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Abstract— The post translational modification plays a significiant role in the biological processing. The potential post 
translational modification is composed of the center sites and the adjacent amino acid residues which are fundamental protein 
sequence residues.It can be helpful to perform their biological functions and contribute to understanding the molecular 
mechanisms that are the foundations of protein design and drug design. The existing algorithms of predicting modified sites 
often have some shortcomings, such as lower stability and accuracy. In this paper, a combination of physical, chemical, 
statistical, and biological properties of a protein have been ulitized as the features, and a novel framework is proposed to predict 
a protein’s post translational modification sites. The multi-layer neural network and support vector machine are invoked to 
predict the potential modified sites with the selected features that include the compositions of amino acid residues, the E-H 
description of protein segments, and several properties from the AAIndex database. Being aware of the possible redundant 
information, the feature selection is proposed in the propocessing step in this research. The experimental results show that the 
proposed method has the ability to improve the accuracy in this classification issue. 

Index Terms— Post translational modification, Protein, Classification, Prediction 
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1 INTRODUCTION
ost translation modifications (PTMs) are of pivotal im-

portance for understanding protein functionalities in the 

field of bioinformatics and machine learning [1-3]. PTMs lie 

in the crucial functional regions of protein; they maintain the 

stability of protein-protein interactions and other protein 

functions [4]. The prediction of post translational modificia-

tion sites in protein sequences is one of the main challenges 

and research directions in the field of molecular biology [5]. 

An increasing number of modified information of protein 

sequences have been found and stored in the various bioin-

formatics databases. Yet, a large amount of such information 

seems to be either unavailable or redundant [6]. This gives 

rise to the extreme difficulty of identifying modified sites 

directly from the protein sequences [7]. However, protein 

sequence residues based analysis can enormously help to 

reveal the formation mechanism of the potential modified 

sites in the target protein sequences. 

According to the latest reseaech, one of the most efficient 

biological mechanisms for expanding the genetic code and 

for regulating cellular physiology is the PTM in the field of 

bioinformatics and machine learning [1, 2]. Considering the 

importance of PTM in basic biological research and drug 

development, a great deal of efforts have been made with the 

aim of predicting various modificaton sites. 

Recently many researches and large-scale biology ex-

periments show that PTM sites of proteins seem to be not 

evenly distributed over the whole protein sequences. Only a 

small group of neighbor residues contributes a disproportion-

ately large amount to the potential protein PTM sites of a 

protein and a ligand [7]. In addition, the modified sites in 

protein primary sequences can be generated by using the 

up/down stream residues which are from the protein se-

quence databases [8]. Therefore, we will work towards iden-

tifying the modification sites from different potential target 

protein fragments based on the physical, chemical or biologi-

cal characters of amino acid residues. Traditional methods 

seem to be time consuming, expensive, and less efficient in 

predicting such sites from large numbers of PTMs data. The 

development of high quality predictive models and analysis 

algorithms, which are used by machine learning methods is a 

challenge and yet constitutes an essential task in the field of 

bioinformatics and computational biology. Therefore, various 

computational models have been proposed to predict post 

translational modification sites by silicon means [9-10]. Giv-

en the importance of the topic as well as the urgency of more 

powerful high-throughput tools in this area, further efforts are 

definitely needed to enhance the prediction quality. 

Currently, a variety of computational methods based on 

manchine learning have been developed and explored to 

identify other protein modification sites with a considerable 

number of machine learning algorithms, such as Support 

Vector Machines [7], Random Forests [8], Conditional Ran-
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dom Field [9] and other machine learning algorithms. 

Aforementioned machine learning methods are usually more 

appropriate for balanced datasets with supervised learning 

methods. Unformately, in such imbalanced datasets, the size 

of positive samples is far smaller than the negative ones. So 

one of the serious challenges is that searching and selecting 

the distinguishing features play important role in the imbal-

anced classification problems. Considering the experimental 

errors and other unknowns, some sample labels are wrong or 

missing. So, several samples seem to be false, which have the 

ability to contribute to an increased false negative prediction. 

The preporcessing, which is the step to delete the ambiguous 

samples from the datasets, seems to be necessary. With such 

a step, the false positive samples and the true negative sam-

ples will be reduced to some degree. With the help of the 

machine learning technology, the novel supervised inference 

of novel post modification sites may meet the need of predic-

tion [11-12]. 

To deal with the above mentioned issues, the novel classi-

ficiation framework based on machine learning methods have 

been  adopted to extract the key features and classification 

potential modification site effectively and quickly. 

Particularly interesting are the segements which are 

formed by protein potential modified sites in the spatial 

segements’ structures. Our research made contributions to the 

prediction of protein segements’ potential modification spa-

tial sites in protein sequences. Nevertheless, the research of 

prediction modification sites in protein sequence seems to be 

a very important and quite a difficult challenge. It is neces-

sary to enhance further the accuracy and the coverage of 

prediction methods.   

In this paper, we propose a novel framework to predict the 

modified sites at protein segements based on some funda-

mental features that contribute to physical, chemical, and 

biological types. The experimental results provide accurately 

the protein segements about the predicted modification sites 

in protein sequences. 

2 METHODS 

2.1 Data Set 
As is well known, the protein function is contributed by 

spatial conformation of proteins. Therefore, the protein 
segement's spatial structure may be helpful to analyze and 
find out the characterisitics of potential modifciation sites.  

The original data set is the benchmark data set in the field 
of prediction PTM. The first selected dataset was derived 
from CPLM that is a famous database in the area of protein 
post translational modifcation [14]. The database, which 
contains more than 2,500 lysine succinylated sites treated as 
the positive samples and 24,000 non-succinylated sites treat-
ed as the negative samples, has been extracted from 896 pro-
tein sequences [15]. All the above mentioned protein sege-
ments and polypeptides sequences have been derived from 
the UniProt, which is the well-known protein database in the 
field of bioinformatics [16]. It has been utilized in studying 
and researching enzyme specificity (ES) [17] as well as pro-
tein-protein binding sites (PPB) [23-24]. 

The next testing dataset utilized to train and test the 
framework for predicting the modified sites of multiple K-

PTM types in protein sequences that contains 6,394 potential 
modified sites treated as samples from 27-tuple peptides [25]. 
The detailed information on this dataset can be found in the 
following. There are 1,750 samples not belonging to any of 
the four K-PTM types, 3,895 samples belonging to one type 
of K-PTM, 740 samples to two PTM types, 9 samples to 
three PTM types, and none to all the four types. So the de-
tailed information about these two datasets can be found in 
the Table 1.  

TABLE 1 FIRST BENCHMARK DATASETS 

Dataset Positive Samples Negative Samples 

CPLM 2,521 24,128 

K-PTM 1,169 5,225 
Dataset Protein Total Samples 

CPLM 896 26,649 

K-PTM 521 6,394 

 
The following data set contains various spieces data 

about post translation modification. The data set on lysine 
acetylation site for three species, include Homo sapiens, 
Mus musculus and Saccharomyces cerevisiae from sever-
al sources including PhosphoSite, UniProtKB/Swiss-Prot, 
UbiProt and SCUD, which are the well-known databases 
in the field proteomics. Because of exceptions, ubiquitin 
seems to be attached to lysine residues of proteins in the 
degree. So, we merely considered lysine ubiquitylation in 
the above mention three species in the work. The raw 
dataset includeed 11,547 protein sequences covering dif-
ferent species; of these sequences, more than 8,000 are 
from H.sapiens, about 3,300 are from M.musculus and 
more than 4,500 are from S.cerevisiae. After removing the 
redundant protein segements of three kinds of samples, 
we have extracted and get several samples of three spe-
cies, which include 6,323 samples of H.sapiens, 2,342 
samples of M.musculus and 7,863 samples of S.cerevisiaes, 
respectively. Afterwards, 20 proteins haven been random-
ly selected from each of the datasets of three species to 
form the independent test sets, and the remaining 6,303, 
2,322, and 7,843 <please check these numbers> proteins 
were used to construct the training set, respectively. 

 
 

TABLE 2 SECOND BENCHMARK DATASETS 

Dataset Positive 
Samples 

Negative 
Samples 

All Samples 

H.sapiens 14078 14078 20144 
M.musculus 2622 2622 5244 
S.cerevisiaes 5242 5242 10484 

  

 
Fig. 1.1. Species of Second Benchmark Datasets 
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Fig. 1.2 Positive Samples of Protein Structure 

 

Fig. 1.3 Negative Samples of Protein Structure 

The original data set is the benchmark data set in the field 
of prediction PTM. The first selecting dataset hae been uliti-
lized in this research was derived from CPLM, which is a 
famous and world-renowned lysine modification database in 
the field of protein post translational modifcation [14]. The 
database, which contains more than 2,500 lysine succinylated 
sites treated as the positive samples and 24,000 non-
succinylated sites treated as the negative samples, has been 
extracted from 896 protein sequences [15]. All the above 
mentioned protein segements and polypeptides sequences 
have been derived from the UniProt, which is the well-known 
protein database in the field of bioinformatics [16]. It has 
been utilized in studying and researching enzyme specificity 
(ES) [17], signal peptide/ amino acid residues’ cleavage sites 
(AACS) [18], hydroxyproline and hydroxylysine sites (H2S) 
[19] methylation sites [20], nitrotyrosine sites (NiS) [21], 
protein-protein interaction (PPI) [22], and protein-protein 
binding sites (PPB) [23-24]. 

2.2 Feature Description 

Generally speaking, the kind of protein features 
could reach more than 40,000. Those various types of 
features, including amino acid compositions model (AAC) 
pseudo amino acid compositions model (PseAAC) and 
other related information of protein characteristics [26]. 
Those features, however, could hardly meet the need of 
effectively and accurately description of the interactions 
among predicted modified site and neighbor amino acid 
residues. Therefore, a typical and special feature, which 
has the ability to describe the segement of protein peptide, 
has been introduced in this work. 

First of all, when it comes to the amino acid residues’ 
composition, a great many of researchers could not help 
taking advantage of the statistical information of protein 
sequences in the field of bioinformatics and computation-
al biology. Those features merely described the potential 
modified segements in the statistical aspect. Of course, the 
selection of key feature may be treated as a difficult task 
in this kind of feature sets.  

It was found that 20 kinds of amino acid residues 
have the tendency to be gourped in the 3 types of special 
structure elements: Helix, Strand and Coil. Such features 
are selected from PSIPRED (version 2.6) [34]. PSIPRED’s 
developers try to predict the special tendency with the 
method of neural network technology in the protein se-
quence [36].  

Considering the distributions of α-helices and β-
strands effectively, we have denoted the predicted pro-
tein segements by E-H sequence description.  The next 
table contains several features by the E-H’s description.  

TABLE 3 THE E-H FEATURES 

No. Description 

1 Ratio_EC  
2 Ratio_HC 
3 Appearance_Seg_H 
4 Appearance _Seg_E 
5 Appearance H/L_segment 
6 Appearance E/L_segment 
7 Var_seg_H/L_segment 
8 Var_seg_E/L_segment 
9 Com_Moment_segment_EH 
10 Com_Moment_segment_HE 
11 Com_Moment_EH 
12 Com_Moment_HE 
13 Var_Pos_E_segment 
14 Var_Pos_H-segment 
15 Var_Pos_E 
16 Var_Pos_H 
17 fEH 
18 fHE 
19 Appearance_Seg_E 
20 Appearance_Seg_ H 
21 LZ_seq 
22 LZ_E&H 
23 Ave _E&H 

 
From the above mentioned features both the basic fea-

ture and the novel feature may describe the statistical 
information of E and H type that describe the predicted 
modified segements. According to the Ding’s work [40], 
all of the above mentioned features contain some redun-
dant information and noise. So, the selected features are 
shown in the following Table 4. 

  
TABLE 4 THE SELECTED E-H FEATURES 

No. Description 

1 Appearance(H) 
2 Appearance (H) 
3 Max_segment_H/L_EH 
4 Max_segment_E/L_EH 
5 Avg_segment_H 
6 Avg_segment_E 
7 Com_Moment_E 
8 Count_Segment_E 
9 Ave_In_E 
10 Ave_In_HE 
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11 Ave_In_EH 

 
The most popular and well-known amino acids’ feature 

index is the AAindex, which is a website database of nu-
merical indices including various biological, physical and 
chemical properties of the amino acid residues and other 
forms of protein sequences' features. Meanwhile, AA-
index contains three types protein properties information: 
AAindex1, AAindex2 and AAindex3 [27-29]. So, several 
types of amino acids’ features have been employed in this 
research. The more detailed information have been 
shown in Table 2. The selected properties of AAindex 
database is shown in Table 7 [47-49]. 

 
TABEL 5 THE SELECTED AAINDEX PROPERTIES 

No. AAindex ID No. AAindex ID 

1 CHOP780207 9 KLEP840101 

2 DAYM780201 10 KRIW710101 

3 EISD860102 11 KRIW790102 

4 FAUJ880108 12 NAKH920103 

5 FAUJ880111 13 QIAN880101 

6 FINA910103 14 QIAN880139 

7 JANJ780101 15 RACS820114 

8 KARP850103   

 

2.3 Classification 

Classification is very important and is often used in the 
field of bioinformatics [25]. Due to post modification sites 
consisting of potential modified residues, the up/down 
stream amino acid residues should be treated as a feature 
vector. In this paper, a feature-based classification meth-
od is proposed to detect the modified residues in protein 
segements.  

In this paper, support vector machine (SVM) classifica-
tion model is created to identify the post modification 
residues in the field of proteomics. Currently, some good 
use of SVM has been made for bioinformatics and compu-
tational biology. Such model has been introduced and 
proposed by Vapnik for classification and regression, 
which are a set of related supervised learning methods in 
the field of machine learning. It is a well-known classifier 
used to validate the application of the successful classifi-
cation phosphorylation sites [26].  

Developments of artificial intelligence and neural net-
works can be traced back to the 1950s. Currently, the deep 
learning, which is more complex with deeper structures, 
seems to be at the forefront of the current topics in the 
field of machine learning. It was pointed that neural net-
work can be widely used in various fields [41-42]. Flexible 
neural network tree has been introduced and designed by 
Chen [reference]. The model constributes to an alternative 
neural network structure, in which both depth and width 
can be employed in the model [43-44]. It is noted that the 
flexible structure could be regarded as the prototype of 
deep neural network. So the main steps of such neural 
network model is shown in Fig. 2. 

 
Fig. 2.1. The Structure of Nerve Cells 

 
Fig. 2.2. The Structure of Neural Network 

In this paper, SVM and multi-layer neural networks 
have been adopted to learn from the training set, which 
can classify the potential modified segement in the pro-
tein sequence.  

In order to make sure that the parameter evaluation of 
support vector machines is thoroughly independent of 
the data set, the original data set of potential modified 
sites has been grouped into two sets. One part is used to 
optimize the parameters of SVM and multi-layer neural 
networks as a separate validation set which includes one 
tenth of the whole protein segements. When classifying 
sites as potential center amino acid residues and non-
modified amino acid residues, the ensemble model is 
trained by all positive labels with the modified sites and 
all negative labels with the non-modified sites. 

In this paper, the ten-fold cross validation method has 
been utilized to validate this classification framework. 
The sample set is divided into ten parts, 90% of which is 
treated as the training set and the remaining 10% subset 
has been regarded as the test set. Afterwards, the predic-
tion results from the two classifiers are integrated as in-
put vectors of the classifier model and the prediction re-
sult of the whole model is the finial result. 

2.4 Performance Measures 

To evaluate the performance of modified sites prediction, 

the several measures are used. The true positive of the modi-

fied prediction is the number of modified in predicted modi-

fied and also in natural modified sites. The false positive of 

the modified prediction is the number of modified in pre-

dicted modified but not in natural modified sites. The false 

negative of the modified prediction is the number of modi-

http://www.genome.jp/dbget-bin/www_bget?aaindex:RACS820114
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fied that are not in predicted modified but in natural modi-

fied sites.  
To evaluate the predicition model, the Root Mean Square 

(RMS) [45], which has been used as evaluation function of 
features, has been employed in this reseach. The overall ac-
curacy (OA) means the computing for each dataset in the 
prediction model. At the same time, the next several perfor-
mances have been utilized in evaluating the prediction accu-
racy, namely, Sensitivity (Sens) and Specificity (Spec). Ex-
plicitly, they are describled by the formulation (1)-(3): 

[0,1]

TP TN
OA

TP FN FP TN

OA




  


 (1) 

[0,1]

TP
Sens

TP FN

Sens






 (2) 

[0,1]

TN
Spec

FP TN

Spec






 (3) 

3 RESULTS 

In order to further assess performance of this model, 
comparison has been carried out for our proposed en-
semble classification model and other existing means. The 
proposed UbiProber predictor trained and tested several 
data sets, which include of H.sapiens, M.musculus and 
S.cerevisiae, based on the combined features and pro-
posed ensemble prediction model. To evaluate the per-
formance of UbiProber for species-specific modification 
sites prediction, the 10-fold cross-validation test has been 
performed in each species.  
First of all, several acetylation prediction softwares have 
been developed in the website resources. However, some 
of them had broken internet links, so they could hardly be 
tested in this model. In fact the predictors, which em-
ployed EnsemblePail, PHOSIDA, PLMLA and PSKAceP-
red, were included in the comparison tables. The compar-
ison results are shown in Tables 6-10. In terms of sensitiv-
ity and specificity, the proposed method achieved rela-
tively high performance compared to the other compared 
methods. On the contrary, there was a great divergence 
between sensitivity and specificity in the data sets of 
PHOSIDA, PLMLA and PSKAcePred. When it comes to 
the predicition accuracy, the value from the proposed 
method could almost reach ideal values, which over-
whelmed all other methods. Compared to state-of-the-art 
methods, it is worth pointing out that the proposed 
method demonstrates a fairly good capability to predict 
modification sites. 
TABLE 6 COMPARISON OF PERFORMANCES ON PROPOSED AND 

EXISTING METHODS (H.SAPIENS) 

Method Sn (%) Sp (%) Acc (%) 

SVM 75.33 82.67 72.07 
NN 72.33 79.33 70.33 

FNT 78.92 84.29 72.64 
Previous 
Method 

80.21 87.74 74.59 

Proposed 
Method 

85.94 61.37 79.53 

 
TABLE 7 COMPARISON OF PERFORMANCES ON PROPOSED AND 

EXISTING METHODS (M.MUSCULUS) 

Method Sn (%) Sp (%) Acc (%) 

SVM 75.47 83.67 72.38 

NN 72.74 75.84 71.75 

FNT 79.12 85.29 73.71 

Previous 
Method 

81.21 86.74 78.65 

Proposed 
Method 

83.23 79.74 81.49 

 

TABLE 8 COMPARISON OF PERFORMANCES ON PROPOSED AND 
EXISTING METHODS (S.CEREVISIAE) 

Method Sn (%) Sp (%) Acc (%) 

SVM 83.00 72.34 77.67 
NN 77.60 69.54 73.57 
FNT 81.57 71.89 76.73 

Previous 
Method 

80.38 68.94 74.66 

Proposed 
Method 

86.31 69.87 78.09 

 

TABLE 9 COMPARISON OF PERFORMANCES ON PROPOSED AND 
EXISTING METHODS (CPLM) 

Method Sn (%) Sp (%) Acc (%) 

SVM 79.51 72.37 77.76 
NN 74.74 69.87 73.87 
FNT 79.12 72.74 77.82 

Previous 
Method 

79.37 81.52 79.42 

The 
Method 

79.93 82.87 80.92 

 

TABLE 10 COMPARISON OF PERFORMANCES ON PROPOSED 
AND EXISTING METHODS (K-PTM) 

MethodS Sn (%) Sp (%) Acc (%) 

EnsemblePail 49.36 62.68 56.04 
PHOSIDA 42.37 92.35 67.36 

PLMLA 78.90 44.20 61.55 
PSKAcePred 72.24 49.66 60.95 

LA+FNT 61.38 75.40 68.39 
Previous 
Method 

73.47 74.35 73.91 

Proposed 
Method 

74.21 74.87 74.54 
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4 CONCLUSIONS 

In this paper, we propose the machine learning algorithm, 
with the features of amino acid residues, to predict the 
potential modified sites. First of all, the machine learning 
method is carried out to delete the redunant potential 
samples. Subsequently, SVM and multi-layer neural net-
work models are created to predict the modified sites and 
non-modified sites based on the features selected. Finally, 
the potential modified residues are clustered to different 
modified types, which represent different sets of modi-
fied sites where different sets are dissimilar from each 
other. Our method chooses the similarity as a measure of 
local neighbor residuues discovery. One of the future 
researches seems to consider the modified residues con-
servations and different energy contributions to each 
other, which are still very necessary and important.  

From the above analysis and discussion, it can be con-
cluded that features of amino acid residues, especially the 
neighbor residues of the center potential modification 
sites, appear to play a critical role in this prediction issues. 
Therefore, the assumption of relationship between the 
upstream/downstream resideus and the center modified 
sites could be regarded as the combination feature type of 
amino acid residues’ interaction. At the same time, the 
multi-layer neural network and support vector machine 
essemble model have integrated both complex features 
combination and the kernel technology in this prediction 
issue. The modified sites’ prediction seems to be a classi-
cal two-classification issue in the field of machine learn-
ing and bioinforamtics. Nevertheless, several challenges 
still have to be resolved in such field. So, in the future 
work, various types of protein post translational modifi-
cation in the PTM process needs to be more clearly ex-
plained or described in detail in the field of biology. Fi-
nally, the special structure information seems to be em-
ployed as the novel types of prediction features. 
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