
RESEARCH Open Access

MYC regulates the unfolded protein response and
glucose and glutamine uptake in endocrine
resistant breast cancer
Ayesha N Shajahan-Haq1*, Katherine L Cook1, Jessica L Schwartz-Roberts1, Ahreej E Eltayeb1, Diane M Demas1,

Anni M Warri2, Caroline O B Facey1, Leena A Hilakivi-Clarke1 and Robert Clarke1

Abstract

Background: About 70% of all breast cancers are estrogen receptor alpha positive (ER+) and are treated with

antiestrogens. However, 50% of ER + tumors develop resistance to these drugs (endocrine resistance). In endocrine

resistant cells, an adaptive pathway called the unfolded protein response (UPR) is elevated that allows cells to

tolerate stress more efficiently than in sensitive cells. While the precise mechanism remains unclear, the UPR can

trigger both pro-survival and pro-death outcomes that depend on the nature and magnitude of the stress. In this

study, we identified MYC, an oncoprotein that is upregulated in endocrine resistant breast cancer, as a regulator of

the UPR in glucose-deprived conditions.

Methods: ER+ human breast cancer cell lines (LCC1, LCC1, LY2 and LCC9) and rat mammary tumors were used to

confirm upregulation of MYC in endocrine resistance. To evaluate functional relevance of proteins, siRNA-mediated

inhibition or small molecule inhibitors were used. Cell density/number was evaluated with crystal violet assay; cell

cycle and apoptosis were measured by flow cytometry. Relative quantification of glutamine metabolites were

determined by mass spectrometry. Signaling molecules of the UPR, apoptosis or autophagy pathways were

investigated by western blotting.

Results: Increased MYC function in resistant cells correlated with increased dependency on glutamine and glucose

for survival. Inhibition of MYC reduced cell growth and uptake of both glucose and glutamine in resistant cells.

Interestingly, in glucose-deprived conditions, glutamine induced apoptosis and necrosis, arrested autophagy, and

triggered the unfolded protein response (UPR) though GRP78-IRE1α with two possible outcomes: (i) inhibition of

cell growth by JNK activation in most cells and, (ii) promotion of cell growth by spliced XBP1 in the minority of

cells. These disparate effects are regulated, at different signaling junctions, by MYC more robustly in resistant cells.

Conclusions: Endocrine resistant cells overexpress MYC and are better adapted to withstand periods of glucose

deprivation and can use glutamine in the short term to maintain adequate metabolism to support cell survival. Our

findings reveal a unique role for MYC in regulating cell fate through the UPR, and suggest that targeting glutamine

metabolism may be a novel strategy in endocrine resistant breast cancer.
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Introduction
70% of all breast cancers are estrogen receptor α posi-

tive (ER+) and are treated with endocrine therapies

(antiestrogens or aromatase inhibitors) that disrupt the

ER function. The antiestrogens Tamoxifen (TAM) an-

tagonizes estrogen binding to the ER while ICI 182,780

(ICI; Faslodex/Fulvestrant) targets ER for degradation.

Despite their clear clinical activity, 50% of ER + tumors

never respond or eventually develop resistance to anti-

estrogens [1,2]. Understanding the molecular basis of

endocrine resistance is a prerequisite to finding new in-

terventions to resistance in the clinic.

c-MYC (hereafter referred to as MYC) is a transcription

factor that is frequently deregulated in human cancers.

MYC contributes to cancer progression through its in-

volvement in several cellular functions including cell cycle

progression, proliferation, differentiation, and apoptosis

[3-6]. MYC is overexpressed in 30-50% of high-grade

breast tumors [7,8]. Activation of MYC is implicated in

hormone-independence in vitro and endocrine resistance

in patients [9], and it is predictive of a shorter time to re-

currence following adjuvant TAM therapy [10]. The onco-

genic activity of MYC depends on its ability to dimerize

with MAX [11,12]. Thus, agents that disrupt MYC-MAX

heterodimers might be useful in treating some antiestro-

gen resistant breast cancers.

MYC controls several genes that regulate glycolysis and

glutaminolysis [13,14]. Both normal and cancer cells use

glucose and glutamine to generate energy (ATP), produce

raw materials for the synthesis of amino acids, fatty acids,

and nucleosides, and maintain redox balance. However,

rapidly growing cancer cells demand higher levels of sub-

strates for macromolecule synthesis and for maintaining

redox balance [15,16]. Whether MYC can regulate cellular

metabolism in antiestrogen resistant cancers, and whether

this is a key component of this phenotype, remain unknown.

We describe how MYC upregulation in ER + antiestro-

gen resistant breast cancer cells increases dependency on

glucose and glutamine but enables cell survival in glucose-

deprived conditions by increasing dependency on gluta-

mine. We show that glutamine in glucose-deprived

conditions triggers the UPR through glucose-regulated

protein-78 (GRP78/HSP5A/BiP) and inositol-requiring

enzyme-1α (IRE1α/ΕRΝ1), and simultaneously, activates

both pro-death and pro-survival pathways by increasing

c-Jun N-terminal kinase (JNK) activation and spliced

X-box protein-1 XBP1(s), respectively. While this UPR

promotes apoptosis in most resistant cells in the short-

term (72 h), in the longer term (>72 h), cell survival is

promoted through cellular adaption to glutamine-only

conditions in a minority of the cells that show adjusted

MYC levels. Thus, safely targeting glutamine metabolism

is a promising strategy to treat MYC-driven antiestrogen

resistant breast cancer.

Experimental procedures
Cell culture and reagents

LCC1 (sensitive), LCC2 (TAM resistant; ICI sensitive),

and LCC9 (ICI resistant and TAM cross-resistant) and

LY2 (LY 117018 [Raloxifene analog] resistant and TAM

and ICI cross-resistant) cells were established as previ-

ously described [17,18]. Cells were grown in phenol

red–free IMEM (Life Technologies, Grand Island, NY;

A10488-01) with 5% charcoal-stripped calf serum (CCS);

this media contains 2 mM L-glutamine and ~12 mM

glucose. For glucose/glutamine-dependency assays, DMEM

without glucose or glutamine (Life Technologies; A14430-

01) was used supplemented with 5% CCS. LCC9Gln were

derived from LCC9: cells were grown in DMEM without

glucose but containing 2 mM L-glutamine (glutamine-only

media) for 72 h; cells that survived (<5%) were continually

grown in glutamine-only media for 12 weeks. All cells were

authenticated by DNA fingerprinting and tested regularly

for Mycoplasma infection. Faslodex and STF-31 were ob-

tained from Tocris Bioscience (Ellisville, MO). Compound-

968 was purchased from EMD Millipore (Billerica, MA).

10058-F4 was kindly provided by Dr. Steven Metallo

(Georgetown University, Department of Chemistry). All

other chemicals were purchased from Sigma-Aldrich.

Western blot analysis

Total protein (~20 μg) was isolated from cells following

48 h treatment or vehicle control (0.02% DMSO or

ethanol) for protein analysis as previously described [19].

The following antibodies were used: MYC, MAX, NBR1,

p62/SQSTM1, GRP78, IRE1α, phospho-JNK(Thr183/

Tyr185), JNK, CHOP, cleaved Caspase-7 (CASP7),

LC3B, (Cell Signaling, Danvers, MA); p62/SQSTM1 (BD

Biosciences, San Jose, CA); GLS (Abnova, Taipei City,

Taiwan; Abcam, Cambridge, England); GLUL (Origene,

Rockville, MD); BCL2 (Enzo Life Sciences, Farmingdale,

NY), XBP1s (BioLegend, San Diego, CA) β-actin and β-

tubulin (Santa Cruz Biotechnology, Santa Cruz, CA).

Cell growth, apoptosis, necrosis, autophagy and reactive

species assays

For determination of cell number, cells were plated in 96-

well plates at 5 × 103 cells/well. At 24 h, cells were treated

with specified drugs for 48 h (or otherwise indicated). After

treatment, media were removed, and plates were stained

with a solution containing 0.5% crystal violet and 25%

methanol, rinsed, dried overnight, and resuspended in

citrate buffer (0.1 M sodium citrate in 50% ethanol). Inten-

sity of staining, assessed at 570 nm and quantified using a

VMax kinetic microplate reader (Molecular Devices Corp.,

Menlo Park, CA), is directly proportional to cell number

[20]. For apoptosis and necrosis, cells were treated for 48 h,

and stained with an Annexin V-fluorescein isothiocyanate

and propidium iodide, respectively (Trevigen, Gaithersburg,
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MD). Autophagy was detected by detecting SQSTM1/p62

and LC3II proteins by Western blotting. For the reactive

species assay, cellular levels of total reactive species (RS; kit

measures both oxygen and nitrogen species) were deter-

mined using the Total ROS detection kit (Enzo Life-

sciences) and measured by Flow Cytometry and Cell

Sorting Shared Resources.

Cell cycle analysis

Cells were cultured at 60-80% confluence in growth

medium for 24 h. The following day, cells were treated

with vehicle, ICI (100 nM), and/or 10058-F4 (25 μM) for

an additional 72 h. Cells were then fixed in ethanol, and

analyzed by the Flow Cytometry Shared Resource ac-

cording to the method of Vindelov et al. [21].

Transfection with siRNA or cDNA

Cells were plated at 60-80% confluence. 5 μM MYC siRNA

(SMARTpool: ON-TARGETplus set of four MYC siRNA

Dharmacon, Lafayette, CO), 10 GLS1, GRP78 (HSPA5),

IRE1a or XBP1 (10 nM of 3 unique 27mer siRNA du-

plexes; Origene, Rockville, MD) or their respective control

siRNA, were transfected using the TransIT-siQUEST

(Mirus, Madison, WI) transfection reagent. At 48 h, 100

nM ICI or vehicle was added to the siRNA-transfected

cells. For MYC overexpression, pcDNA3-MYC (plasmid

16011) was purchased from Addgene (Cambridge, MA)

[22] and tranfected with TransIT-2020 (Mirus). Cells were

lysed at 48 h post-transfection and subjected to Western

blot analysis or cell number assay as described above.

Transcription promoter-reporter assays

Cells were transfected with 0.4 μg of MYC luciferase re-

porter plasmid (plasmid 16601) from Addgene and 0.1 μg

pCMV-Renilla (Promega, Madison, WI) per well using the

TransIT-2020 transfection reagent. Activation of the luci-

ferase constructs was measured at 48 h post-transfection

using the Dual Luciferase Assay Kit (Promega). Luciferase

values were normalized to Renilla luminescence. Three in-

dependent experiments were performed in quadruplicate.

Data are presented as the mean ± SE for all experiments.

Orthotopic xenografts in athymic mice

Five week old ovariectomized athymic nude mice (Harlan,

Fredrick, MD) were injected orthotopically with 1.0 × 106

LCC1/LCC9 cells in 50% Matrigel into mammary fat

pads. 17β-estradiol supplementation from a subcutaneous,

0.72 mg pellet (Innovative Research of America) with

60-day release was used. Mice were sacrificed after 9 weeks,

tumors were fixed in formalin, and processed using routine

histological methods as previously described [23]. Mice were

housed and maintained under specific pathogen-free condi-

tions and used in accordance with institutional guidelines

approved by Georgetown University Animal Care and Use

Committee (GUACUC).

Carcinogen-induced mammary tumors in rats

Mammary tumors were induced in 50-day-old female

Sprague–Dawley (Harlan) rats with 7,12-dimethylbenz[a]

anthracene (10 mg; DMBA; Sigma-Aldrich) by oral gavage.

Tumor (15 ± 3 mm, long axis) bearing rats were switched

to AIN-93G diet containing 337 ppm tamoxifen citrate

(Harlan; 15 mg/kg/day TAM). Tumors were classified by

growth responsiveness to TAM treatment. Sensitive tu-

mors completely regressed or stopped growing with TAM

treatment; Acquired Resistant tumors stopped or regressed

but then re-grew after ≥4 weeks; and de novo Resistant

tumors continued to grow during treatment. Animals

were euthanized at 38 weeks. Tumors used in this study

were confirmed as adenocarcinomas by histopathological

evaluation (ARUP Laboratories, Utah, IL) [23]. Rats were

housed and maintained under specific pathogen-free

conditions and used in accordance with institutional

guidelines approved by Georgetown University Animal

Care and Use Committee (GUACUC).

Immunohistochemistry (IHC)

Tumors were fixed in formalin for 24 h prior to embed-

ding in paraffin. Immunostaining was performed on

5 μm thick sections with an antibody to MYC (1:500) or

a non-specific negative control antibody using the diami-

nobenzidine (DAB) method and photographed using an

Olympus BX61 DSU microscope at the Histopathology

and Tissue Shared Resource.

Relative metabolite quantification

Extracts from six biological replicates from LCC1 and

LCC9 cells were spiked with internal standards and ex-

tracted using the method described by Sheikh et al. [24].

Samples were reconstituted in MeOH:H2O (1:1), and sub-

sequently resolved on an Acquity ultra performance liquid

chromatography (UPLC) column online with a triple

quadrupole linear ion trap (QqQLIT) (Xevo-TQ-S, Waters

Corporation, USA). The sample cone voltage and collision

energies were optimized for each compound to obtain

maximum ion intensity for parent and daughter ions using

the “IntelliStart” feature of MassLynx software (Waters

Corporation, USA). Data acquisition and analysis was done

by the Proteomics and Metabolomics Shared Resource.

Glutamine and glucose uptake

Glutamine and glucose uptake in LCC1 and LCC9 cells

transfected with MYC siRNA was measured using a

glutamine assay kit (BioAssay System, Hayward, CA);

glucose uptake (2-NBDG, a fluorescently-labeled deoxy-

glucose analog) was measured using a cell-based assay

kit (#600470, Glucose uptake cell-based assay kit
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(Cayman Chemical, Ann Arbor, MI). In brief, differences

in glucose or glutamine uptake, cells were transfected

with MYC siRNA for 48 h. Glucose uptake was esti-

mated by measuring the uptake of 2-NBDG by LCC1

and LCC9 cells in glucose-free media, as suggested by

the protocol, for 30 min. Glutamine uptake was esti-

mated by measuring the glutamine left in the media

following the manufacturer’s protocol.

Statistical analyses

Statistical analyses were performed using the Sigmastat

software package (Jandel Scientific, SPSS, Chicago, IL).

Where appropriate, relative cellular metabolites, protein

expression, cell growth, and apoptosis were compared

using either a Student’s t test or ANOVA with a post

hoc t-test for multiple comparisons. Differences were

considered significant at p ≤ 0.05. RI values were ob-

tained by calculating the expected cell survival (Sexp; the

product of survival obtained with drug A alone and the

survival obtained with drug B alone) and dividing Sexp
by the observed cell survival in the presence of both

drugs (Sobs). Sexp/Sobs > 1.0 indicates a synergistic inter-

action [25].

Results

MYC is upregulated in antiestrogen resistant breast

cancer

MYC expression is increased in antiestrogen resistant

breast tumors [10,26]. To confirm activation of MYC

gene in antiestrogen resistant cells, promoter luciferase

activity was measured under basal conditions in ER +

breast cancer cells that are either sensitive to antiestro-

gens (LCC1) or resistant to antiestrogens (LCC2, LY2

and LCC9). Relative to LCC1 cells, MYC promoter acti-

vation was 4-fold higher in LY2 and LCC2 cells and

more than 6-fold higher in LCC9 cells (Figure 1A). Since

the LCC9 cells showed the greatest upregulated MYC

activation, LCC1 cells were compared with LCC9 cells

for subsequent studies. Endogenous MYC protein was

higher in LCC9 cells compared to LCC1 cells, while

MAX levels remained unchanged (Figure 1B). In

addition, untreated orthotopic xenografts showed

upregulation of MYC protein in the antiestrogen resist-

ant tumors (LCC9) (Figure 1C) when compared with

sensitive tumors (LCC1). In the DMBA-induced rat

mammary tumor model [23], MYC protein levels were

higher in those tumors that acquired TAM resistance

during treatment when compared with either TAM

sensitive, de novo resistant, or untreated tumors

(Figure 1D). These data strongly suggest that an

increased MYC expression correlates with acquired

antiestrogen resistance.

Inhibition of MYC decreases cell growth in antiestrogen

resistant cells

Knockdown of MYC with siRNA reduced MYC protein

levels by 60% under basal conditions (results from LCC9

cells shown in Figure 2A and B) and significantly de-

creased cell number in both LCC1 and LCC9 cells com-

pared with control siRNA (Figure 2C; p < 0.05). Treatment

with ICI following MYC knockdown had an additive effect

(RI = 1.11; see Experimental procedures) in LCC1 cells,

while this combination did not further decrease cell num-

ber in LCC9 cells when compared with either treatment

alone. LCC9 cells showed increased sensitivity to 10058-

F4, a small molecule inhibitor of MYC-MAX heterodimer

formation, compared with LCC1 cells at 48 h (Figure 2D).

Cell number was significantly decreased for LCC9 cells

treated with 20–60 μM of 10058-F4 compared with their

LCC1 control cells (p < 0.05). In LCC1 cells, treatment

with either 100 nM ICI or 25 μM 10058-F4 alone inhibited

cell number; a combination of 10058-F4 and ICI signi-

ficantly decreased cell number compared with the indi-

vidual treatments (Figure 2E; p < 0.05). In LCC9 cells,

while treatment with ICI had no effect, both 10058-F4

alone (p < 0.05) and a combination of ICI + 10058-F4 sig-

nificantly (RI=1.51, a modest synergy) reduced the number

of cells within 48 h (p < 0.05), suggesting a restoration of

ICI sensitivity. Western blot analysis showed decreased

levels of MYC, MAX, and BCL2 protein levels upon

10058-F4 treatments in both LCC1 and LCC9 cells

(Figure 2F). LCC9 cells express lower levels of ERα under

basal conditions compared with LCC1 cells [17,27] and

treatment with 10058-F4 alone did not change ERα levels.

ICI, an antiestrogen that promotes degradation of ERα

protein, and ICI + 10058 F4 decreased ERα levels (data

not shown). Levels of cleaved Caspase-7 were highest in

LCC9 cells treated with 10058-F4 and with the ICI +

10058-F4 combination, confirming induction of apoptosis

under these conditions. 10058-F4 can decrease BCL2 pro-

tein levels [28]; BCL2 and other anti-apoptotic BCL2 pro-

teins confer antiestrogen resistance in breast cancer cells

[29]. Thus, the increased efficacy of 10058-F4, in compari-

son to MYC siRNA, in combination ICI may be due to a

cumulative effect of its ability to downregulate MYC and

other off-targets like BCL2.

MYC inhibition induces apoptosis and cell cycle in

resistant cells

To determine how 10058-F4 restored sensitivity of LCC9

cells to ICI, we studied changes in apoptosis. The pro-

portion of cells undergoing apoptosis with combined ICI +

10058-F4 treatment was significantly higher in LCC9

compared with that in LCC1 cells (Figure 2G; p < 0.05).

Dot plots for cells positive for apoptosis markers, Annexin-

V-FITC and propidium iodide (PI), following different

treatments are also shown in Figure 2H. Since MYC can
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regulate cell cycling [3], we analyzed the cell cycle profile of

vehicle, 100 nM ICI, 25 μM 10058-F4, or the combination

treatment at 48 h in LCC1 and LCC9 cells. ICI, 10058-F4,

or the combination induced G1-phase cell cycle arrest in

the antiestrogen sensitive LCC1 cells (Figure 3A). In the

LCC9 cells (resistant), ICI or 10058-F4 treatment alone did

not alter the cell cycle profile, whereas their combined

treatment increased the percentage of cells in G1 arrest

when compared with vehicle treated cells (Figure 3B;

p < 0.001). These findings suggest that inhibition of MYC in

LCC9 cells may restore sensitivity to ICI by both increasing

apoptosis and inducing cell cycle arrest.

MYC regulates glutamine and glucose uptake in

antiestrogen resistant cells

Cancer cells with an aberrantly high expression of MYC

often have deregulated cellular metabolism, particularly

increased glycolysis and glutaminolysis [13]. To compare

status of glutamine metabolism in LCC9 versus LCC1

cells, the relative concentration of glutamine metabolites

were measured: glutamine, glutamate (immediate metabol-

ite catalyzed by glutaminase, GLS and releasing ammonia;

Figure 4A), and proline (downstream metabolite) using

ultra performance liquid chromatography/mass spectro-

metry (UPLC/MS). While glutamine levels were not sig-

nificantly different (p = 0.206), glutamate (p = 0.002), and

proline levels (p = 0.032) were significantly higher in LCC9

compared with LCC1 cells (Figure 4B-D). In addition, up-

take of glucose was significantly higher in LCC9 cells com-

pared to LCC1 cells (Figure 4E; p = 0.005). Knockdown of

MYC with siRNA inhibited cellular uptake of both glutam-

ine (Figure 4F; p = 0.05) and glucose (Figure 4G; p = 0.011)

more significantly in LCC9 cells than in LCC1 cells. More-

over, MYC knockdown reduced expression of glutamine

transporter ASCT2 (SLC1A5), glutamate transporter

EAAT2 (SLC1A2), and the glucose transporter GLUT1

(SLC2A1) in LCC9 cells (Figure 4H). Thus, MYC controls

uptake of glutamine and glucose seen in antiestrogen

resistant cells.

Antiestrogen breast cancer cells show increased sensitivity

to inhibitors of glutamine and glucose metabolism

Since LCC9 cells showed increased glutamine metabolism

and glucose uptake, we determined whether inhibitors of

Figure 1 MYC expression is elevated in antiestrogen resistant breast cancer in vitro and in vivo. A, Basal MYC-luciferase activity is 4.24-fold

(SE = 0.10) higher in LY2 and LCC2 (estrogen independent but responsive; antiestrogen resistant) and 6.67-fold (SE = 0.09) higher in LCC9 (estrogen

independent and non-responsive; antiestrogen resistant) compared with LCC1 (estrogen independent but responsive; antiestrogen sensitive); see

Experimental Procedures. ANOVA, p < 0.001; *p < 0.05 for MYC promoter activation in indicated cells compared with LCC1 cells. B, Western blot shows

increased expression of MYC protein in LCC9 cells compared to LCC1 cells while MAX protein levels did not change; actin was used as a loading

control. C, Immunohistochemical (IHC) MYC staining show increased protein levels (brown) in LCC9 compared with LCC1 xenografts; for negative

controls, antibody diluents without MYC antibody were used. D, DMBA-induced rat mammary gland tumors with acquired resistance to TAM show

increased levels MYC protein levels (brown) compared to sensitive (or de novo resistant) tumors.
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Figure 2 (See legend on next page.)
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these pathways differentially affected cell survival in LCC1

versus LCC9 cells. Cell number was significantly de-

creased in LCC9 compared with LCC1 cells in response to

the GLS/GAC inhibitor compound-968 (Figure 5A; p <

0.05). Moreover, increasing doses of the GLUT1 inhibitor

STF-31, an inhibitor of glycolysis, produced a significant

decrease in cell number in LCC9 cells relative to LCC1

cells (Figure 5B; p < 0.05). While LCC9 cells showed sig-

nificantly increased sensitivity to both STF-31 (p < 0.05)

and compound-968 compared with LCC1 cells at 48 h (p

< 0.05), adding ICI to either drug did not resensitize LCC9

cells to the antiestrogen (Figure 5C). Thus, specific inhibi-

tors of glutamine and glucose metabolism are potent in-

hibitors of cell proliferation in both ER + sensitive and

antiestrogen resistant breast cancer cells. Knockdown of

GLS in LCC9 cells significantly decreased cell numbers

within 24 h post transfection with GLS siRNA compared

with that in LCC1 cells (Figure 5D). Western blot analysis

of total GLS protein following siRNA mediated knock-

down within 24 h is shown in Figure 5E.

GLS has two splice variants resulting from alternate spli-

cing: KGA (~66 kDa; full-length) and GAC (~53 kDa;

truncated form). GLS/GAC is the predominant form found

in tumors [30] and is the variant present in the models

used in this study. To show whether MYC regulates GLS/

GAC levels in antiestrogen resistant cells, we inhibited

MYC with siRNA or 10058-F4 in LCC9 (Figure 5E); and

with MYC siRNA in LY2 and LCC2 cells (Figure 5F). In all

three antiestrogen resistant cells, MYC inhibition increased

GLS/GAC but inhibited glutamine synthase (GLUL), an

enzyme that converts glutamate to glutamine. Thus, MYC

can regulate GLS/GAC-GLUL enzyme levels to control

glutamine metabolism in antiestrogen resistant cells.

MYC increased sensitivity to deprivation of glutamine

and glucose

To confirm whether MYC is responsible for the increased

dependency on glutamine and glucose, MYC was either

overexpressed in LCC1 cells (lower endogenous MYC

expression/activation) or knocked down in LCC9 cells

(higher endogenous MYC expression/activation) (see

Figure 1). Figure 6A shows a significant decrease in cell

number in LCC1 cells overexpressing MYC (p < 0.01),

while Figure 6B shows a significant increase in cell survival

is seen in LCC9 cells when MYC expression is reduced by

RNAi (p ≤ 0.001) in the absence of both glucose and glu-

tamine. Next, we determined number of LCC1 versus

LCC9 cells in the presence or absence of glucose and

glutamine at 24, 48, and 72 h. Cell growth was significantly

greater in LCC9 compared with that in LCC1 cells at

48 and 72 h in complete media (Figure 6C; ANOVA

p ≤ 0.001; p < 0.05). In incomplete media, LCC9 cells

showed a significant increase in cell growth at 48 h com-

pared with control (0 h; p < 0.05) or to LCC1 cells at 48 h

(p < 0.05). However, at 72 h, cell growth in LCC9 was sig-

nificantly decreased compared with control (p < 0.05) or

LCC1 cells (Figure 6D; p < 0.05). In glucose-only condi-

tions, LCC9 cells again showed an increase in cell growth

at 48 h compared with either control (0 h) or LCC1 cells

at 48 h. At 72 h, however, cell growth in LCC9 showed a

significant decrease compared to either control (p < 0.05)

or LCC1 cells at 72 h (Figure 6E; p < 0.05). Interestingly, in

glutamine-only conditions, growth in LCC9 cells was sig-

nificantly decreased compared with control or LCC1

cells at both 48 (p < 0.05) and 72 h (p < 0.05). LCC1 cells

exhibited a similar but relatively slower response at

72 h when compared with the respective control

(Figure 6F; p < 0.05). To delineate whether MYC dir-

ectly regulated cell fate in the presence of glutamine-

alone in glucose-deprived conditions, we investigated

cell number following MYC inhibition in these condi-

tions. Knockdown of MYC increased cell number in the

absence of both glucose and glutamine in LCC9 cells as

shown before in Figure 6B, and also when glutamine

alone was present in glucose-deprived conditions, con-

firming the critical role of MYC (Figure 6G) in regulat-

ing cell fate in this condition.

Glutamine-only conditions induces cell death and the UPR

We next examined how the presence of glutamine in

glucose-deprived conditions triggered a rapid decrease

in cell number in antiestrogen resistant cells. To

(See figure on previous page.)

Figure 2 MYC promotes survival in antiestrogen resistant cells. A, Western blot, reduced MYC in LCC9 cells at 48 h with MYC siRNA

compared to control siRNA. Actin is a loading control. B, Quantitation of MYC in in LCC9 cell show 60% reduction in MYC siRNA transfected cells

compared with control siRNA. C, MYC siRNA interacted additively (RI = 1.11) with ICI in inhibiting cell number in LCC1 but not in LCC9 cells. Bars,

mean ± SE of relative cell number (normalized to vehicle controls) for a representative experiment performed in sextuplicate. ANOVA, p < 0.001;

*p < 0.05 for treatment versus control for respective cell lines. ^, p < 0.05 for LCC1 versus LCC9 cells with MYC siRNA + ICI. D, LCC9 cells showed

increased sensitivity to 10058-F4compared with LCC1 cells at 48 h. Points, mean of cell number; bars, ±SE. E, 10058-F4 or ICI alone or the combination

for 48 h inhibit cell number in LCC1. In LCC9 cells, RI = 1.51, suggest a modest synergistic interaction between ICI and 10058-F4; ANOVA, p < 0.001;

*p < 0.05 for treatment versus control for respective cell lines. ^, p < 0.05 for ICI + 10058-F4 versus 10058-F4. F, Western blot show decrease in MYC,

MAX, BCL2 and an increase in cleaved CASP7 , with 10058-F4 (MI: MYC inhibitor) or ICI + 10058-F4 (C: combination) compared with vehicle (V) alone or

with ICI alone (I) treatment (48 h). G, Annexin V-FITC (apoptosis) in LCC1 and LCC9 cells with vehicle, ICI , 10058-F4 , or ICI + 10058-F4 (combination).

ANOVA, p < 0.001; *p < 0.05 for indicated treatment versus vehicle control for respective cells lines. Paclitaxel, a positive control for apoptosis. H, Dot

plots showcells positive for annexin-V-FITC (x-axis) and propidium iodide (PI; y-axis).
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determine whether the decrease in cell survival in the

presence of glutamine in glucose-deprived conditions

was caused by induction of apoptosis, we measured

apoptosis following 48 h of glutamine-only treatment in

LCC1 and LCC9 cells. Apoptosis was significantly in-

creased in LCC9 compared with LCC1 cells in the

absence of both glutamine and glucose (Figure 7A).

Moreover, in the presence of glutamine-only conditions,

cells underwent significantly higher levels of apoptosis in

LCC9 cells than in LCC1 cells. To determine autophagic

flux, total protein from both LCC1 and LCC9 cells in

the differ conditions (glucose + glutamine, glucose-only,

Figure 3 Combination of MYC inhibitor and antiestrogen increased G1 cell cycle arrest in endocrine resistant cells. A, Top, ICI (100 nM),

10058-F4 (25 μM), or the combination significantly increased percentage of cells in G1 arrest and reduced percentage of cells in S phase in LCC1

(p < 0.001). Bottom, Representative cell count plots for propidium iodide (PI) in LCC1 cells are shown. B, Top, Only the combination of ICI and

10058-F4 induced significant increase in G1 arrest in LCC9 cells (p < 0.001). Bottom, Representative cell count plots for PI in LCC9 cells are shown.

Graphs represent data that are presented as the mean ± SE for three independent experiments. ANOVA, p < 0.001; *p < 0.001 for indicated

treatment versus vehicle control.
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Figure 4 Increased dependence on glutamine and glucose in antiestrogen resistant cells. A, Schematic for glutamine metabolism:

glutamine is converted to glutamate by the mitochondrial enzyme, glutaminase (GLS); the reverse reaction is catalyzed by glutamate-ammonia

ligase (GLUL). Glutamine is an essential substrate for the biosynthesis of proline. B-D, Relative quantification of glutamine, glutamate, and proline

by UPLC-QqQLIT showed a significant increase in glutamate (p = 0.002) and proline levels (p = 0.032) in LCC9 cells when compared with LCC1

control cells; six biological replicates from each cell line was used and levels of each respective metabolite was normalized to total protein levels

in each sample. E, Uptake of glucose is significantly increased in LCC9 cells compared with LCC1 cells under basal conditions (p < 0.05). Relative

cellular metabolites and glucose uptake were compared using Student’s t test F-G, Inhibition of MYC using siRNA significantly deceased (F) glutamine

(p < 0.05) and (G) glucose uptake (p = 0.011) in LCC9 compared with LCC1 cells. ANOVA, p < 0.001. H, Inhibition of MYC with siRNA decreased protein

levels of transporters of glutamine (ASCT2/SLC1A5), glutamate (EAAT2/SLC1A2) and glucose (GLUT1/SLC2A1) in LCC9 cells. Western blot shown is

representative of three independent experiments.
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glutamine-only, no glucose + no glutamine) were ana-

lyzed at 0, 24 and 48 h for p62/SQSTM1, LC3II and

actin (Figure 7B). p62/SQSTM1 are adapter proteins

that are autophagosome cargo markers used to deter-

mine activity within autolysosomes [31,32]; however,

each protein is selectively degraded by autophagy de-

pending on the signaling cues and nature of stress [31].

An increase in LC3II expression is a marker of increased

autophagosome formation and enlargement [33]. In-

crease in number of autophagosomes in the absence

cargo degradation indicates interrupted autophagy that

can promote apoptosis [34]. Moreover, Western blot

analysis of total proteins from LCC9 cells treated with

increasing concentrations of glutamine had higher levels

of MYC, MAX and LC3II expression when compared

with LCC1 cells; p62/SQSTM1 levels did not change

(Figure 7C). Thus, while formation of autophagosomes

may be triggered by the glutamine-only condition,

autophagy-mediated degradation of cellular substrates is

halted. Moreover, the induction of MYC suggests a pos-

sible role for this protein in regulating autophagy (see

next section and Figure 8B). Disruption in cellular meta-

bolic processes can lead to accumulation of reactive oxy-

gen species (ROS) [35] and reactive nitrogen species

Figure 5 Glutamine and glucose metabolism is increased in antiestrogen resistant cells. A-B, LCC9 cells were significantly more sensitive

to (A) compound-968, an inhibitor of GLS/GAC, and to (B) STF-31, an inhibitor of GLUT-1. Bars represent the mean ± SE of relative number

(normalized to vehicle control) for a single representative experiment performed in sextuplicate. ANOVA, p ≤ 0.001; *p < 0.05 for LCC9

versus LCC1 for indicated concentrations. C, Cells were treated with compound-968 (20 μM), STF-31 (5 μM), ICI (100 nM), or the indicated

combinations for 48 h. Bars represent the mean ± SE of relative cell number (normalized to vehicle controls) for a single representative

experiment performed in sextuplicate. ANOVA, p < 0.001; *p < 0.05 for LCC9 versus LCC1 for indicated treatments. D, Knockdown of GLS

levels with siRNA in LCC9 cells showed significant decrease in cell number within 24 h compared with that in LCC1 cells. ANOVA, p = 0.03;

*p ≤ 0.05 for LCC9 GLS siRNA compared with LCC1 GLS siRNA. E, Western blot showing decreased levels of GLS in both cell lines; actin was

used as a protein loading control. F, Right, LCC9 ells were treated with 10058-F4 (25 μM), or vehicle for 48 h; left, transfected with MYC or

control siRNA for 48 h. Knockdown of MYC increased GLS/GAC levels and decreased GLUL levels. G, siRNA mediated MYC knockdown

showed increase in GLS and a decrease in GLUL levels in LCC2 and LY2 cells.
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Figure 6 (See legend on next page.)
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(See figure on previous page.)

Figure 6 MYC expression increases sensitivity to glucose and glutamine deprivation. A-B, Overexpression of MYC in LCC1 cells significantly

increased (p < 0.01) (A) and knockdown of MYC in LCC9 cells (B) significantly decreased cell number in the absence of glucose and glutamine

(p ≤ 0.001). (C-F) LCC1 and LCC9 cells were grown in complete (12 mM glucose; 2 mM glutamine), incomplete (no glucose; no glutamine),

glucose only (12 mM glucose; no glutamine), and glutamine-only (2 mM glutamine; no glucose) for 72 h. Changes in cell growth rates were

determined by normalizing cell numbers measurements at 24 h, 48 h, and 72 h to cell numbers measurements at 0 h. At 72 h, LCC9 cells showed

significantly higher growth rate compared to LCC1 in complete media. However, growth rate was significantly reduced for LCC9 in incomplete

media when compared with LCC1 cells. In glucose-only media (at 72 h), LCC1 and LCC9 cells did not show an increase in cell growth. In

glutamine-only media, LCC9 cells showed a significant decrease in cell number relative to LCC1 cells. Dashed line denotes change in scales

between the graphs. Bars represent the mean ± SE of relative number (normalized to vehicle control) for a single representative experiment

performed in sextuplicate. G, Knockdown of MYC in LCC9 cells reduced sensitivity to incomplete media, as seen in B, and also reduced inhibition

of cell number in the presence of 2 mM glutamine in glucose-deprived conditions. ANOVA, p < 0.001; p≤ 0.01 for LCC9-MYC siRNA versus

LCC9-control siRNA for indicated treatment. Bars represent the mean ± SE of relative number (normalized to vehicle control) for a single

representative experiment performed in sextuplicate.

Figure 7 Glutamine induces apoptosis and arrests autophagy via the UPR in glucose-deprived conditions. A, Significantly higher levels of

apoptosis were seen in LCC9 compared with LCC1 cells following treatment with 2 or 4 mM glutamine at 48 h. ANOVA, p < 0.05; *p < 0.05 for LCC9

versus LCC1 for indicated treatment. B, Time-course, 0, 24 and 48 h, analysis of the autophagosome-associated proteins LC3II (marker for

autophagosome formation or enlargement) and p62/SQSTM1 (marker for autophagosome activity, degradation of cargo). Increased formation

of autophagosomes but arrested cargo degradation was seen within 24 h in both LCC1 and LCC9 cells in glutamine only media (and in

no-glucose + no glutamine) conditions at 24 and 48 h but not in glucose-only (or in glucose + glutamine) media. C, In presence of 2 or 4 mM

glutamine at 48 h, LCC9 cells showed increased levels of MYC and MAX and LC3II but no change in SQSTM1/p62. D, Cellular levels of total

reactive species (RS) was significantly elevated in LCC9 compared to LCC1 cells in incomplete media (ANOVA, p < 0.001; *p < 0.05 for LCC9

versus LCC1 with no glucose + no glutamine).
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Figure 8 Glutamine in glucose-deprived conditions activates the UPR. A, Cells were plated at 70% confluence. 24 hr later, media was changed

to 0, 2, or 4 mM glutamine alone or in presence of 12 mM glucose. Western blot analysis showed Increased levels of GRP78, IRE1a, phospho-JNK, CHOP

and decreased levels of BCL2 were present in LCC1 (right) and LCC9 (left) cells in glutamine-only conditions. MYC protein levels were highest when both

glucose and glutamine are present; MYC is undetectable when these metabolites are absent in the media. MYC expression in the presence of

glutamine-only, but not in presence of glucose-only, conditions correlated with increased expression of UPR proteins. B, Knockdown of MYC for 24 h

was followed by media change to either glucose + glutamine, glucose-only, glutamine-only or no glucose + no glutamine conditions for another 48 h.

Western blots analysis showed that a decrease in MYC protein levels correlated with an increase in the UPR proteins IRE1α and phospho-JNK(Thr183/

Ty4185), and the autophagosome formation marker LC3II, and the autophagosome cargo degradation marker p62/SQSTM1. GRP78 was also increased

in glucose + glutamine, glucose-only and no glucose + no glutamine conditions but robust expression of GRP78 in glutamine-only conditions was not

affected by MYC siRNA. Total levels of JNK did not change.
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(RNS) [36]. Figure 7D shows that deprivation of both glu-

cose and glutamine significantly increased total reactive

species (RS) levels in LCC9 cells. However, in both LCC1

and LCC9 cells, the presence of either glucose alone or

glutamine alone did not change cellular RS levels com-

pared with conditions where both metabolites are present.

Thus, the decrease in cell number in glutamine-only con-

ditions is independent of RS.

Induction of UPR has been reported in various cell

models following a decrease in energy sources [37-39].

Western blot analyses of proteins associated with UPR

showed increased GRP78, IRE1α, phospho-JNK(Thr183/

Tyr185) and CHOP in glucose-deprived/glutamine-only

conditions in LCC9 cells relative to LCC1 cells. Interest-

ingly, while levels of MYC were highest when both glu-

cose and glutamine are present, MYC is undetectable

when these metabolites are absent. MYC expression in

the presence of glutamine-only, but not in presence of

glucose-only, conditions correlated with an increase in

the UPR-related proteins. BCL2, an anti-apoptotic pro-

tein, was decreased in glucose-deprived glutamine only

conditions (Figure 8A). No change in protein expression

levels was detected for PERK or ATF6 (data not shown).

GRP78, XBP1(s), and phospho-JNK were robustly in-

duced in glutamine-only and no glucose + no glutamine

conditions. Knockdown of MYC with siRNA (Figure 8B)

increased: (i) GRP78 in all conditions (expect in

glutamine-only conditions where high GRP78 expression

likely prevented any effect of MYC siRNA on total

GRP78 protein levels), (ii) IRE1α in all conditions, (iii)

phospho-JNK (Thr183/Tyr185) in glutamine-only condi-

tions without altering total JNK levels, and (iv) LC3II

and p62/SQSTM1 levels in glutamine-only conditions.

Thus, MYC directly controls the UPR and autophagy to

control cell fate in ER + breast cancer cells under specific

cellular signals that may be initiated by changes in intra-

cellular glucose or glutamine.

Induction of the UPR in glutamine-only conditions

induces both pro-survival and pro-death signaling

Since the GRP78-IRE1α arm of the UPR is activated in

glutamine-only conditions, we further investigated the

role of these molecules in cell fate, especially since this

particular pathway can drive both cell death via JNK ac-

tivation, or cell survival via XBP1(s) splicing [37,40,41].

Knockdown of GRP78, IRE1α, XBP1, or MYC followed by

growth in either glucose + glutamine or glutamine-alone

media was compared (Figure 9A-F; J-O). SP600125, a

small molecule inhibitor of JNK activation [42,43] was

used (Figure 9G-I) since we observed an increase in

phospho-JNK (activation) in glutamine-only conditions

(Figure 8A). Inhibition of GRP78 did not significantly

affect the inhibition of cell number in glutamine-only con-

ditions in both LCC1 and LCC9 cell lines (Figure 9A).

Western blot analyses of total GRP78 protein are shown in

both cell lines in different conditions in Figure 9B and C.

Knockdown of IRE1α (Figure 9D; Westerns, E-F) and

XBP1 (Figure 9J; Westerns, K-L) significantly increased in-

hibition of cell growth in glutamine-only conditions in

LCC9 cells. XBP1 splicing to XBP1(s) by IRE1α promotes

cell survival in breast cancer cells [23,37,41,44-46], and

thus, protein levels of XBP1(s) was determined. Inhibition

of JNK activation with SP600125, however, significantly de-

creased the inhibition of cell growth in glutamine-only

conditions (Figure 9J, Westerns, K-L). Finally, knockdown

of MYC (Figure 9M, Westerns, N-O) significantly de-

creased inhibition of cell growth in glutamine-only condi-

tions (as shown in Figure 6G). Thus, MYC may control an

IRE1α-XBP1(s) pathway to promote survival during

glutamine-only conditions, and also an IRE1α-phospho-

JNK pathway to promote cell death under this condition;

the balance between these two actions may determine in-

dividual cell fate.

Prolonged exposure to glutamine-only conditions results in

cell survival in a small number of endocrine resistant cells

UPR is a complex adaptive mechanism that can have both

pro-death and pro-survival outcomes in breast cancer cells

[23,37]. Since we detected both pro-survival XBP1(s) and

pro-death (JNK) pathways in LCC9 cell in glutamine-only

condition, we examined cell survival in these cells beyond

72 h. We followed cell growth in LCC9 cells beyond 72 h

for all four conditions: (i) glutamine + glucose, (ii) no

glucose + no glutamine, (iii) glucose + no glutamine, and

(iv) no glucose + glutamine. While 100% of the cells sur-

vived in glutamine + glucose conditions, no cells survived

in no glucose + no glutamine or glucose + no glutamine

conditions. Most LCC9 cells underwent apoptosis in no

glucose + glutamine conditions within 72 h, however, a

small number (<5%) of cells survived. We followed the

growth of these cells (LCC9Gln) for 12 weeks. Cell num-

ber in LCC9Gln cells was significantly slower than in

LCC9 (control) cells grown in complete media (Figure 10A;

p ≤ 0.001). Moreover, LCC9Gln cells showed an increased

in GLS/GAC expression but a decrease in GLUL, MYC,

and MAX expression (Figure 10B). Table 1 summarizes

the levels of MYC protein and cell fate at 72 h (short-term)

and >72 h (long-term) in LCC9 cells in the presence of

glutamine and/or glucose. In summary, when glutamine

and glucose are abundant, MYC promotes their uptake

and uniquely controls GLS and GLUL expression in anti-

estrogen resistant breast cancer cells (Figure 10). In

glucose-deprived conditions when glutamine is present,

the UPR is triggered and apoptosis is induced through

GRP78-IRE1α-JNK-CHOP within 72 h. However, a small

number of cells use the UPR to maintain survival beyond

72 h through GRP78-IRE1α-XBP1(s), albeit at a lower
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growth rate, by adjusting MYC to promote glutamine

metabolism.

Discussion
MYC is a target of estrogen signaling in breast cancer

cells [26] that can control diverse aspects of cancer cell

survival including cellular metabolic reprogramming

[47-49]. Activation of MYC has been linked to acquired

antiestrogen resistance in human breast tumors [10] and

poor clinical outcome [50]. Our findings show that

MYC-driven pro-survival signaling in antiestrogen resist-

ant breast cancer is partially dependent on proteins that

Figure 9 UPR in glutamine-only conditions can lead to both pro-survival and pro-death outcomes. Effect of transfection of siRNA targeting

GRP78, IRE1α, XBP1(s), and MYC for 24 h; or JNK inhibition with a small molecule inhibitor (SP600125) on growth in either glucose + glutamine or

glutamine-alone media. Western blot (48 h); A-C, GRP78. D-F, IRE1α. G-I, JNK. J-L, XBP1. M-O, MYC. Inhibition of GRP78 did not significantly further affect

cell numbers in glutamine-only conditions in both LCC1 and LCC9 cell lines, A. Western blot analysis of total GRP78 protein are shown in both cell lines

in different conditions, B-C. Knockdown of IRE1α, D-F and XBP1, J-L, significantly increased inhibition of cell growth in glutamine-only conditions in both

cell lines. However, inhibition of JNK with SP600125 significantly decreased the inhibition of cell growth in glutamine-only conditions, G-I. Also, knockdown

of MYC, M-O, significantly decreased inhibition of cell growth in glutamine-only conditions. Overall, MYC may have facilitate an IRE1α-XBP1

pathway to promote cell survival during glutamine-only conditions, and an IRE1α-phospho-JNK pathway to promote cell death in this condition.

ANOVA, p≤ 0.001; *p < 0.05 for respective cell lines transfected with indicated siRNA (or treated with SP600125, for JNK) compared with control siRNA

(or vehicle alone, for JNK) in glutamine-only conditions.
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control the cell cycle and apoptosis. While rapid drug

metabolism limits the efficacy of 10058-F4 as an antitu-

mor agent for solid tumors [28], its use in vitro showed

that inhibiting MYC in antiestrogen resistant breast can-

cer cells confirmed the essential role of MYC activation

in driving this phenotype. Metabolically stable small-

molecule inhibitors of MYC hold significant promise as

new agents to treat some drug resistant breast tumors.

MYC is an important regulator of glutamine and glucose

metabolism [51]. Antiestrogen resistant breast cancer cells

Table 1 Cell media conditions and corresponding levels of MYC and cell fate in antiestrogen resistant (LCC9) cells

Cell media condition MYC level; short-term cell fate (72 h) MYC level; long-term cell fate (>72 h)

glucose + glutamine (basal) High MYC; survival and proliferation; no UPR High MYC; survival and proliferation; no UPR

no glucose + no glutamine Low MYC; apoptosis, ROS/RNS; no UPR No viable cells

glucose + no glutamine High MYC; apoptosis; no UPR No viable cells

no glucose + glutamine High MYC; apoptosis; UPR Low MYC; survival and slower rate of proliferation

Figure 10 MYC confers metabolic flexibility in antiestrogen resistant cells. A, Rate of cell growth was significantly reduced in LCC9Gln cells

compared with LCC9 control cells (p≤ 0.001). Cell numbers at 72 h were compared using Student’s t test. B, MYC, MAX and GLUL protein levels

were reduced, while GLS/GAC was increased, in LCC9Gln cells compared with control. C, Schematic diagram illustrating the role of MYC in

regulating glutamine metabolism in complete (right; basal; with glucose and glutamine) and in glutamine-only conditions (left; glutamine but no

glucose). MYC regulates glutamine, glutamate, and glucose uptake through transporters, ASCT2, EAAT2 and GLUT1, respectively, under normal

conditions. In glucose-deprived conditions, glutamine metabolism triggers the UPR and induces cell death (inducing apoptosis and arresting

autophagy) via a MYC-regulated IRE1α-JNK-CHOP in the short-term (72 h), and also promotes cell survival, through a IRE1α-XBP1(s); the surviving

cells grow at a slower rate of cell proliferation (A), at >72 h. Dashed line denotes presence of intermediate metabolites/proteins that are not

addressed in this study.
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with higher MYC activation showed increased sensitivity

to small molecule inhibitors of glutaminolysis and glycoly-

sis (Figure 5C), but did not re-sensitize these cells to

antiestrogens. Thus, activation of these metabolic path-

ways in resistant cells may be independent of ER-mediated

signaling. Increased levels of glutamate and proline in an-

tiestrogen resistant breast cancer cells imply an essential

role for glutamine metabolism in sustaining cell survival.

Glutamate, which is converted from glutamine by GLS, is

an essential substrate for many cellular processes includ-

ing for the formation of the antioxidant glutathione

(GSH), feeding into the tricarboxylic acid (TCA) cycle via

its metabolism to α-ketoglutarate (α-KG), indirect gene-

ration of NADPH for the synthesis of fatty acids and

nucleotides, and a key source of the ammonia that is

required for acid–base homeostasis [52,53]. Conversely, a

steady supply of glutamine is essential for cancer cells to

modify proteins by O-linked N-acetylglucosamine (O-

GlcNAc) through the hexosamine biosynthesis pathway.

MYC can regulate global O-GlcNAc modification of pro-

teins in rat fibroblast cells [54]. A fraction of glutamine is

also used as the nitrogen donor for the de novo synthesis

of purines and pyrimidines, needed to match the demands

of nucleic acid production during cell proliferation, the

rate of which is often greater in drug resistant cancer cells

[52,55]. Regulation of the GLS/GAC-GLUL system by

MYC in antiestrogen resistant cells may, therefore, be es-

sential to maintain and/or drive the resistant phenotype.

MYC regulation of GLS and GLUL in antiestrogen resist-

ant breast cancer cells was unexpected. While in prostate

cancer cells, MYC knockdown was shown to decrease

GLS and increase GLUL protein levels [56], in our anties-

trogen resistant breast cancer cell models (LCC9, LCC2,

and LY2) we observed the reverse effect – MYC knock-

down increased GLS and decreased GLUL protein levels

(Figure 5E and F).

The UPR pathway is an evolutionarily conserved adap-

tive pathway coupled to endoplasmic reticulum stress that

is upregulated in antiestrogen resistant breast cancer [37].

Previously, we have shown that GRP78, a member of the

HSP70 family of proteins, is overexpressed in antiestrogen

resistant breast cancer cells and tumors and promotes

their survival [23]. To date, it is unclear how the UPR reg-

ulates cellular metabolism or vice versa. Our findings show

that GRP78, IRE1α, phospho-JNK and XBP1(s) are ro-

bustly upregulated in antiestrogen resistant ER + breast

cancer cells in the presence of glutamine but absence of

glucose (Figure 8A). While blocking JNK activation signifi-

cantly reduced inhibition of cell growth in glutamine-only

conditions, knockdown of XBP1 significantly increased the

inhibition of cell growth (Figure 9). MYC directly inhibited

phospho-JNK in glutamine-only conditions (Figure 8B).

JNK or stress activated protein kinases (SAPK) belong to

the MAPK family of proteins [57] and can directly

contribute to pro-apoptotic signaling by phosphorylating

and inactivating BCL2. In contrast, MYC inhibited IRE1α

expression similarly in all four conditions of glucose and

glutamine availability. Thus, regulation of JNK by MYC

may reflect a mechanism to regulate the UPR under spe-

cific cellular stresses.

JNK can regulate MYC through phosphorylation [58]

and can associate with and mediate MYC ubiquitination

and degradation [59]. Moreover, in HeLa and HEK293

cells, MYC knockdown decreased LC3II levels and de-

creased formation of autophagosomes by inhibiting

JNK [60]. In our endocrine resistant breast cancer cell

models, MYC inhibition increased both JNK activation

and LC3II levels, with an associated increased in-

hibition of cell growth in glutamine-only conditions

(Figure 8B; Figure 9M). Further studies are needed to in-

vestigate how MYC controls stress signaling mediated

through JNK and cell death pathways. Autophagosome for-

mation and the accumulation of p62/SQSTM1 (Figure 7B)

can trigger cell death through apoptosis during cellular

stress [34], likely reflecting the inability to use autophago-

some content degradation to feed intermediate metabol-

ism. Thus, cellular metabolic status are clearly important

in triggering specific MYC-mediated functions. Within a

tumor, cancer cells can experience glucose deprivation

due to an inadequate vasculature [61] or drug treatment

[62]. Short-term inhibition of glycolysis may initiate UPR-

mediated responses that subsequently induce apoptosis in

most cells but can also promote survival in a small fraction

of cells until an adequate energy supply becomes available

to enable both cell survival and proliferation. Indeed, in

bortezomib-induced cell death, MYC has been shown to

bind to pro-apoptotic BCL2 proteins, NOXA and BIM, and

cooperate with EGR1 [63]. Thus, MYC induced cell death

in cancer cells warrants further elucidation.

Increased activation of MYC in antiestrogen resistant

cells is also associated with their increased dependence

on glutamine and glucose for cell survival. However, the

presence of glutamine in glucose deprived conditions

initiated an UPR-mediated pathway that killed most cells

via apoptosis but allowed the survival of a small minor-

ity. In LCC9Gln cells, which survived in media contain-

ing glutamine but no glucose, MYC levels were reduced

and GLS/GAC levels were increased when compared

with the parental antiestrogen resistant LCC9 cells.

These adaptations may ensure the appropriate balance be-

tween the levels of glutamine versus glutamate needed for

the cells to survive in glucose-deprived conditions. Glu-

tamine alone can sustain survival of a small cell population

in the absence of glucose, albeit with a significantly de-

creased rate of cell proliferation (Figure 10A). Molecular

characterization of the multiple passages of LCC9Gln ver-

sus parental cells is underway and will help elucidate the

MYC-mediated and UPR-regulated adaptive pathway.
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Excessive systemic energy demand in cancer can lead

to cachexia, which affects a large number of cancer pa-

tients and results in the progressive loss of muscle and

adipose tissue mass [64]. To date, it is unclear how

therapeutic interventions can safely alter the energy de-

mand of cancer cells within tumors without necessarily

inducing additional metabolic problems for the host.

While a tumor-to-liver Cori cycle is implicated in meet-

ing glucose demands, a tumor-to-muscle cycle is impli-

cated in meeting the glutamine demands of growing

tumors [52,64,65]. In addition, fibroblasts in the tumor

stroma can also supply tumor cells with glutamine [66].

As cancer progresses to a more aggressive, metastatic,

drug resistant phenotype, the potential to induce cach-

exia likely also increases. Understanding the adaptation

of cellular metabolism associated with drug resistant

disease may offer new interventions to address this co-

morbidity evident in many advanced cancers.

MYC expression is deregulated in various cancer types.

Our findings show that antiestrogen resistant breast cancer

cells express higher levels of MYC protein compared with

sensitive cells, and elevated MYC levels correlate with in-

creased sensitivity to deprivation of glutamine and glucose.

While the levels of glutamine metabolites are higher in re-

sistant cells, MYC regulates GLS/GAC and GLUL to meet

the demands of the resistant phenotype, particularly during

periods of glucose deprivation/insufficiency. Thus, glutam-

ine metabolism may allow cancer cells to adapt to changes

in glucose availability by re-programming existing pathways

through MYC and the UPR. Safely targeting the glucose or

glutamine pathway and/or the UPR could offer novel strat-

egies to treat antiestrogen resistant breast cancer.

Conclusions

MYC activation in endocrine resistant breast cancer cells

increased their dependency on glutamine and glucose.

However, when challenged with glucose deprivation, the

presence of glutamine augmented MYC regulated the

UPR with both: (i) a pro-death signaling through

GRP78-IRE1α-JNK, that induced cell death in most cells,

and (ii) a pro-survival signaling through GRP78-IRE1α-

XBP1, that allowed a subset of cells to adapt and survive.

Thus, targeting these pro-survival pathways may prevent

the progression of some endocrine dependent cells to an

endocrine resistant phenotype.
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