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Abstract Regulation of gene expression at the level of
transcription controls many crucial biological processes.
Transcription factors (TFs) play a great role in controlling
cellular processes and MYB TF family is large and involved
in controlling various processes like responses to biotic and
abiotic stresses, development, differentiation, metabolism,
defense etc. Here, we review MYB TFs with particular
emphasis on their role in controlling different biological
processes. This will provide valuable insights in understand-
ing regulatory networks and associated functions to develop
strategies for crop improvement.
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Introduction

Transcription factors (TFs) naturally act as master regulators of
cellular processes, so they are expected to be excellent candi-
dates for modifying complex traits in crop plants and TF-based
technologies are likely to be prominent part of the next gener-
ation of successful biotechnology crops. Traditional breeding
is limited by the amount of genetic diversity in the germplasm
of a particular crop; transgenic technologies bypass genetic
barriers and allow modification of regulatory pathways in
one plant using TFs from another plant (Century et al. 2008).
Genes for a variety of transcription factors that contain typical
DNA binding motifs, such as bZIP, MYB, MYC, ERF/AP2
and Zinc fingers have been demonstrated to be signal inducible
(Bray 1997; Shinozaki and Yamaguchi-Shinozaki 2000).

These transcription factors function in further regulation of
various functional genes under particular development and
stress conditions. Identification of novel transcription factor
genes and their role in regulating the expression of important
genes will help in understanding signaling pathways leading to
development of novel transgenic crops. Several transcription
factor genes i.e. MYB, CBF/DREB1, HSF, TGA6, BOS1,
bZIP, AP2/EREBP etc. are indicated for their role in plant
development and stress tolerance (Meshi and Iwabuchi 1995;
Xiong et al. 1997; Kizis et al. 2001; Narasuka et al. 2003;
Mengiste et al. 2003).

MYB transcription factor

The MYB family of proteins is large, functionally diverse and
represented in all eukaryotes. Most MYB proteins function as
transcription factors with varying numbers of MYB domain
repeats conferring their ability to bind DNA. They are widely
distributed in plants and have been implicated in the ABA-
response and also interact with other transcription factors.
Members of this family function in a variety of plant-
specific processes, as evidenced by their extensive functional
characterization in Arabidopsis (Arabidopsis thaliana). The
‘classical’ MYB factors, which are related to c-Myb, seem to
be involved in the control of the cell cycle in animals, plants
and other higher eukaryotes.

The first MYB gene was identified as the ‘oncogene’ v-
MYB from the avian myeloblastosis virus. This gene appears
to have originated from a vertebrate gene and has three
members- c-MYB, A-MYB and B-MYB. The first plant MYB
gene identified was C1 from Zea mays (Paz-Ares et al. 1987).
The MYB gene family is represented by only five 3R-MYB
genes, compared with up to 190 R2R3-MYB genes in
Arabidopsis (Stracke et al. 2001; Yanhui et al. 2006).
Recently, Du et al. (2012a) performed a genome-wide survey
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of the R2R3-MYB gene family in maize and identified a
putative full set of R2R3-MYBs in the maize genome, com-
prising a total of 157 typical R2R3-MYB encoding genes. The
Populus genome contains five 3R-MYB genes and 192
R2R3-MYB genes (Wilkins et al. 2009). A total of 252
MYBs, including 244 R2R-MYB (2R-MYB) genes, six
R1R2R3-MYB (3R-MYB) genes, and two R0R1R2R3-
MYB (4R-MYB) genes were identified in soybean (Du et al.
2012b). Supriya et al. (2006) and Sharma et al. (2010)
reportedMYB TF in Brassica species. AtMYB2 gene has been
reported to have role in drought tolerance. A list of some
MYB proteins is given in Table 1.

Structure of MYB

MYB factor represents a family of proteins that include
a conserved domain, the MYB DNA-binding domain. In
contrast to animals, plants contain mainly MYB protein
subfamily which is characterized by the R2R3-type
MYB domain. MYB proteins have two distinct regions,
an N-terminal conserved MYB DNA-binding domain
and a diverse C-terminal modulator region responsible
for the regulatory activity of the protein. MYB domain
generally consists of up to four imperfect amino acid
sequence repeats (R) of about 52 amino acids, each
forming three α–helices (Fig. 1). The second and third
helices of each repeat build a helix-turn-helix (HTH)
structure with three regularly spaced tryptophan (or hy-
drophobic) residues, forming a hydrophobic core in the
3D HTH structure (Ogata et al. 1996). In plants, the
first tryptophan of R3 is substituted by phenylalanine or
isoleucine.

Based on the number of MYB domain, the MYB family
can be divided into four classes, 1R-, R2R3-, 3R- and 4R-
MYB proteins (Dubos et al. 2010; Stracke et al. 2001).
R2R3-MYB proteins are specific to plants and are also the
most abundant type in plants, with more than 100 R2R3-
MYB members in the genomes of dicots and monocots
(Jiang et al. 2004a; Wilkins et al. 2009). The three repeats
of the prototypic MYB protein c-Myb are referred to as R1,
R2 and R3, and repeats from other MYB proteins are named
according to their similarity to R1, R2or R3 of c-Myb. All
four classes are found in plants, representing the taxon with
the highest diversity of MYB proteins. The smallest class is
the 4R-MYB group, whose members contain four R1/R2-
like repeats. A single 4R-MYB protein is encoded in several
plant genomes. The second class contains R1R2R3-type
MYB (3R-MYB) proteins, typically encoded by five genes
in higher plant genomes. In contrast to the highly conserved
MYB domain, the other regions of R2R3-MYB proteins are
highly variable. Based on the conservation of the DNA
binding domain and of amino acid motifs in the C terminal

domains, R2R3-MYB proteins have been divided into sub-
groups (Stracke et al. 2001). Therefore, the plant R2R3-
MYB family is categorized into three major subdivisions on
the basis of the sequence of the DNA binding domain: sub-
group Awhose members are most similar to c-MYB and other
animal MYB proteins; subgroup B, which is a relatively small
group (four members in Arabidopsis); and subgroup C, which
encompasses 70 members in Arabidopsis.

Evolution of MYB

Evolutionary studies based on the sequences of MYB do-
mains from several organisms indicate that plant MYB
ancestors may have had three MYB repeats and that the
first repeat was lost. A model for evolution of MYB proteins
has been presented by Lipsick (1996). According to this
model, R1R2R3MYBs were generated by successive intra-
genic duplications or triplications in the primitive eukary-
otes, and these evolved into today’s two repeat (R2R3-
MYB) and three repeat (R1R2R3-MYB) genes in plants
and animals. It is considered that, upon loss of R1,
several subgroups of genes encoding R2R3-MYB pro-
teins were formed through selective amplification and
subgroup expansion during plant evolution (Jin and
Martin 1999). MYB genes were generated by successive
gain of repeat units. Du et al. (2009) and Dubos et al.
(2010) have reviewed the structure, characteristic, classi-
fication, multi-functionality, mechanism of combinational
control, the “gain” model for evolution and function
redundancy of MYB genes in detail.

The third heterogeneous class comprises proteins with a
single or a partial MYB repeat, collectively designated
“MYB-related” that fall into several subclasses (Rosinski
and Atchley 1998). Most plant MYB genes encode proteins
of the R2R3MYB class, which are thought to have evolved
from an R1R2R3-MYB gene ancestor, by the loss of the
sequences encoding the R1 repeat and subsequent expan-
sion of the gene family (Rosinski and Atchley 1998).
However, the evolution of 3R-MYB genes from R2R3-
MYB genes by the gain of the sequences encoding the R1
repeat through an ancient intragenic duplication has also
been proposed (Jiang et al. 2004b). Two R2R3-MYB
genes, Arabidopsis AtMYB59 and AtMYB48, and their
rice homologues (OsMYBAS1 and OsMYBAS2) undergo
a similar pattern of alternative splicing, producing four
differently spliced transcripts in Arabidopsis and three in
rice. Thus, elucidation of the mechanism behind the
alternative splicing of MYB genes will not only provide
information on gene evolution in monocots and dicots,
but also facilitate our understanding of the regulation of
MYB transcription factor genes in development (Jigang
et al. 2006).
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Table 1 Some MYB proteins and their function in plants

Name of MYB protein Species Function References

Role in plant development

AtMYB021/ AtMYB033/ AtMYB065/ Arabidopsis thaliana Stamen development/Anther development
(tapetum), Filament length, GA– and
JA–mediated

Mandaokar et al. 2006

AtMYB037/ AtMYB038 Arabidopsis thaliana Axillary meristem regulation/Lateral organ
formation (shoot branching, GA–mediated)

Lee et al. 2009

AtMYB068/ AtMYB084 Arabidopsis thaliana Root elongation, Axillary meristem
regulation/ Lateral organ formation

Feng et al. 2004

OsMYB2P-1 Oryza sativa Root system architecture Dai et al. 2012

GmMYB-G20-1 Glycine max Flower color Takahashi et al. 2013

AtMYB115/ AtMYB118 Arabidopsis thaliana Embryogenesis Wang et al. 2008

Cell shape and petal morphogenesis

AmMYBMx Antirrhinum majus Cell shape Noda et al. 1994

PhMYB1 Petunia hybrida Petal development Noda et al. 1994

AtMYB016 Arabidopsis thaliana Petal development Baumann et al. 2007

Cellular proliferation and differentiation

AtMYB005 Arabidopsis thaliana Seed coat differentiation Gonzalez et al. 2009

AtMYB017 Arabidopsis thaliana Early inflorescence development and seed
germination

Zhang et al. 2009

AtMYB046/ AtMYB057 Arabidopsis thaliana Expression in siliques/ flower buds Kranz et al. 1998

GhMYB109 Gossypium hirsutum Fibre elongation Suo et al. 2003

Trichome development

AtMYB011 Arabidopsis thaliana Trichome formation Oppenheimer et al.
1991

AtMYB017/ AtMYB023 Arabidopsis thaliana Cell fate/Trichome initiation and branching,
Root hair patterning

Kang et al. 2009

AtMYB066 Arabidopsis thaliana Root hair development Kranz et al. 1998

Phenylpropanoid metabolism

AmMYB305/ AmMYB340 Antirrhinum majus Phenylpropanoid metabolism Jackson et al. 1991

AtMYB003/AtMYB007/ AtMYB032 Arabidopsis thaliana Phenylpropanoid metabolism Dubos et al. 2008

AtMYB011/AtMYB012/ AtMYB111 Arabidopsis thaliana Phenylpropanoid pathway/ Flavonol biosynthesis Stracke et al. 2007

AtMYB075/AtMYB090/ AtMYB113/
AtMYB114

Arabidopsis thaliana Phenylpropanoid pathway/Anthocyanin
biosynthesis

Gonzalez et al. 2008

EsMYB E. sagittatum Flavonoid biosynthesis Huang et al. 2013

PhMYB3 Petunia hybrida Anthocyanin synthesis Solano et al. 1995

PhMYBAn2 Petunia hybrida Anthocyanin synthesis Quattrocchio et al.
1993

ZmMYBC1 Zea mays Anthocyanin synthesis Paz-Ares et al. 1987

ZmMYBP1 Zea mays Anthocyanin synthesis Grotewold et al. 1994;
Du et al. 2012b

Hormone responses

AtMYB33/ AtMYB65 Arabidopsis thaliana Hormone response (GA signaling) Kranz et al. 1998

AtMYB101 Arabidopsis thaliana Hormone response (GA signaling) Quaedvlieg et al. 1996

HvMYBGa Hordeum vulgare Hormone response (GA signaling) Gubler et al. 1995

OsGAMYB Oryza sativa Hormone response (GA signaling) Gubler et al. 1997

Abiotic stress

AtMYB002 Arabidopsis thaliana Drought response Urao et al. 1993

AtMYB015 Arabidopsis thaliana Cold stress tolerance Agarwal et al. 2006

AtMYB030 Arabidopsis thaliana Abiotic stress response, SA–mediated
pathway

Li et al. 2009

AtMYB060/ AtMYB094 Arabidopsis thaliana Drought, ABA–mediated (stomatal closure) Cominelli et al. 2005

AtMYB070/ AtMYB073/ AtMYB077 Arabidopsis thaliana Abiotic stress response/ Drought, Light,
Wounding

Jung et al. 2008
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Tissue-specific expression

Some MYB genes were expressed in most tissues and after
most treatments (AtMYB1, AtMYB3, AtMYB38 and
AtMYB44), while others were only expressed under very
specific conditions. For example, AtMYB19 transcripts were
detected only after infection with Pseudomonas syringae.
Similar observations were made in terms of organ-specific
expression patterns: AtMYB7, AtMYB44 and AtMYB73
were expressed in all plant organs studied while AtMYB46
was only detected in siliques and AtMYB21 only in flower
buds (Shin et al. 2002). Several MYB-related genes expressed
in anthers have been identified, namely AtMYB26 and
AtMYB103 in Arabidopsis (Steiner-Lange et al. 2003;
Higginson et al. 2003) and NtMYBAS1 in tobacco (Yang et
al. 2001). In Arabidopsis, AtMYB103 gene expression was
restricted to the tapetum of developing anthers and trichomes,
down-regulation results in early tapetal degeneration and

aberrant pollen. Similarly, AtMYB32 was expressed in most
tissues, but strongly expressed in the anther tapetum, stigma
papillae, and lateral root primordia.

In other plants evidence of tissue-specific regulation was
also reported, HbMYB1 being expressed in leaves, bark,
and latex of rubber trees, but its expression was significantly
decreased in bark of TPD (tapping panel dryness) trees
(Chen et al. 2003). AtMYB33 and AtMYB65 were co-
expressed in many tissues and AtMYB101 expression was
only restricted to subapical plant cells and the hypocotyls
hook. In Arabidopsis, AtMYB102 was upregulated in root,
leaf and young flowers and down regulated in stem when
treated with ABA indicating that each R2R3-MYB gene had
a unique expression pattern (Kranz et al. 1998).

In cotton, GhMYB109 was specifically expressed in cotton
fiber initial cells as well as elongating fibers (Suo et al. 2003).
GhMYB7 andGhMYB9were expressed in flowers and fibers,
and their expression in fibers is developmentally regulated

Table 1 (continued)

Name of MYB protein Species Function References

AtMYB096 Arabidopsis thaliana Drought tolerance (ABA and JA–mediated) Seo et al. 2009

BcMYB1 Boea crassifolia Drought tolerance Chen et al. 2005a

OsMYB55 Oryza sativa Heat stress tolerance El-kereamy et al. 2012

ScMYBAS1 Saccharum officinarum Drought and salt tolerance Prabu and Theertha
2011, Prabu and
Prasad 2012

Biotic stress

AtMYB030 Arabidopsis thaliana Hypocotyl elongation, brassinosteroid
pathway

Li et al. 2009; Segarra
et al. 2009

AtMYB44 Arabidopsis thaliana Plant defense response against aphid Liu et al. 2010

AtMYB060/ AtMYB094/ AtMYB096 Arabidopsis thaliana Biotic stress response Cominelli et al. 2005;
Seo and Park 2010

Light response

AmMYB305 Antirrhinum majus UV light response Jackson et al. 1991

AtMYB004 Arabidopsis thaliana UV light response Kranz et al. 1998

PcMYB1 Petroselinum crispum Light response Feldbrugge et al. 1997

Nutrient deficiency

AtMYB28 Arabidopsis thaliana Sulfur-starvation response Hirai et al. 2007

AtMYB29 Arabidopsis thaliana Sulfur-starvation response Hirai et al. 2007

MYB as negative regulators

AtMYB60 Arabidopsis thaliana Inhibits anthocyanin biosynthesis in the
lettuce plant.

Park et al. 2008

MYB MIXTA M. guttatus Negative regulator of trichome development Scoville et al. 2011

ZmMYB31 Zea mays Inhibits sinapoylmalate and phenylpropanoid
biosynthesis

Fornale et al. 2010

Regulation of primary and secondary metabolism

AtMYB058/ AtMYB063 Arabidopsis thaliana Lignin biosynthesis (fibers and vessels) Zhou et al. 2009

AtMYB123 Arabidopsis thaliana Proanthocyanidins (PAs) biosynthesis Lepiniec et al. 2006

AtMYB028/AtMYB034/ AtMYB122 Arabidopsis thaliana Glucosinolate biosynthesis Gigolashvili et al.
2007

AtMYB052/AtMYB054/ AtMYB069 Arabidopsis thaliana Cell wall thickening (fibers) Zhong et al. 2008
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(Chuan et al. 2005). Furthermore, some recent studies have
suggested that GAMYB may be involved in floral initia-
tion, stem elongation, anther development and seed devel-
opment (Woodger et al. 2003), GAMYB was expressed at
a high level in the floral meristem at the double-ridge
stage and in stamen primordia of the grass L. temulentum.
The two soybean R2R3-MYB genes, GmMYBJ6
(DQ902863) and GmMYBJ7 (DQ902864) were expressed
only in leaf and stem indicating that it may be a common
characteristic of the MYB TFs showing different expression
patterns in higher plants.

Functions of MYB

The large size of the MYB family in plants indicates their
importance in the control of plant specific processes. A
tremendous amount of data is available on the roles of
MYB transcription factors in plants (Du et al. 2009; Dubos
et al. 2010). The functions of MYB proteins have been
invest igated in numerous plant species such as
Arabidopsis, maize, cotton, rice (Oryza sativa), petunia
(Petunia hybrida), snapdragon (Antirrhinum majus), grape-
vine (Vitis vinifera L.), poplar (Populus tremuloides) and
apple (Malus domestica), using both genetic and molecular
analyses. In the past decade, the R2R3-MYB genes have
been extensively studied and members of the MYB family
have been found to be involved in a variety of biological
functions like phenylpropanoid metabolism (Grotewold et

al. 1994; Hichri et al. 2011), biotic and abiotic stress
(Segarra et al. 2009; Lippold et al. 2009), cell shape such
as Am MIXTA (Noda et al. 1994), differentiation
(Oppenheimer et al. 1991; Kang et al. 2009; Xie et al.
2010), hormone responses i.e. AtMYB2 (Urao et al.
1993), GAMYB and CpMYB (Gubler et al. 1995 ; Iturriaga
et al. 1996), formation of B-type cyclin (Ito et al. 2001) or
during plant defense reactions i.e. NtMYB1(Yang and Klessig
1996; Liu et al. 2008). Myb1R is involved in regulation of
circadian clock (Schaffer et al. 1998, 2001) and telomeric
DNA-binding protein (Yu et al. 2000).

Arabidopsis thaliana dedicates over 5 % of its genome to
code for more than 1,500 transcription factors, about 45 %
of which are from families specific to plants. The three
largest families of transcription factors in Arabidopsis
AP2/EREBP (Apetala/ethylene responsive element binding
protein, MYB(R1) R2R3 and bHLH (basic helix-loop-helix)
each represent only approximately 9 % of the total families
of transcription factors and there are several other families
with comparable numbers of genes (Riechmann et al. 2000).
The R3-type, TRIPTYCHON (TRY), CAPRICE (CPC) and
MYBL2, are likely to have evolved from R2R3-MYB genes
and involved in the control of cellular morphogenesis (Pesch
and Hulskamp 2009) and in secondary metabolism control
(Dubos et al. 2008). Those MYB-related genes of the evolu-
tionarily older R1/R2-type, including CIRCADIAN CLOCK
ASSOCIATED1 (CCA1) and LATE ELONGATED
HYPOCOTYL (LHY), encode core components of the central
circadian oscillator (Lu et al. 2009).

Cellular morphogenesis Primary metabolism Cell cycle control Unknown       
Secondary metabolism Cell fate and identity

Secondary metabolism
Organ morphogenesis        Developmental processes               
Phosphate starvation Responses to biotic and abiotic stresses
Chloroplast development
Circadian regulation

N-terminal conserved
MYB DNA-binding 
domain                     

C-terminal modulator 
region (the regulatory 
region)                       

MYB proteins 
(Two distinct 
regions)

Four classes of 
MYB proteins

1R (R1typeMYB) 4RMYB (four R1/R2)3RMYB (R1R2R3MYB)R2R3MYB (R2R3)   

Fig. 1 Structure of MYB Protein and schematic illustration of different MYB protein classes and their functions depending on the number of
adjacent MYB repeats (R)
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The various functions of MYB are enlisted in Table 1 and
discussed below-

Role in plant development

Several R2R3-MYB genes control anther development and/
or its function including AtMYB21, AtMYB24, AtMYB57,
AtMYB108/BOS1, AtMYB35/TDF1, AtMYB80 and
AtMYB99 (Cheng et al. 2009; Mandaokar and Browse
2009). AtMYB125/ DUO1 is a pollen-specific factor control-
ling male germ cell division and differentiation (Brownfield et
al. 2009). AtMYB33 and AtMYB65 redundantly facilitate
both anther and pollen development (Millar and Gubler
2005). (AtMYB105/LOF2 and AtMYB117/LOF1) control
lateral organ separation and axillary meristem formation up-
stream of AtMYB37 (Lee et al. 2009). AtMYB115 and
AtMYB118/PGA37 have been proposed to play roles in em-
bryogenesis (Wang et al. 2008).

Cell shape and petal morphogenesis

Another role for plant MYB genes is in the control of cell
shape where the MIXTA gene of Antirrhinum and the
orthologous PhMYB1 gene from Petunia have been shown
to be essential for developing the conical form of petal epi-
dermal cells and the GL1 gene of Arabidopsis has been shown
to be essential for the differentiation of hair cells (trichomes)
in some parts of the leaf and stem (Noda et al. 1994;
Oppenheimer et al. 1991). WEREWOLF is a MYB-related
protein in Arabidopsis and it is a position dependent regulator
of epidermal cell patterning (Lee and Schiefelbein 1999).

Baumann et al. (2007) reported that AmMYBML2, en-
codes an R2R3 MYB factor very closely related to MIXTA,
is also expressed in flowers of A. majus. They analysed the
roles of AmMYBML2 and two MIXTA-related genes,
PhMYB1 from Petunia hybrida and AtMYB16 from
Arabidopsis thaliana, in petal development. The structural
similarity between these genes, their comparable expression
patterns and the similarity of the phenotypes they induce
when ectopically expressed in tobacco, suggest they share
homologous functions closely related to, but distinct from,
that of MIXTA. Detailed phenotypic analysis of a phMYB1
mutant confirmed the role of PhMYB1 in the control of cell
morphogenesis in the petal epidermis.

Cellular proliferation and differentiation

c- MYB has been shown to activate transcription factor from
the CDC2 kinase gene promoter in animal cells and control the
G1-S phase transition. Thus, it has role in cellular proliferation.

But no such role has been demonstrated for a plant MYB gene
product although the CDC2α gene from Arabidopsis has been
shown to contain MYB recognition motifs within its promoter
(Martin and Paz-Ares 1997). AtMYB5 regulated the outer
seed coat differentiation (Gonzalez et al. 2009) while
AtMYB66 controlled root hair patterning. AtMYB23 regulat-
ed trichome extension and branching in combination with
AtMYB5 (Li et al. 2009). AtMYB16/MIXTA, is proposed to
control the shape of petal epidermal cells (Baumann et al.
2007), and AtMYB17 is reported to be a putative regulator
of early inflorescence development and seed germination
(Zhang et al. 2009). AtMYB98 regulates synergid cell differ-
entiation during female gametophyte development, pollen tube
guidance and the formation of the filiform apparatus (Punwani
et al. 2008). Similarly, the male germline-specific R2R3 MYB
transcription factor DUO1 POLLEN1 (DUO1) is reported to
have an essential role in sperm cell differentiation in
Arabidopsis (Borg et al. 2011).

Role of MYBs in root development and differentiation has
been reported by various workers (Feng et al. 2004; Shin et al.
2007; Mu et al. 2009). AtMYB59 regulated root development
through the control of cell cycle progression at the root tips
(Mu et al. 2009) and the expression of auxin-inducible genes
was modulated by AtMYB77 regulating lateral root formation
(Shin et al. 2007). Feng et al. (2004) found that AtMYB68 is
expressed specifically in root pericycle cells and was involved
in some steps in root development. They further pointed out
that the closest MYB68 homolog MYB84, exhibited an
overlapping expression pattern in pericycle cells, suggesting
that their functions may be partly redundant. Dai et al. (2012)
suggested that R2R3 MYB transcriptional factor, OsMYB2P-
1 was associated with the regulation of root system architec-
ture in rice. Takahashi et al. (2013) revealed that a MYB
transcription factor gene GmMYB-G20-1 controlled flower
color in soybean.

Trichome development

AtMYB0 and AtMYB23 control trichome initiation in shoots
Arabidopsis thaliana. TRANSPARENT TESTA GLABRA2
(TTG2) encodes a WRKY transcription factor and is
expressed in young leaves, trichomes, seed coats, and root
hairless cells. An examination of several trichome and root
hair mutants indicated that MYB and bHLH genes regulated
TTG2 expression. Two MYB binding sites in the TTG2 5′
regulatory region act as cis regulatory elements and as direct
targets of R2R3 MYB transcription factors such as
WEREWOLF, GLABRA1, and TRANSPARENT TESTA2.
Mutations in TTG2 cause phenotypic defects in trichome
development and seed color pigmentation. Transgenic plants
expressing a chimeric repressor version of the TTG2 protein
(TTG2: SRDX) showed defects in trichome formation,
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anthocyanin accumulation, seed color pigmentation and dif-
ferentiation of root hairless cells.GLABRA2 (GL2) expression
was markedly reduced in roots of ProTTG2:TTG2:SRDX
transgenic plants, suggesting that TTG2 is involved in the
regulation of GL2 expression, although GL2 expression in
the ttg2 mutant was similar to that in the wild type and this
suggests a new step in a regulatory cascade of epidermal
differentiation (Ishida et al. 2007).

GhMYB109, encoding a R2R3 MYB transcription factor
of 234 amino acids, was found to be structurally related to
AtMYBGL1 and AtWER controlling the trichome initiation
in Arabidopsis thaliana. GhMYB109 is present as a unique-
copy gene in cotton genome and RNA expression analysis
showed that it was specifically expressed in cotton fibre
initial cells as well as elongating fibres (Suo et al. 2003).
Wang et al. (2010) revealed distinct relationships between
GL2 and single MYBs in the regulation of trichome vs. root
hair development which could provide new insights into the
molecular mechanism of epidermal patterning.

Phenylpropanoid metabolism

MYB proteins are known to play an important role in the
control of phenylpropanoid metabolism. The C1 protein
activates transcription of genes encoding enzymes involved
in the anthocyanin biosynthesis in the outer layer of cells
(aleurone) of the maize seed endosperm (Paz-Ares et al.
1987; Cone et al. 1986). While C1 is active in aleurone, a
very similar MYB protein, P1, is functional in controlling
anthocyanin biosynthesis in the maize plant where it inter-
acts with other members of the R-protein family to activate
anthocyanin biosynthetic gene expression (Cone et al.
1993). In maize, another MYB protein, ZmMYB1 activated
the structural genes required for anthocyanin biosynthesis
while ZmMYB38 inhibited C1-mediated activation of the
same promoter (Du et al. 2012a).

In other plant species, MYB proteins served similar roles
in control of phenylpropanoid metabolism, for example, in
Petunia flowers where the AN2 gene product is required for
anthocyanin production, it has been shown to encode a
MYB-related product (Quattrocchio et al. 1993). Gene
encoding Chalcone synthase (CHS) was activated by anoth-
er MYB protein from Petunia, PhMYB3, which was
expressed specifically in petal epidermis where anthocyanin
pigment was made (Solano et al. 1995). MYB protein also
served to regulate other branches of phenylpropanoid me-
tabolism. In Antirrhinum majus and tobacco, AmMYB305
(or its orthologue in tobacco) activated the gene encoding
the first enzyme of phenylpropanoid metabolism, phenylal-
anine ammonia lyase (PAL) (Urao et al. 1993). Morita et al.
(2006) reported that spatial and temporal expression of the
structural genes encoding the enzymes for anthocyanin

biosynthesis was determined by combinations of the
R2R3-MYB, bHLH and WDR factors and their interaction.
Lin-Wang et al. (2010) described the association of MYBA
or MYB1 and MYB10 with regulation of the anthocyanin
biosynthetic pathway in Rosaceae.

Maize expresses at least 82 genes encoding R2R3 Myb
proteins and the five genes encoding R2R3 Myb-domain
proteins have been identified in maize corresponding to P,
C1, Pl, ZmI and ZM 38 (Paz-Ares et al. 1987; Cone et al.
1993). All of these genes products have been implicated
directly or indirectly in the control of flavonoid biosynthesis.
Rabinowicz et al. (1999) found that sequence analysis of
maize R2R3 revealed a novel line of evidence for the ampli-
fication of the R2R3 MYB gene family in the early history of
land plants. It suggested that maize provided a possible model
system to examine the hypothesis that the expansion of MYB
gene family was associated with the regulation of novel plant
cellular functions. MYB340 (Moyano et al. 1996), MYB308
and MYB330 (Tamagnone et al. 1998) were reported to be
other MYB genes involved in phenylpropanoid metabolism.
The Arabidopsis TRANSPARENT TESTA (TT2) gene
encoded an R2R3 MYB domain protein that acted as a key
determinant for proanthocyanidin accumulation in developing
seed (Nesi et al. 2001). Huang et al. (2013) isolated and
characterized 13 full-length cDNA clones of R2R3-MYB
TFs from E. sagittatum (EsMYB) and found to regulate the
flavonoid biosynthetic pathway.

Yang et al. (2001) isolated two cDNA clones (NtMyb
AS1 and NtMyb AS2) from tobacco encoding MYB-related
proteins with strong sequence similarity to petunia
PhMYB3 and pointed out that NtMYBAS1 was a functional
anther-specific transcription factor, which is likely to be a
positive regulator of PAL1 expression and phenylpropanoid
synthesis in sporophytic tissues but not in gametophytic
tissues of the anther. Similarly, GmMYB176 has been found
to play key role in flavoniod biosynthesis in soybean (Yi et
al. 2010). Moyano et al. (1996) reported that AtMYB21 and
57 were specifically expressed in flower buds, reminiscent
of the expression pattern of AmMYB305 and 340 from A.
majus. The inhibition of this branch of phenylpropanoid
metabolism was found to be specific to AmMYB308 and
AmMYB330, suggesting that they recognized their normal
target genes in these transgenic plants. Experiments with
yeast indicate that AmMYB308 can act as a very weak
transcriptional activator and overexpression competitively
inhibited the activity of stronger activators recognizing the
same target motifs (Tamagnone et al. 1998).

Hormone responses

Plant MYB proteins have also been reported to have role in
hormonal responses during seed development and germination.

Physiol Mol Biol Plants (July–September 2013) 19(3):307–321 313



SomeMYB genes are expressed in response to GA treatment in
Petunia petals. Another plant hormone, Abscisic acid (ABA),
induces expression of AtMYB2 in Arabidopsis, a MYB gene
that is also induced in response to dehydration or salt stress
(Shinozaki et al. 1992). Gocal et al. (2001) identified three
Arabidopsis genes AtMYB33, AtMYB65 and AtMYB101
with GAMYB like activity. GAMYB is involved in
transactivating the barley α- amylase promoter. These
AtMYB genes may also play a role in the root tip and later in
stem tissue during germination. They further observed increase
in growth rate and erectness of petiole with accumulation of
GAs in the petioles (GA3 by 11-fold and GA4 by 3-fold), and
an increase in expression of AtMYB33 at the shoot apex. They
indicated that GAMYB-like genes mediate GA signaling in
growth and flowering responses.

HvGAMYB from barley and OsGAMYB from rice, which
are required for the expression of theα-amylase in aleurone, are
both regulated by GA signal (Gubler et al. 1995, 1997) and
over-expression of HvGAMYB caused abnormal anther phe-
notype (Murray et al. 2003). It was first identified in barley
aleurone cells and was shown to be upregulated and strongly
expressed in barley anthers by gibberellin (GA) (Murray et al.
2003). They further found that with the increase in HvGAMYB
levels, there was a progressive decrease in anther size, particu-
larly a decrease in anther length. Anthers also became increas-
ingly lighter in color. Anthers with fourfold or more
HvGAMYB protein than non-transgenic controls failed to
dehisce and were male-sterile, while anthers with approxi-
mately three to fourfold endogenous GAMYB protein
levels were smaller and paler but still shed normally.

Chen et al. (2005b) isolated 23 MYB gene fragments and
6 nearly complete ORF encoding putative wheat MYB TFs
(TaMYB1 to TaMYB6). Sequence analysis indicated that
these putative wheat MYB TFs represent typical R2R3
MYBs. Expression analysis of the six TaMYB genes indi-
cated that they were expressed in root, sheath and leaf, but at
different abundance. Another study by Song et al. (2011)
demonstrated that the R2R3-MYB transcription factors
MYB21 and MYB24 function as direct targets of JAZs to
regulate male fertility specifically. They speculated that
JAZs interact with MYB21 and MYB24 to attenuate their
transcriptional function; upon perception of JA signal, COI1
recruits JAZs to the SCFCOI1 complex for ubiquitination and
degradation through the 26S proteasome. MYB21 and
MYB24 are then released to activate expression of various
genes essential for JA-regulated anther development and
filament elongation.

Abiotic stress

AtMYB2, AtMYB74 and AtMYB102 were up-regulated by
drought stress (Denekamp and Smeekens 2003; Abe et al.

2003; Urao et al. 1993). AtMYB2was induced by dehydration
and salt stress but not by cold and heat stress and thus
AtMYB2 is responsive to dehydration at the transcriptional
level. The putative protein (AtMyb2) encoded by AtMYB2
has 274 amino acids, a molecular mass of 32 kDa and a
putative DNA binding domain that shows considerable ho-
mology to plant MYB-related proteins, such as maize C1. In
addition to this, Zhang et al. (2011) reported that AtMYBL
functions in the leaf senescence process, and thus modulates
an abiotic stress response in Arabidopsis.

AtMYB60 and AtMYB96 acted through the ABA sig-
naling cascade to regulate stomatal movement (Cominelli et
al. 2005), and drought stress and disease resistance (Seo et
al. 2009; Seo and Park 2010) respectively. The transcrip-
tional activation of cuticular wax biosynthesis by MYB96
contributed to drought resistance in Arabidopsis thaliana
(Seo et al. 2011).

Chen et al. (2005a) isolated a drought-inducible MYB
gene, designated as BcMYB1, from drought tolerant Boea
crassifolia which encoded a typical R2R3-MYB transcrip-
tion factor belonging to the subgroup 11 of the R2R3-MYB
protein family. It was strongly induced by drought stress and
also responded to PEG, high salinity and low temperature to
some extent. BcMYB1 might be involved in the regulation
of gene expression in response to dehydration stress through
an ABA-independent pathway, whereas it seemed not to be
a regulatory component in wounding signaling. It shared
high similarity with AtMYB102 from Arabidopsis and both
genes responded to water stress. However, their expression
patterns were quite different. AtMYB102 could be induced
by exogenous ABA, while BcMYB1 was insensitive to
ABA treatment. In addition, AtMYB102 expression was
dependent on and integrated signals from both wounding
and water stress while BcMYB1 could hardly be induced by
wound signaling.

Seo and Park (2009) have recently reported that an
Arabidopsis R2R3-type MYB transcription factor, MYB96,
regulated lateral root meristem activation under drought con-
ditions via an ABA-auxin signaling crosstalk. In this signaling
scheme, the MYB96-mediated ABA signals were incorporat-
ed into an auxin signaling pathway that involved a subset of
GH3 gene encoding auxin-conjugating enzymes. TheMYB96-
overexpressing, activation taggingmutant, which was featured
by dwarfed growth and reduced lateral root formation,
exhibited an enhanced drought resistance. The sugarcane
(Saccharum officinarum) stress-related MYB transcription
factor gene, ScMYBAS1-3 was also induced in response
to water-deficit and salt stress. Prabu and Theertha (2011)
elucidated its sequence-to-structure-to-function paradigm,
the putative three-dimensional structure of ScMYBAS1.
Prabu and Theertha (2011) further isolated and characterized
the promoter (PScMYBAS1) which they found to be helpful
in understanding the regulation of ScMYBAS1 expression
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and providing a new stress-inducible promoter system in
transgenic plants.

The expression ofArabidopsisR2R3AtMYB102 transcrip-
tion factor gene was dependent on signals derived from both
wounding and osmotic stress (Denekamp and Smeekens2003).
AtMYB102/AtM4 and AtMYB41 (subgroup 11) contributed
to plant resistance against insects and probably affected dehy-
dration after wounding (De Vos et al. 2006) and osmotic stress
responses (Lippold et al. 2009), respectively. Akagi et al.
(2010) characterized DkMYB2, a Myb-like transcription fac-
tors (MYB-TF), which was placed in a subclade including a
PA regulator of Arabidopsis (Arabidopsis thaliana),
TRANSPARENT TESTA2 (TT2), and was co-induced with
PA pathway genes after wound stress. AtMYB44/AtMYBR1
regulated ABA-mediated stomatal closure in response to abi-
otic stresses and three other members of this subgroup
(AtMYB70, AtMYB73 and AtMYB77/AtMYBR2) are likely
to be associated with stress responses (Jung et al. 2008).
AtMYB13, AtMYB15, AtMYB33 and AtMYB101 (Reyes
and Chua 2007) were involved in ABA-mediated responses
to environmental signals. AtMYB15 was also involved in cold
stress tolerance (Agarwal et al. 2006).

OsMYB3R-2 in rice transgenic plants enhanced tolerance
to freezing, dehydration and salt stress and decreased sensi-
tivity to ABA (Dai et al. 2007). Similarly, El-kereamy et al.
(2012) studied the rice R2R3-MYB transcription factor
OsMYB55 and concluded that overexpression of OsMYB55
improved rice plant tolerance to high temperature which was
associated with enhanced amino acid metabolism through
transcription activation. Liao et al. (2008) identified 156
GmMYB genes in soyabean (Glycine max) of which the
expression of 43 genes changed on treatment with ABA, salt,
drought and/or cold stress. Three MYB proteins have been
reported to be involved in response to abiotic stress in
rice. For instance, overexpression of OsMYB4 significantly
enhanced tolerance to chilling and freezing stress in trans-
genic Arabidopsis (Vannini et al. 2004; Pasquali et al.
2008). Ma et al. (2009) reported that OsMYB3R-2 partic-
ipated in cold signalling pathway by targeting the cell
cycle and a putative DREB/CBF. Moreover, a recent study
revealed thatOsMYBS3 was essential for conferring tolerance
to cold stress in rice plants (Su et al. 2010) while R2R3MYB
gene, OsMYB2, was involved in salt, cold, and dehydration
tolerance in rice (Yang et al. 2012).

Biotic stress

AtMYB30 encodes an activator of the hypersensitive cell
death program in response to pathogen attack, acting through
the regulation of very-long-chain fatty acids synthesis. In
seedlings, AtMYB30 has also been shown to act in the
brassinosteroid pathway controlling hypocotyls cell elongation

(Li et al. 2009). AtMYB62 is reported to be induced in re-
sponse to phosphate starvation (Devaiah et al. 2009) while
AtMYB108 in both biotic and abiotic stress responses
(Mengiste et al. 2003). The family of R2R3-MYB-like tran-
scription factors has repeatedly been implicated in JA-
dependent defense responses. For instance, the OsLTR1 gene
from rice regulated JA-dependent defense whereas AtMYB15,
AtMYB34, AtMYB51 and AtMYB75 were associated with
the wound response or resistance against insect herbivores
(Cheong et al. 2002; Johnson and Dowd 2004). The
BOTRYTIS SUSCEPTIBLE 1(BOS1) gene encoded an
R2R3 MYB transcription factor protein which was found to
be involved in biotic as well as abiotic stress response. It
interacted with jasmonate signaling pathway and mediated
response to signals by reactive oxygen intermediates from
biotic as well as abiotic stress (Mengiste et al. 2003).

AtMYB44 has been found to play role in the plant
defense response against aphid (Liu et al. 2010). Similarly,
AtMYB102 has been reported to be effective in defense
against the insect herbivore Pieris rapae (De Vos et al.
2006). Raffaele et al. (2008) proposed that AtMYB30 mod-
ulated hypersensitive response via very-long-chain fatty
acids (VLCFAs) by themselves or VLCFA derivatives and
thus playing a role in programmed cell death. Segarra et
al. (2009) and Van der Ent et al. (2008) demonstrated
that the defence pathways triggered by beneficial
Trichoderma, Rhizobacteria and Pseudomonas spp.
strains were highly similar and root-specific transcription
factor MYB72 functioned as an early node of conver-
gence in the signalling pathways that were induced by
these different beneficial microorganisms playing role in
defence response in Arabidopsis. AtMYB96-mediated
ABA signals enhanced pathogen resistance response by
inducing salicylic acid biosynthesis and thus MYB96
acted as a molecular link in ABA-SA crosstalks (Seo
and Park 2010).

Light response

MRECH (a MYB recognition element for chalcone synthase)
is known to have a functional core that is essential for light
responsiveness and is specifically recognized by two dis-
tantly related MYB-like proteins: MYB305 and the novel
factor MYB1 from Petroselinum crispum. PcMYB1 was
identified by both its specific binding to MRECHS in vitro
and recognition of MRECHS in vivo. The deduced amino acid
sequence revealed that PcMYB1 contained only oneMYB-like
repeat (Feldbrugge et al. 1997). Stracke et al. (2010) reported
that the bZIP transcriptional regulator ELONGATED
HYPOCOTYL5 (HY5) was required for the transcriptional
activation of the PFG1/MYB12 and PFG3/MYB111 genes
under UV-B and visible light respectively.
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Nutrient deficiency

Rubio et al. (2001) found PHR1 (Phosphate Starvation
Response1), a mutant which was related to the Phosphorus
Starvation Response1 (PSR1) gene from Chlamydomonas
reinhardtii. They further reported that PHR1 is expressed in
Pi sufficient conditions and in contrast to PSR1, is only weakly
responsive to Pi starvation. PHR1, PSR1 and other members of
the protein family shared a MYB domain and a predicted
coiled-coil (CC) domain, defining a subtype within the MYB
superfamily, the MYB-CC family and was involved in phos-
phate starvation signaling both in vascular plants and in unicel-
lular algae. Similarly, Rouached et al. (2011) reported that
PHR1 played an important role in sulfate inter-organ transport,
in particular in the regulation of the SULTR1;3 gene and its
impact on shoot-to-root sulfate transport in phosphate-deficient
plants.MYB28 andMYB29 transcription factors and dozens of
downstream enzymes were involved in the production of
glucosinolate (GSL) in the sulfur-starvation stress response
synthesis in Arabidopsis (Hirai et al. 2007). Dai et al. (2012)
reported a novel R2R3MYB transcriptional factor, OsMYB2P-
1 which was associated with Pi starvation signaling in rice.

MYB as negative regulators

Most MYB genes were positive regulators of transcription, for
example, ZmC1 positively regulated flavonoid biosynthesis by
controlling chalcone syntheses (CHS) gene expression (Paz-
Ares et al. 1987) and WER was a positive regulator of GL2
expression (Lee and Schiefelbein 1999). However, R2R3Myb
gene also acted as negative regulator. For example,
Antirrhinum AmMyb305 and its Arabidopsis orthologue
AtMyb4 regulated the accumulation of UV protective
napoylmalate by repressing the expression of cinnamate
hydroxylase (C4H) gene (Jin et al. 2000). AtMYB4 expression
was down regulated by exposure to UV-B light, indicating that
the de-repression was an important mechanism for acclimation
of UV-B in Arabidopsis thaliana. AtMYB4 worked as a
repressor of target gene expression and included a repression
domain. It belonged to a novel group of plant R2R3 MYB
proteins involved in transcriptional silencing (Jin et al. 2000).
Park et al. (2008) reported that AtMYB60 inhibited anthocy-
anin biosynthesis in lettuce. The correlation between the
overexpression of AtMYB60 and the inhibition of anthocyanin
accumulation suggested that the transcription factor AtMYB60
controlled anthocyanin biosynthesis. Kazan (2006) suggested
that transcriptional repression of gene expression by EAR-
motif-containing repressor proteins played a key role in mod-
ulating plant defense and stress response. Scoville et al. (2011)
identified M. guttatus MYB MIXTA-like 8 as a possible nega-
tive regulator of trichome development and found that parental
leaf damage induced down-regulation ofMYBMIXTA-like 8 in

progeny, which was associated with epigenetically inherited
increased trichome density. ZmMYB31 downregulated several
genes involved in the synthesis of monolignols and transgenic
plants were dwarf and showed a significantly reduced lignin
content with unaltered polymer composition. In addition,
ZmMYB31 repressed the synthesis of sinapoylmalate and
phenylpropanoid resulting in plants that were more sensitive
to UV irradiation, and induced several stress-related proteins
(Fornale et al. 2010).

Low oxygen induction of the Arabidopsis ADH1 gene

The transcription factor AtMYB2, induced by hypoxia, acted as
a key regulatory factor in the induction of the ADH1 promoter
by low oxygen (Hoeren et al. 1998). Like ADH1, AtMYB2 had
root-limited expression. When driven by a constitutive pro-
moter, AtMYB2 was able to transactivate ADH1 expression
in transient assays in both Arabidopsis and Nicotiana
plumbaginifolia protoplasts, and leaves of Pisum sativum.

Regulation of primary and secondary metabolism

The MYB transcription factors play important roles in the
regulation of many secondary metabolites at the transcriptional
level other than anthocyanin synthesis. Stracke et al. (2007)
found that AtMYB11/PFG1, AtMYB12/PFG1 and
AtMYB111/PFG3 controled flavones biosynthesis in all tissues
while AtMYB75/ PAP1, AtMYB90/PAP2, AtMYB113 and
AtMYB114 regulated anthocyanin biosynthesis in vegetative
tissues (Gonzalez et al. 2008) while AtMYB123/TT2 controlled
the biosynthesis of proanthocyanidins (PAs) in the seed coat of
Arabidopsis (Lepiniec et al. 2006). Verdier et al. (2012). Found
that MtPAR (Medicago truncatula proanthocyanidin regulator)
was a MYB family transcription factor that functioned as a key
regulator of proanthocyanidin (PA) biosynthesis in the model
legumeMedicago truncatula and could be of great potential for
biotechnological strategies to increase PAs in forage legumes
for reduction of pasture bloat in ruminant animals.

LoAtMYB5 was recently proposed to be partially redun-
dant with AtMYB123 in regulating tannin biosynthesis
(Gonzalez et al. 2009). AtMYB58, AtMYB63 and
AtMYB85 activated lignin biosynthesis in fibers and/or ves-
sels (Zhou et al. 2009). AtMYB46 is found to be a positive
regulator of lignin biosynthesis in fibers and vessels and also
regulated cellulose and xylan deposition (Zhong et al. 2007).
AtMYB26/ MS35 controlled secondary wall deposition in
anthers (Yang et al. 2007). AtMYB52, AtMYB54 and
AtMYB69 and AtMYB103 were positive regulators dedicated
to cell wall thickening in fiber cells. Zhong et al. (2008)
proposed that AtMYB52, AtMYB54 and AtMYB69 regulated
lignin, xylan and cellulose biosynthesis, and cellulose
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biosynthesis. AtMYB61 plays a pleiotropic role, influencing
lignin deposition (Newman et al. 2004), mucilage production
(Penfield et al. 2001) and stomatal aperture (Liang et al. 2005),
suggesting that it might act upstream of the different pathways
by regulating carbon allocation. The R2R3-MYB proteins of
subgroup 12 i.e. AtMYB28/HAG1/PMG1, AtMYB29/
HAG3/PMG2 and AtMYB76/HAG2 regulate the biosynthesis
of aliphatic glucosinolates in aerial issues (Gigolashvili et al.
2008). However, AtMYB34/ATR1, AtMYB51/HIG1 and
AtMYB122 regulate the production of indolic glucosinolates
in roots and late stage rosette leaves (Gigolashvili et al. 2007).

Signal transduction pathways

R2R3-MYB genes are involved in the signal transduction path-
ways of salicylic acid (Raffaele et al. 2006), abscisic acid (Abe et
al. 2003), gibberellic acid (Murray et al.2003) and jasmonic acid
(Lee et al. 2001) as well. The phytohormone ABA, produced
under water deficit conditions, caused stomatal closure and
played an important role in the adaptation of vegetative tissues
to abiotic environmental stresses, such as drought and high
salinity (Vannini et al. 2004; Maeda et al. 2005).

Conclusion

MYB proteins play an important role in controlling various
plant processes and new insights have been obtained into the
mechanisms that control MYB protein activities and gene
expression profiles and several target genes have been deter-
mined. The large family of plant-specific R2R3-MYB genes
has contributed to the evolution of physiological or develop-
mental processes specific to plants, especially those involved
in responses to fluctuating biotic or abiotic environments, still
a lot of work is required to fully characterize the roles of all
MYB proteins in regulatory networks and inferring functions
in more plant species. Once more data are available, it will be
interesting to establish how the control of specific target genes
relates to the biological functions that MYB factors control. It
will also facilitate better understanding of gene regulation in
plants by the MYB-type transcription factors and the devel-
opment of new varieties and other commercially important
plants with metabolic engineering approaches.
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