in C. auris remain unidentified.

In this work, we took an unbiased approach utilizing in vitro evolution to create a

collection of isogenic C. auris strains with increased fluconazole resistance, exhibiting

an 8-to-64-fold increase in fluconazole MIC. Characterization of these strains and

analysis of whole-genome sequencing data for over 300 globally distributed C. auris

isolates implicated TAC1B (B9J08_004820), a close homolog of the well-characterized C.

albicans transcriptional regulator CaTAC1, as a novel genetic determinant of clinical

fluconazole resistance. Having identified TAC1B mutations to be present among a large

proportion of fluconazole-resistant clinical isolates, we utilized a Cas9-mediated trans-

formation system both to introduce the most common TAC1B mutation identified

among resistant clinical isolates (encoding A640V) into the fluconazole-susceptible

AR0387 and to correct the A640V-encoding mutation in the previously characterized

and highly fluconazole-resistant AR0390 clinical isolate to the wild-type (WT) sequence.

In both cases, the presence of this prevalent TAC1B mutation was found to be

associated with significant increase in fluconazole MIC, demonstrating that mutations

in TAC1B represent prevalent and significant genetic determinants of fluconazole

resistance among clinical C. auris isolates.

RESULTS

Candida auris rapidly acquires increased fluconazole resistance in vitro. In an

effort to identify novel mechanisms of fluconazole resistance in this emerging

multidrug-resistant pathogen, a collection of isogenic strains with increased flucona-

zole resistance was created via in vitro evolution utilizing the previously described

fluconazole-susceptible C. auris clinical isolate AR0387 (also known as B8441) (Fig. 1).

Briefly, the parental AR0387 was grown in liquid cultures of yeast extract-peptone-

dextrose (YPD) media supplemented with either 8 or 32 mg/liter of fluconazole for 48 h.

Each liquid culture was then plated on the standard antifungal susceptibility testing

FIG 1 Schematic of C. auris fluconazole in vitro evolution experiments. To obtain fluconazole-evolved C. auris strains,
AR0387 was cultured in YPD supplemented with 8 or 32 mg/liter of fluconazole. Cultures were plated on RPMI media
containing the same concentration of fluconazole, and individual colonies were picked for further characterization.
Fluconazole-evolved strains FLU-A and FLU-C were subsequently further passaged in YPD supplemented with 64 and
256 mg/liter of fluconazole, respectively. Cultures were then again plated on RPMI media containing the same concen-
tration of fluconazole, and individual colonies were picked for further characterization.
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medium, RPMI 1640, supplemented with the same concentration of fluconazole for an

additional 48 h to identify individual colonies exhibiting increased fluconazole resis-

tance. Two individual colonies were randomly selected for characterization from the

plate supplemented with 8 mg/liter of fluconazole (yielding strains FLU-A and FLU-B),

and a single colony was randomly selected from the plate supplemented with 32 mg/

liter of fluconazole (yielding strain FLU-C). Two strains (including one strain each from

the initial passages), FLU-A and FLU-C, were subsequently subjected to a second

passage in 64 and 256 mg/liter of fluconazole supplemented media, respectively,

yielding strains FLU-A2 and FLU-C2.

Fluconazole MICs were then determined for the parental AR0387 and each of the

five fluconazole-evolved strains by broth microdilution in accordance with Clinical and

Laboratory Standards Institute methodology with minor modifications as previously

described (20). AR0387 exhibited a fluconazole MIC of 1 mg/liter, while the five

fluconazole-evolved strains were found to have MICs ranging from 8 to 64 mg/liter

(Fig. 2). Each of the second-generation evolved strains, FLU-A2 and FLU-C2, exhibited

a further 2-to-4-fold increase in fluconazole MIC relative to the corresponding first-

generation strains. Fluconazole MICs for all fluconazole-evolved strains were observed

to be stable following storage at –80°C and multiple passages on fluconazole-free

media.

Fluconazole-evolved strains exhibit alterations in membrane sterols without

accompanying mutations in ERG11 or ERG3. As fluconazole-resistant C. auris clinical

isolates are very often found to possess mutations in ERG11, sequencing of the ERG11

allele for each of the fluconazole-evolved strains was performed. Surprisingly, all

evolved strains were found to have wild-type ERG11 sequences matching that of the

parental AR0387. To assay for other changes to the ergosterol biosynthesis pathway

which may have been contributing to fluconazole resistance, each of the fluconazole-

evolved strains and the parental AR0387 were subsequently subjected to comprehen-

sive sterol profiling. Briefly, each strain was grown to the exponential-growth phase in

RPMI liquid media with or without 16 mg/liter of fluconazole (a concentration approx-

imating the average serum concentration achieved in patients being treated for

candidemia) (22, 23).

Following growth in RPMI media without fluconazole, all of the fluconazole-evolved

strains and the parental AR0387 were observed to have largely similar sterol profiles

(Fig. 3). In all samples, ergosterol comprised more than 75% of total cellular sterols, with

ergosta-5,7,22,24(28)-tetraenol and zymosterol observed to be the next most abundant

sterols. AR0387 and four of the fluconazole-evolved strains (FLU-A, FLU-B, FLU-C, and

FLU-A2) were also observed to have a small amount (2% to 4%) of lanosterol present,

whereas this sterol was absent in the FLU-C2 strain.

Following growth in RPMI media supplemented with fluconazole, the sterol profiles

of each of the fluconazole-evolved strains were dramatically different from that of

FIG 2 Elevated fluconazole MIC observed among C. auris fluconazole-evolved strains. Percent growth of
AR0387 and fluconazole-evolved strains with escalating concentrations of fluconazole was measured at
24 h. Percent growth was determined relative to respective untreated controls as assessed by absorbance
at OD600. Growth inhibition of 50% relative to untreated control is shown as a dotted horizontal line. The
fluconazole MIC for each isolate or strain is shown at the right. Error bars for each data point represent
the standard deviations of results from three independent measurements of technical replicates.
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AR0387 (Fig. 4). While ergosterol was still the predominant sterol among all five

fluconazole-evolved strains, lanosterol (46.0% � 7.4%) and 14-methyl-fecosterol (21.3% �

4.8%) were observed to be the two most prevalent sterols in AR0387. In Candida

albicans, 14-methyl-fecosterol is a known substrate of the sterol-desaturase enzyme

encoded by CaERG3, which catalyzes the conversion of 14-methyl-fecosterol to the

toxic sterol associated with the antifungal activity of the triazoles, 14-methyl-ergosta-

8,24(28)-dienol-3,6-diol (Fig. 5). Additionally, 14-methyl-ergosta-8,24(28)-dienol-3,6-diol

comprised 3.8% � 1.9% all sterols present in AR0387, while this sterol was absent in the

sterol profiles of all fluconazole-evolved strains. As mutations in the sterol-desaturase-

encoding gene ERG3 have been observed to contribute to fluconazole resistance in

other species of Candida and notable differences in the amounts of cellular 14-methyl-

fecosterol and 14-methyl-ergosta-8,24(28)-dienol-3,6-diol were observed between

AR0387 and the fluconazole-evolved strains, sequencing of the C. auris gene

(B9J08_003737) with the highest degree of homology to C. albicans CaERG3 was

performed. However, no mutation in C. auris ERG3 was observed in any of the

fluconazole-evolved strains.

Fluconazole-evolved strains exhibit significantly reduced fluconazole uptake.

As triazoles (including fluconazole) have previously been shown to enter the cells of C.

albicans via facilitated diffusion, deficient drug importation was next examined as a

potential mechanism contributing to the increased fluconazole resistance among the

fluconazole-evolved strains (24). As previously described, the accumulation of [3H]flu-

conazole was assessed for AR0387 and each fluconazole-evolved strain, as well as for a

previously characterized strain of AR0387 where the CDR1 gene had been deleted

(AR0387_Δcdr1), following 2 h glucose starvation in YNB media without carbon source

supplementation (20). [3H]fluconazole accumulation was observed to be reduced by

FIG 3 Sterol profiles of C. auris fluconazole-evolved strains grown in RPMI media are similar to those of the parental
AR0387. The major constituent sterols for AR0387 and fluconazole-evolved strains at the exponential-growth phase
in RPMI media are shown as a proportion of total cellular sterols. Error bars for each data point represent the
standard deviations of results from three independent measurements of technical replicates.

FIG 4 Sterol profiles of C. auris fluconazole-evolved strains grown in RPMI media supplemented with fluconazole
reveal a lack of 14-methyl-ergosta-8,24(28)-dienol-3,6-diol. The major constituent sterols for AR0387 and
fluconazole-evolved strains at the exponential-growth phase in RPMI media are shown as a proportion of total
cellular sterols. Error bars for each data point represent the standard deviations of results from three independent
measurements of technical replicates.
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approximately 50% in four of the fluconazole-evolved strains (FLU-A, FLU-B, FLU-C, and

FLU-A2) relative to than that observed in AR0387, while accumulation in FLU-C2 did not

significantly differ from that in AR0387 (5,438 versus 6,560 cpm, respectively;

P � 0.2842) (Fig. 6a). Importantly, there was no difference in [3H]fluconazole accumu-

lation between AR0387 and AR0387_Δcdr1 (6,560 and 6,813 cpm, respectively;

P � 0.9976) (Fig. 6b), confirming that the conditions used in this study for glucose

starvation were adequate to remove the activity of this known C. auris resistance

effector.

Mutations in TAC1B are associated with significantly increased expression of

CDR1. Gain-of-function (GOF) mutations in zinc-cluster transcription factor genes, such

as C. albicans genes CaUPC2, CaMRR1, and CaTAC1, represent a well-characterized

mechanism of fluconazole resistance among other species of Candida (15). To deter-

mine if similar mutations might have been contributing to the fluconazole resistance

among the fluconazole-evolved strains in these studies, the C. auris genes with the

highest degree of homology to C. albicans transcriptional regulatory genes CaUPC2,

CaMRR1, and CaTAC1, here named UPC2 (B9J08_000270), MRR1 (B9J08_004061), TAC1A

(B9J08_004819), and TAC1B (B9J08_004820), were identified by BLAST and gene or-

thology analysis and sequencing was performed. As two C. auris genes possessing very

high degrees of homology with CaTAC1 were identified (TAC1A and TAC1B share 25.6%

predicted peptide sequence identity with each other and share 30.6 and 26.9% identity

with CaTAC1, respectively), both were included in this study. While no mutations were

identified in TAC1A or MRR1, all five fluconazole-evolved strains were found to have

mutations encoding amino acid substitutions in TAC1B (Table 1). Both the FLU-A strain

and the corresponding second-generation derivative FLU-A2 were found to harbor a

mutation encoding the amino acid substitution R495G, while the FLU-B, FLU-C, and

FLU-C2 strains were found to possess a mutation encoding the amino acid substitution

F214S. Neither of these mutations corresponds to previously characterized GOF muta-

FIG 5 Predicted C. auris sterol biosynthesis pathway. The major constituent sterols identified in sterol profiles are shown
with corresponding colors.
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tions in CaTAC1 or to orthologous genes from other species of Candida. However, these

mutations are predicted to alter residues near or within the conserved fungal tran-

scription factor middle homology region (MHR) of Tac1Bp, and multiple mutations

encoding amino acid substitutions in the MHR of CaTAC1 have previously been

reported to be associated with fluconazole resistance (25). Additionally, a sole mutation

in UPC2 encoding the amino acid substitution M365I was identified in FLU-C2, and this

mutation similarly alters a residue predicted to reside within the MHR of Upc2p.

In an effort to ascertain if the identified mutations in TAC1B and UPC2 may be

associated with altered expression of potential resistance effectors among the

fluconazole-evolved strains, the relative expression levels of ERG11, CDR1, and MDR1

were evaluated by reverse transcription-quantitative PCR (RT-qPCR). To accomplish this,

AR0387 and each of the fluconazole-evolved strains were grown to the exponential-

growth phase in RPMI media, and RNA was extracted as previously described. The

expression of each gene of interest relative to AR0387 was assessed using the ΔΔCT
(threshold cycle) method and the C. auris ACT1 housekeeping gene (B9J08_000486)

(20). The level of expression of CDR1 was found to be significantly (3-to-5-fold) higher

in all five fluconazole-evolved strains than in AR0387 (P � 0.0001 for all evolved strains

compared to AR0387) (Fig. 7). This level of CDR1 expression is similar to that previously

described among extensively fluconazole-resistant C. auris clinical isolates (20). Addi-

tionally, subtle variations in the levels of expression of the ERG11 and MDR1 genes, not

FIG 6 Decreased intracellular accumulation of [3H]fluconazole among fluconazole-evolved strains. [3H]-labeled fluconazole uptake was determined in (a)
fluconazole-evolved strains and (b) a CDR1 deletion strain and was compared to that shown by parental clinical isolate AR0387. FLU, fluconazole. Error bars for
each data point represent standard deviations of results from six independent measurements of technical replicates. Intracellular accumulation of [3H]flucona-
zole was significantly lower in FLU-A, FLU-A2, FLU-B, and FLU-C than in AR0387 (P � 0.0021, P � 0.0001, P � 0.0001, and P � 0.0001, respectively), while
accumulation in FLU-C2 did not significantly differ from that seen in AR0387 (P � 0.2842) and no difference in accumulation between AR0387 and
AR0387_Δcdr1 was seen (P � 0.9976|).

TABLE 1 Sequencing of C. auris MRR1, TAC1A, TAC1B, and UPC2 among fluconazole-
evolved strains

Gene

Clinical isolate or strain

AR0387 FLU-A FLU-A2 FLU-B FLU-C FLU-C2

MRR1 WT WT WT WT WT WT
TAC1A WT WT WT WT WT WT
TAC1B WT R495G R495G F214S F214S F214S
UPC2 WT WT WT WT WT M365I
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exceeding 2.1-fold higher than the levels seen with AR0387, were also observed among

individual fluconazole-evolved strains.

As copy number variations (CNVs) among genes encoding fluconazole resistance

effectors, such as ERG11, have previously been reported among clinical isolates and

laboratory strains of C. auris, qPCR amplifications from genomic DNA were performed

to assay for CNV among the effectors ERG11, CDR1, andMDR1, as well as TAC1B, for each

of the fluconazole-evolved strains. (26, 27). For each gene of interest, three primer sets

spanning the open reading frame were utilized. While no alteration in the copy number

of ERG11, CDR1, or MDR1 was observed, the second-generation fluconazole-evolved

FLU-A2 strain was found to show a 2-fold increase in the copy number of TAC1B, which

was not evident in other evolved strains (see Fig. S1 in the supplemental material).

TAC1B mutations identified during in vitro evolution studies are also present

among fluconazole-resistant C. auris clinical isolates. Interrogation of a data set

consisting of whole-genome sequencing data for 304 globally distributed C. auris

isolates representing each of the four major clades revealed 14 nonsynonymous TAC1B

mutations and one deletion, excluding sites which are fixed in all isolates within a clade

and which are present in both sensitive and resistant isolates (Fig. 8; see also Table S1

in the supplemental material) (27). In total, mutations in TAC1B were identified among

165 (54%) isolates. Additionally, 50% (148) of the isolates in this collection with

available susceptibility data were found to be fluconazole resistant (MIC of �32mg/

liter) and to possess a mutation in TAC1B. Furthermore, the two TAC1B mutations that

arose during in vitro drug selection were found to be present among fluconazole-

resistant clinical C. auris isolates, suggesting a possible role in clinical fluconazole

resistance. R495G was found in a single clade I isolate, and the F214S change was found

FIG 7 Significantly increased relative expression of C. auris CDR1 among fluconazole-evolved strains grown to the exponential-growth phase in RPMI media.
The levels of expression of C. auris ERG11, CDR1, and MDR1 in AR0387 and the fluconazole-evolved strains were determined following culturing to the
exponential-growth phase at 30°C in RPMI media. The expression level for each sample is shown relative to that of the respective gene in AR0387. Arrows
between graphs indicate the lineage of each fluconazole-evolved strain from the parental AR0387. Error bars for each data point represent standard errors of
the means of results from three biological replicates each performed with three technical replicates. The level of expression of C. auris CDR1 among all
fluconazole-evolved strains was observed to be significantly higher (3.3 to 5.4-fold) than that of AR0387 (P � 0.0001 for each individual comparison). Differences
in the levels of expression of CDR1 between the sequential evolved strains were not found to be significant (FLU-A versus FLU-A2, P � 0.7186; FLU-C versus
FLU-C2, P � 0.3855).
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in 2 isolates from clade II and in 1 isolate from clade IV (Fig. 8; see also Table S1).

Notably, a mutation encoding the A640V amino acid substitution was found to be the

most common among clinical isolates, found in 57 clade I isolates from 7 countries and

always present with the ERG11 mutation encoding the K143R amino acid substitution.

Nearly all (98.2%) of the isolates with A640V and K143R mutations displayed high-level

fluconazole resistance (�64 mg/liter). Other common TAC1B mutations found included

A657V in 15 clade I isolates and the frameshift mutation F862_N866del in 46 clade IV

isolates. These mutations appeared in isolates with the ERG11 Y132F variant, and these

isolates were found to have markedly high MIC values (Fig. 8), suggesting that these

mutations may provide additive fluconazole resistance effects. Comparison of Tac1B

protein sequences indicated that C. auris A657V corresponds to the CaTac1 GOF

mutation A736V associated with increased triazole resistance in C. albicans. Addition-

ally, we observed three novel TAC1B mutations in clade IV isolates lacking resistance-

associated mutations in ERG11, including K247E (n � 5), M653V (n � 7), and A651T

(n � 16), six resistant isolates from clade I which harbored two TAC1B mutations (A15T

and S195C), and two different mutations affecting the P595 site (P595L in clade I and

P595H in clade IV).

FIG 8 TAC1B point mutations and fluconazole susceptibility in C. auris. (a) Phylogenetic tree of SNPs identified from 304 C. auris whole-genome sequences from
four major clades (I, II, III, and IV). Isolate label backgrounds are color coded for known mutations in ERG11 (B9J08_001448) (Y132F, K143R, F126L). Susceptibility
to fluconazole is depicted as resistant (dark gray) or susceptible (yellow), and the MIC values are indicated as dark-blue boxes. The red dotted line indicates
the tentative fluconazole MIC breakpoint (�32 mg/liter). Green circles indicate isolates harboring non-clade-specific nonsynonymous mutations or gain-of-
function mutations in TAC1B (B9J08_004820), with filled circles corresponding to percent alternative allele of �0.8, while open green circles correspond to
percent alternative allele of 0.67 to 0.79. The specific mutation is indicated for each isolate(s). Mutations in bold/dark blue arose in in vitro evolution experiments
or were functionally tested in this study and found to be associated with increased resistance to fluconazole in C. auris. (b) Mutations and locations in TAC1B

protein sequence associated with azole resistance are indicated using triangles. Mutations indicated with bold/dark blue (red triangles) arose in in vitro evolution
experiments or were functionally tested in this study and associated with increased resistance to fluconazole in C. auris. The size of the triangle indicates the
number of isolates from this study harboring the mutation (range, 1 to 57 isolates).
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Mutations in TAC1B contribute to fluconazole resistance. As mutations in TAC1B

were identified in a large proportion of fluconazole-resistant C. auris clinical isolates and

as the mutation encoding the amino acid substitution A640V was found to be the most

prevalent among the members of this large collection of clinical isolates, the direct

impact of this mutation on fluconazole susceptibility was next determined using a

Cas9-mediated transformation system. To accomplish this, the TAC1B allele from the

previously characterized fluconazole-resistant C. auris AR0390 clinical isolate (also

known as B11205, an isolate from clade I), which contains the mutation encoding the

amino acid substitution A640V, was introduced into the fluconazole-susceptible

AR0387 clinical isolate by the use of Cas9 ribonucleoproteins (Cas9-RNP) and the

SAT-FLP system as previously described (20). Two independent positive-testing trans-

formants were obtained, and the fluconazole MICs were determined by broth microdi-

lution. Introduction of the TAC1BA640V allele into the native TAC1B locus was observed

to increase the fluconazole MIC 8-fold relative to the parental AR0387 (Fig. 9). Con-

versely, when the same methods were used to introduce the wild-type TAC1B allele to

isolate AR0390 (which harbors the TAC1Bmutation encoding A640V), a 16-fold decrease

in fluconazole MIC was observed (Fig. 9). The fluconazole MICs did not differ between

independent transformants.

DISCUSSION

C. auris has rapidly become a fungal pathogen of global concern. Among the

characteristics most notably distinguishing this organism from other species of Can-

dida, the prevalence of fluconazole resistance is of clear clinical concern as fluconazole

remains the most commonly prescribed antifungal worldwide. While mutations in the

ERG11 gene are strongly associated with clinical fluconazole resistance in C. auris, the

presence of this mechanism alone poorly explains the entirety of resistance observed

clinically, and the roles of other genetic and molecular mechanisms contributing to

fluconazole resistance in this organism remain largely unknown.

To date, the predominance of knowledge of the molecular mechanisms of flucona-

zole resistance among species of Candida comes from experience studying C. albicans.

In this organism, the most commonly reported mechanisms of fluconazole resistance

include mutations in the gene encoding the target of the triazole antifungals, CaERG11,

and overexpression of either CaERG11 or genes encoding multidrug-efflux pumps such

as CaCDR1, CaCDR2, and CaMDR1 (12, 15, 28). In fact, among a collection of 63

unrelated fluconazole-resistant C. albicans clinical isolates, all were found to exhibit one

of these resistance mechanisms and the vast majority possessed a combination of

mechanisms. Specifically, 87% were found to have missense mutations in CaERG11, 75%

exhibited elevated expression of CaERG11, 77% exhibited elevated expression of

CaCDR1 and CaCDR2, and 21% exhibited elevated expression of CaMDR1 to levels

known to contribute to fluconazole-resistance (12, 28). The increased expression of C.

FIG 9 Fluconazole MIC for TAC1B strains. Percent growth of AR0387 and AR0390 and the corresponding
derivative TAC1B strains with escalating concentrations of fluconazole was measured at 24 h. Percent
growth was determined relative to the corresponding untreated controls as assessed by absorbance at
OD600. Growth inhibition of 50% relative to the untreated control is shown as a dotted horizontal line.
Error bars for each data point represent the standard deviations of results from three independent
measurements of technical replicates.
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albicans fluconazole resistance effectors has been extensively studied and in the

majority of isolates is directly attributable to GOF mutations in zinc-cluster transcription

factor genes such as CaUPC2, CaTAC1, and CaMRR1 (contributing to the increased

expression of CaERG11, both CaCDR1 and CaCDR2, and CaMDR1, respectively) (15,

28–30). Other C. albicansmechanisms of fluconazole resistance, such as loss-of-function

(LOF) mutations in CaERG3, have also been reported but are much less commonly

identified among clinical isolates (31).

In this work, we utilized in vitro evolution to create a collection of isogenic C. auris

strains with elevated fluconazole MICs in an effort to identify novel genetic determi-

nants of fluconazole resistance. Strains with significant (8-fold to 32-fold) increases in

fluconazole MICs were obtained after a total of only 96 h of growth in fluconazole-

supplemented media, and this resistance was observed to be stable after subsequent

culturing on fluconazole-free media. This rapid emergence of increased fluconazole

resistance is particularly concerning, considering that patients being treated for infec-

tions caused by C. auris have acquired antifungal-resistant infections while receiving

therapy and that the fluconazole-resistant strains in these experiments were obtained

after only a single passage in media supplemented with fluconazole at clinically

relevant concentrations (8 to 32 mg/liter) (23). The rapidity of this emergence of

fluconazole resistance may be influenced by the haploid nature of the C. auris genome,

where acquisition of even a recessive mutation may make a larger immediate contri-

bution to resistance than has been found to occur with other diploid species of Candida

such as C. albicans, where a loss-of-heterozygosity event may be required to observe

the maximal impact of a single resistance mutation (32). Furthermore, a notable

proportion of C. auris clinical isolates have been observed to exhibit increased copy

numbers of resistance-associated genes, as was identified in this study with the

increased TAC1B copy numbers seen in the second-generation fluconazole-evolved

FLU-A2 strain (which concomitantly harbored a R495G-encoding mutation in TAC1B)

(27).

Surprisingly, no mutations in C. auris ERG11 were identified among the fluconazole-

evolved strains created in this study, and all five strains were found to harbor one of

two mutations in TAC1B (encoding F214S and R495G), a gene with a high degree of

homology to the well-characterized C. albicans transcriptional regulator gene CaTAC1.

Intriguingly, two of the three first-generation evolved strains, FLU-B and FLU-C, were

found to have acquired the same TAC1Bmutation (F214S) even after selection following

exposure to different concentrations of fluconazole (8 and 32 mg/liter, respectively).

Furthermore, RT-qPCR revealed that each of the five TAC1B mutant strains exhibited

elevated expression of the ABC-type efflux pump-encoding gene CDR1, as has been

observed with clinical C. albicans isolates possessing a GOF mutation in CaTAC1 (29).

Importantly, the degree of CDR1 overexpression observed among fluconazole-evolved

strains was similar to that previously reported among fluconazole-resistant clinical C.

auris isolates (20).

The clinical relevance of mutations in C. auris TAC1B was further corroborated upon

large-scale analysis of whole-genome sequencing data for over 300 C. auris clinical

isolates. Among the members of this global collection, the majority (54%) of the isolates

were found to have mutations in TAC1B, and 90% of all isolates with TAC1B mutations

were resistant to fluconazole. A total of 14 nonsynonymous TAC1B mutations and one

deletion were identified, and this included both of the mutations identified in

fluconazole-evolved strains, as well as a single mutation (encoding A640V) which was

found among 57 clinical isolates of C. auris from clade I. Subsequently, Cas9-RNP-

mediated genetic manipulations demonstrated that the mutation in TAC1B encoding

the A640V amino acid substitution, the most common mutation found among

fluconazole-resistant clinical isolates of C. auris, was sufficient alone to elevate flucona-

zole resistance by 8-fold. Thus, these data definitively demonstrate that mutations in C.

auris TAC1B represent a novel genetic determinant of clinical fluconazole resistance.

Additional characterization of the fluconazole-evolved C. auris strains created in this

study was also performed to identify potential changes in cellular sterol composition
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and fluconazole uptake which might also be associated with increased fluconazole

resistance in C. auris. Previously, analysis of sterol profiles had revealed significant

changes in cellular sterol composition among fluconazole-resistant clinical isolates of

Candida possessing mutations in ergosterol biosynthesis genes. In one example, a

clinical C. albicans isolate with pan-triazole resistance and harboring mutations in both

CaERG11 and CaERG5 was found to produce no detectable ergosterol while instead

accumulating a large amount of ergosta-5,7-dienol (82% of total sterols) (33). More-

subtle sterol profile changes were also reported in a multidrug-resistant clinical isolate

of C. parapsilosis possessing a loss-of-function mutation in CpERG3 (encoding G111R).

This isolate was found to accumulate large amounts of ergosta-7,22-dienol (72% of

total sterols), a substrate of CpERG3 not typically present in such large proportions (22).

Thus, to assay for changes in ergosterol biosynthesis which might be associated

with the fluconazole resistance phenotype, comprehensive sterol profiling of the

fluconazole-evolved C. auris strains was undertaken. Following growth in RPMI media

without fluconazole supplementation, the only notable difference in levels of sterols

among the fluconazole-evolved strains and AR0387 was a lack of detectable lanosterol,

the substrate of ERG11, in the second-generation evolved FLU-C2 strain. It is tempting

to speculate that this lack of lanosterol may be associated with the mutation in UPC2

which is unique to this fluconazole-evolved strain, as GOF mutations in CaUPC2 have

been shown to increase expression of ergosterol biosynthesis genes, including CaERG11

(28). However, further interrogation of the C. auris UPC2 regulon and this potential

resistance-associated mutation is clearly needed to definitively associate this pheno-

type with the observed mutation in C. auris UPC2.

Following growth in RPMI media supplemented with 16 mg/liter (a concentration

representative of the plasma concentration of fluconazole in patients being treated for

candidemia), a stark difference in the sterol profiles of AR0387 and all fluconazole-

evolved strains was observed. Whereas ergosterol remained the principal sterol present

in all fluconazole-evolved strains (comprising more than 50% of sterols), lanosterol

predominated the total cellular sterols in the parental AR0387 isolate (46%). Addition-

ally, 14-methyl-ergosta-8,24(28)-diene-3,6-diol, a sterol proposed to be toxic and im-

portant for the antifungal activity of the triazoles, was uniquely found in AR0387 (4%

of total sterols) in conjunction with a large amount of 14-methyl-fecosterol (21%), the

direct precursor of this speculated toxic sterol (34). However, this change in the sterol

profile of AR0387 under conditions of fluconazole treatment is consistent with previ-

ously reported changes in fungal sterols with suprainhibitory concentrations of flu-

conazole (33, 35). Therefore, these changes in the sterol profile of AR0387 may be

related to the lower fluconazole MIC for this clinical isolate (1 mg/liter) whereas the

maintained ergosterol content observed in fluconazole-evolved strains may be a direct

consequence of the identified mutations in C. auris TAC1B or a result of the decreased

fluconazole sensitivity of these fluconazole-evolved strains. Further investigation of the

TAC1B regulon and the impact of TAC1B mutations on ergosterol biosynthesis and

sterol profiles is required.

While the mechanism of triazole uptake in fungi has remained unknown to date and

decreased drug uptake is not a mechanism which has been demonstrated to contribute

to fluconazole resistance among clinical isolates of Candida, it is has been suggested

that clinical isolates of Candida with reduced fluconazole sensitivity may exhibit altered

fluconazole uptake (24). To interrogate the potential role of altered fluconazole uptake

in the resistance observed among the fluconazole-evolved strains created in this study,

analysis of [3H]fluconazole uptake was performed. Among the fluconazole-evolved

strains, this analysis revealed an intriguing decrease in [3H]fluconazole uptake in 4 of

the 5 strains compared to AR0387. All strains except for FLU-C2 were found to

accumulate approximately 50% less [3H]fluconazole under energy-depleted conditions.

While the reason for the higher degree of [3H]fluconazole uptake in the FLU-C2 strain

remains unknown, again it is tempting to speculate whether the mutation in UPC2

which is unique to this strain may be involved, particularly as it contrasts with the

diminished uptake in the related first-generation evolved FLU-C strain. Further inves-
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tigation of the role of altered fluconazole uptake in resistance among clinical isolates of

C. auris and the impact of mutations in either TAC1B or UPC2 on fluconazole uptake is

clearly merited.

While the findings from the experiments described here are intriguing and of clear

clinical significance, this study also had limitations. The in vitro evolution experiments

described were performed in a single genetic background and using only fluconazole.

Thus, it cannot be determined if different mechanisms of triazole resistance would be

observed if similar studies were conducted with different clinical isolates of C. auris or

different agents of the triazole class of antifungals. Additionally, while similarities

between the fluconazole-evolved strains in this work and clinical isolates of Candida

possessing known GOF mutations in close homologs of TAC1B are apparent, such as the

increased expression of CDR1, further characterization of the C. auris TAC1B regulon is

needed to fully understand the potential similarities and differences between the

mutations in TAC1B and known mechanisms of fluconazole resistance in other species

of Candida. That withstanding, taken together, the findings of these studies serve to

demonstrate that mutations in TAC1B both represent a potent genetic determinant

contributing to clinical fluconazole resistance in C. auris and are prevalent among the

members of a large global collection of fluconazole-resistant clinical isolates. Further

studies characterizing the interplay between mutations in ERG11 and TAC1B and the

delineation of the TAC1B regulon in C. auris are needed.

MATERIALS AND METHODS

Isolate, strains, and growth media used in this study. Clinical isolates AR0387 and AR0390 were

made available by the CDC and FDA AR Isolate Bank as part of the C. auris collection of isolates. All

constructed strains and clinical isolates were grown in YPD liquid media (1% yeast extract, 2% peptone,

and 2% dextrose) at 30°C in a shaking incubator unless otherwise indicated. Frozen stocks of all strains

and clinical isolates were prepared with 50% sterile glycerol and were maintained at –80°C.

MIC determination. Fluconazole (Sigma) was prepared in dimethyl sulfoxide (DMSO). As previously

described, a modified version of the Clinical and Laboratory Standards Institute document M27 meth-

odology utilizing broth microdilution and RPMI liquid media and reading absorbance at 600 nm on a

BioTek Synergy 2 microplate reader (BioTek, Winooski, VT) was used to determine the fluconazole MIC

as the lowest concentration at which 50% inhibition of growth was obtained (36). All susceptibility

testing was performed in technical triplicate and biological duplicate.

Comprehensive sterol profiling. Fluconazole-evolved strains and the parental clinical isolate were

grown to the exponential-growth phase at 30°C in RPMI liquid media with or without fluconazole

supplemented at 16 mg/liter. Alcoholic KOH was used to extract nonsaponifiable lipids. A vacuum

centrifuge (Heto) was used to dry samples, which were then derivatized by adding 100 �l 90%

N,O-bis(trimethylsilyl)-trifluoroacetamide–10% tetramethylsilane (TMS) (Sigma) and 200 �l anhydrous

pyridine (Sigma) while heating at 80°C for 2 h as previously described (22, 34). gas chromatography-mass

spectroscopy (GC-MS) (with a Thermo 1300 gas chromatography system coupled to a Thermo ISQ mass

spectrometer; Thermo Scientific) was used to analyze and identify TMS-derivatized sterols through

comparison of the retention times and fragmentation spectra for known standards. Sterol profiles for

each sample were determined by analyzing the integrated peak areas from GC-MS data files using

Xcalibur software (Thermo Scientific). All sterol analysis was performed in biological triplicate. Error bars

for each data point represent the standard deviations of results from three independent measurements

of technical replicates.

Assessment of [3H]fluconazole uptake. C. auris isolates and fluconazole-evolved strains were

subjected to glucose starvation for 3 h, and 200-�l volumes of concentrated cell pellets were added to

250 �l of YNB without glucose and 50 �l of freshly diluted 0.77 �M [3H]fluconazole, yielding a final

[3H]fluconazole concentration significantly below the MIC of each strain or isolate being tested (23.6 pg/

liter). Samples were then incubated at 30°C for 24 h, after which 200 �l of each sample was transferred

to 5 ml of stop solution (YNB plus 20 mM [6 mg/liter] unlabeled fluconazole) in a 14-ml round-bottom

tube. Samples were then filtered and dried on glass fiber filters and then washed with another 5 ml of

stop solution, and the filters and cells were then transferred to a 5-ml scintillation vial. A Beckman Coulter

scintillation analyzer was then used to quantify the radioactivity of each filter following the addition of

3 ml of scintillation cocktail (Ecoscint XR, National Diagnostics). Experiments were performed with six

biological replicates, and all results were normalized to cpm per 1 � 108 cells. Statistical comparisons

were made using a one-way analysis of variance (ANOVA) followed by a Tukey test, and the P values

presented represent adjusted values.

Assessment of copy number variation by qPCR and relative gene expression by reverse

transcription-quantitative PCR. For assessment of gene copy number variation, genomic DNA was

isolated from each isolate or strain, and qPCR was performed by the use of three independent primer sets

spanning the open reading frame of each gene of interest and the housekeeping gene ACT1, using SYBR

green per the manufacturer’s instructions and as previously described (26). For assessment of relative

gene expression levels, C. auris isolates and strains were inoculated into 2 ml of RPMI broth buffered with
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morpholinepropanesulfonic acid (MOPS) to pH 7.0 and grown overnight at 30°C for initiation. Overnight

cultures were then diluted to an optical density at 600 nm (OD600) of 0.1 in 10 ml of RPMI media with or

without 16 mg/ml of fluconazole and placed in a 50-ml conical tube. Cultures were then incubated for

10 h and then confirmed to be in the exponential-growth phase under these conditions, after which the

cells were collected by centrifugation, with storage of the cell pellets at –80°C until isolation of RNA was

performed. Synthesis of cDNA was performed using a RevertAid RT kit (Thermo Scientific) per the

manufacturer’s instructions. C. auris ACT1, ERG11, CDR1, and MDR1 were then amplified from cDNA using

SYBR green, PCR master mix, and previously described parameters (20). All experiments were performed

in biological and technical triplicate. The 2�ΔΔCT method was used to calculate the relative levels of

expression of each gene of interest, and standard errors were determined using ΔCT values as previously

described (37, 38). Error bars for each data point represent standard errors of the means of results from

three biological replicates performed with three technical replicates. Statistical comparisons were made

using a one-way ANOVA followed by a Tukey test, and the P values presented represent adjusted values.

Primers are listed in Table S2 in the supplemental material.

Variant identification. TAC1A (B9J08_004819) and TAC1B (B9J08_004820) mutations were identified

in a set of 304 globally distributed Candida auris isolates representing clades I, II, III, and IV (27). For this

data set, analysis of read quality and filtering was performed using FastQC v0.11.5 and PRINSEQ v0.20.3

(39) with “-trim_left 15 -trim_qual_left 20 -trim_qual_right 20 -min_len 100 -min_qual_mean 25 -derep

14.” Then, paired-end reads were aligned to C. auris assembly strain B8441 (GenBank accession no.

PEKT00000000.2 [18]) using BWA mem v0.7.12 (40), and variants were identified using GATK v3.7 (41)

with the haploid mode and GATK tools (RealignerTargetCreator, IndelRealigner, HaplotypeCaller for both

single nucleotide polymorphisms [SNPs] and indels, CombineGVCFs, GenotypeGVCFs, GatherVCFs, Se-

lectVariants, and Variant Filtration). Sites were filtered with Variant Filtration using “QD � 2.0 � FS � 60.0

� MQ � 40.0.” Genotypes were filtered if the minimum genotype quality value was �50, the percent

alternative allele value was �0.8, or the depth value was �10 (https://github.com/broadinstitute/broad

-fungalgroup/blob/master/scripts/SNPs/filterGatkGenotypes.py). Genomic variants were annotated and

the functional effect predicted using SnpEff v4.3T (42). The annotated VCF file was used to determine the

genotype of known mutation sites in ERG11 (B9J08_001448) and mutations in TAC1A (B9J08_004819) and

TAC1B (B9J08_004820).

Antifungal susceptibility testing for global collection of isolates. Fluconazole susceptibility

testing was included for 294 of the 304 isolates included in whole-genome analyses. A total of 270

isolates were tested at the CDC as outlined by Clinical and Laboratory Standards Institute guidelines.

Briefly, custom prepared microdilution plates (Trek Diagnostics, Oakwood Village, OH, USA) were used for

fluconazole. Resistance to fluconazole was set at �32 mg/liter. This interpretive breakpoint was defined

based on a combination of these breakpoints with those established for other closely related Candida

species, epidemiological cutoff values, and the biphasic distribution of MICs between the isolates with

and without known mutations for antifungal resistance (https://www.cdc.gov/fungal/candida-auris/c

-auris-antifungal.html).

Cas9-ribonucleoprotein-mediated transformations. C. auris Cas9 and electroporation-mediated

transformations were performed as previously described (20) with minor modification. The C. auris TAC1B

alleles from AR0387 (TAC1BWT) and AR0390 (TAC1BA640V) were amplified from genomic DNA and then

cloned into plasmid pBSS2 using restriction enzymes SacII and EagI, yielding plasmids pBSS2-TAC1BWT

and pBSS2-TAC1BA640V. Repair templates for each allele of interest were then amplified from each plasmid

using primers that also introduced approximately 50 bases of homology targeting the TAC1B loci to the

3= end of the repair templates. Primers are listed in Table S2. Electrocompetent C. auris cells were

prepared as previously described. Approximately 4 �M concentrations of dual Cas9-RNP constructs

targeting both the TAC1B allele and the sequence immediately downstream of the open reading frame

and 1 �g of repair template were mixed with cells prior to electroporation performed according to the

C. albicans protocol on a GenePulsar Xcell (Bio-Rad) (24). Cells were then allowed to recover for 4 to 6 h

in YPD with incubation in a shaking incubator at 30°C. Transformants were then selected by plating

recovered cells on YPD plates supplemented with 400 �g/ml of nourseothricin. Integration of the repair

template at the targeted loci was then confirmed by PCR for all transformants. The FLP recombinase was

then induced by growing positive-testing transformants in YPM (1% yeast extract, 2% peptone, and 2%

maltose) to mediate loss of the SAT1-FLP cassette. All final strains that were identified as having lost the

SAT1-FLP cassette by replica plating as previously described were then again confirmed by sequencing

(18).

Data availability. All data from Illumina sequences analyzed in this project are available in the NCBI

SRA under BioProject accession no. PRJNA328792, PRJNA470683, and PRJNA493622. A set of isolates are

available from the CDC and FDA Antimicrobial Resistance (AR) Isolate Bank (https://www.cdc.gov/

drugresistance/resistance-bank/index.html).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

FIG S1, TIF file, 2.6 MB.

TABLE S1, DOCX file, 0.02 MB.

TABLE S2, DOCX file, 0.02 MB.
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