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Abstract

making can be recommended.

Rapid innovations in cardiovascular magnetic resonance (CMR) now permit the routine acquisition of quantitative
measures of myocardial and blood T1 which are key tissue characteristics. These capabilities introduce a new
frontier in cardiology, enabling the practitioner/investigator to quantify biologically important myocardial
properties that otherwise can be difficult to ascertain clinically. CMR may be able to track biologically important
changes in the myocardium by: a) native T1 that reflects myocardial disease involving the myocyte and
interstitium without use of gadolinium based contrast agents (GBCA), or b) the extracellular volume fraction (ECV)-
a direct GBCA-based measurement of the size of the extracellular space, reflecting interstitial disease. The latter
technique attempts to dichotomize the myocardium into its cellular and interstitial components with estimates
expressed as volume fractions. This document provides recommendations for clinical and research T1 and ECV
measurement, based on published evidence when available and expert consensus when not. We address site
preparation, scan type, scan planning and acquisition, quality control, visualisation and analysis, technical
development. We also address controversies in the field. While ECV and native T1 mapping appear destined to
affect clinical decision making, they lack multi-centre application and face significant challenges, which demand a
community-wide approach among stakeholders. At present, ECV and native T1 mapping appear sufficiently
robust for many diseases; yet more research is required before a large-scale application for clinical decision-

Who we are

The “T1 mapping development group” was informally
founded October 2010. Its mission statement is “to fa-
cilitate the path of T1 mapping and ECV quantification
into clinical practice”. It is aimed at academics,
clinicians, pharmaceutical companies, equipment man-
ufacturers and software developers who have a strong
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interest in the quantification of diffuse myocardial pro-
cesses by cardiovascular magnetic resonance (CMR)
with T1 mapping as their primary or core activity, and
who wish to coordinate activity to the goal of being
able to change therapy using these endpoints. Minutes
from prior regular meetings are available [1]. The nu-
cleus of the group and senior advisors documented in
the introduction have a range of technical and clinical
expertise and a broad geographical base. Together, they
have provided many of the key innovations in the field.
The group is now affiliated with the Society for
Cardiovascular Magnetic Resonance (SCMR) and the
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CMR Working Group of the European Society of
Cardiology.

Background

Rapid innovations in CMR now permit the routine ac-
quisition of quantitative measures of myocardial and
blood T1 which are key tissue characteristics. T1 quanti-
fication requires the acquisition of multiple images to
derive the T1 recovery curve which is governed by the
exponential time constant for MR longitudinal relax-
ation, T1. This parameter can be displayed as a pixelwise
“T1 map” whereby an estimate of T1 is encoded in the
intensity of each pixel [2,3]. Its quantitative nature per-
mits establishing normal T1 ranges, and T1 values can
be assigned colors to simplify visual interpretation.

This capability introduces a new frontier in cardiology,
enabling the practitioner/investigator to quantify bio-
logically important properties of both regional and glo-
bal myocardium independent of function. Historically,
diffuse myocardial disease has been difficult to measure
or even appreciate noninvasively. This advance is im-
portant, because focal and diffuse changes may directly
reflect pathophysiologic processes across the disease
spectrum from preclinical to end-stage disease. CMR
may be able to track biologically important biologically
important changes in the myocardium by: a) native
(noncontrast) T1 that reflects myocardial disease involv-
ing the myocyte and interstitium without use of
gadolinium based contrast agents (GBCA), or b) the
extracellular volume fraction (ECV) after a GBCA-a
direct measurement of the size of the extracellular space,
reflecting interstitial disease. The latter technique at-
tempts to dichotomize the myocardium into its cellular
and interstitial components with estimates expressed as
volume fractions. The concept of employing extracellular
agents to quantify the interstitial space has been
exploited by investigators over many decades [4-7].
Advances in T1 measurement now permit routine non-
invasive measurement of ECV.

This document provides recommendations for clinical
and research T1 and ECV measurement, based on pub-
lished evidence when available and expert consensus when
not. We recognize a priori that multiple methodologies for
T1 measures do and should exist, with continued evolution
and residual imperfections. Furthermore, different vendor
implementations of the same biomarker test may have dif-
ferent normal ranges. However, the rapid progress in the
field renders it sufficiently mature to warrant recommenda-
tions. We make analogy to another key cardiac imaging
biomarker, the left ventricular ejection fraction (LVEF),
where measurement variations persist within and across
modalities yet the yield of biological information is suffi-
cient to diagnose, guide and monitor treatment and predict
outcome. In fact, all imaging and non imaging biomarkers
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share some degree of error inherent in their measurement
which is implicit in their “signal to noise” ratios and their
coefficients of variation.

Scientific and clinical relevance

Native (Noncontrast) T1

Native (noncontrast) T1 measures of myocardium per-
mit noninvasive detection of biologically important pro-
cesses which promise to improve diagnosis, measures of
disease severity, and potentially prognosis. Native T1
changes can detect pathologically important processes
related to excess water in oedema [2,8,9], protein
deposition [10,11], and other T1l-altering substances
such as lipid [12,13] or iron (hemorrhage, siderosis) [14],
without the need for a GBCA. In addition native T1
techniques need not exclude patients with severe renal dys-
function. Alterations of myocardial native T1 can therefore
signal both cardiac diseases (acute coronary syndromes,
infarction, myocarditis, diffuse fibrosis causes (all high T1))
[15], and systemic disease such as (cardiac amyloid
(high T1)) [10] Anderson-Fabry disease (low T1) [16]
and siderosis (low T1). When combined in a clinical
scan protocol, early evidence suggests that native T1
mapping can reveal pathology such as area at risk in acute
coronary syndromes [2,8,9,17], hitherto unsuspected path-
ologies (global myocarditis without LGE) and preclinical
disease or unsuspected cardiac involvement (iron, Fabry
disease, amyloid) [10,12,18].

ECV

The ECV technique introduces a potentially important
new method to examine the myocardium because it is
sensitive to the distribution of the LV myocardium into
its cellular (dominated by myocyte mass) and extracellu-
lar interstitial (extracellular matrix (ECM) in the
interstitium) compartments. Alterations in these com-
partments occur from different physiologic and patho-
physiologic biologic processes [19].

Early data indicate that ECV measures appear to be as
prognostically important as LVEF [20,21] which under-
scores the biologic importance of the interstitium. This
myocyte-ECM expansion dichotomy may have import-
ant implications for identifying distinct therapeutic tar-
gets: i.e., the fibroblast versus the myocyte. This issue is
especially important in heart failure where over 20 trials
failed to identify therapeutic targets [22]. Furthermore,
in heart failure with preserved systolic function, there
are no evidence based therapies to reduce hospitalization
or mortality. The extent to which primary ECM expan-
sion from fibroblast activation drives myocyte dysfunc-
tion or the extent to which primary myocyte disease
leads to ECM expansion in HF remains incompletely
understood, but now the cardiology community has a
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developing and promising means to quantify expansion
of the interstitium.

In the absence of amyloid or oedema [23], expansion
of the myocardial collagen volume fraction is responsible
for most ECM expansion [24] which culminates in
mechanical [25-27], electrical [28-31], and vasomotor
dysfunction [32], which are key elements of cardiac vul-
nerability [33]. ECM expansion can diminish tolerance
to ischemic insults [34-36]. Other investigators have
reported “vulnerable interstitium” in sudden cardiac
death victims [31], and have described band-like fibrosis
in myocardium resembling hepatic cirrhosis [37]. Thus,
just like other organs, fibrosis in the myocardium is
associated with cardiac dysfunction [38]. Fibrosis is
associated with a number of conditions [39,40] and is
considered to represent a final common pathway of
myocardial disease from a variety of insults.

While late gadolinium enhancement (LGE) undoubt-
edly provides important diagnostic and prognostic infor-
mation [41-47], T1 mapping and ECV may have an
advantage over LGE for quantifying the degree of ECM
or interstitial expansion. LGE is less suitable for quanti-
fying extent of ECM expansion [48-54] resulting from
pathologies other than myocardial infarction where the
differences between normal and affected myocardium
are less distinct. LGE validation data for this purpose are
lacking. Spatial variation of myocardial fibrosis is the key
feature that renders it potentially detectable on an LGE
image [49]. In ischemic cardiomyopathy, one small study
examining 10 explanted hearts reported that the major-
ity of the total collagen content could be distributed
diffusely rather than focally [39]. Such a diffuse distribu-
tion of collagen content would render its accurate
quantification nearly impossible with LGE. ECV can de-
tect early fibrosis changes not always detectable by LGE
[20,49-51,55-58]. The association with outcomes appears
stronger for ECV compared to LGE [20,21]. Automated
parametric ECV maps are an exciting development that
may facilitate rapid ECV measurement and potentially
catalyze the field [59].

Consensus terminology

To streamline the field and increase its accessibility,
below are a list of recommended terms and their
definitions

Native T1 or Native myocardial T1

- Longitudinal relaxation time (T1) values of a given
tissue when no contrast agent has been applied. “Native
T1” is preferred over other terms such as “pre-contrast
T1” or “non-contrast T1”. If a paper is unambiguous
(no contrast use, no measurement of other tissues),
after initial use, native myocardial T1 can be
abbreviated to simply T1.
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T1 mapping

- A CMR method providing a parametric map whereby
the T1 value is encoded in each pixel. T1 maps arise from
a series of co-registered images acquired at different times
of T1 recovery, typically following a magnetisation
preparation by inversion or saturation. Raw images used
for T1 mapping need to be acquired at identical times in
the cardiac cycle. CMR methods allowing for T1
estimation from ROIs drawn in raw images of different
parts of the cardiac cycle (i.e. not allowing pixel-based T1
analysis) should be referred to as T1 measurements.

ECV or myocardial ECV

The extracellular volume (ECV) of the myocardium
reflects the volume fraction of heart tissue that is not
taken by cells. This includes the intracapillary plasma
volume-—a significant compartment in some organs like
the liver. ECV should be preferred over other terms such
as “volume of distribution”. ECV does not account for
regression in capillary density or other microvasculature
throughout the myocardium that may be associated with
adverse remodelling [60-62]. Yet, such decreases in the
myocardial vasculature would only mask differences in
ECM expansion that ECV attempts to measure. ECV
maps can also be generated on a pixel-wise basis if native
and post contrast T1 images are coregistered, quantified,
and adjusted for the hematocrit [59].

ICV or myocardial intracellular volume

The residual of ECV (i.e, 1-ECV = ICV) representing the
total tissue volume inaccessible to the GBCA molecules
themselves—i.e., behind cell membranes, the composite of
all cells (mostly myocyte mass, but also red blood cells,
fibroblasts, macrophages, etc.). However, ICV estimates
are subject to the same biases inherent in ECV estimates.

Fibrosis

Neither T1 mapping nor ECV directly measure the
extracellular matrix or detect other important ECM
qualities, such as the degree of crosslinking and post
translational modification. Rather, ECV measures the
space the ECM occupies which is a useful surrogate.
ECV has robust histological validation as an ECM
measurement which correlates with the collagen
volume fraction [24,54,63]. This advance is important
because myocardial fibrosis is ubiquitous and associated
with myocardial remodeling [19,37,39,40,46,64,65]. In
the absence of amyloidosis, other forms of infiltrative
disease, or clinical conditions that would create
myocardial edema, and acknowledging the other
components of extracellular matrix [65], ECV is a
CMR biomarker for myocardial fibrosis. We suggest
avoiding use of the term “scar” due to its potential for
confusion. It is not clear whether “scar” refers to:
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necrosis, apoptosis, or fibrosis; an ischemic etiology or
non-ischemic etiology; focal or diffuse fibrosis.

Consensus recommendations

For clinical evaluations, we recommend the following.
Supporting justification for these points is provided in
the subsequent section.

1. Site preparation

L

ii.

=

ii

Establish site normative values for the particular
set-up (vendor/field strength/magnet/contrast
regime/sequence variant and patient population
(age/gender)).

Use a validated sequence with tightly controlled
protocol for the duration of the study.

. Specify the field strength and provide a method

name prominently with details about the specific
pulse sequence employed to measure T1 which
can affect the range of values encountered in
healthy volunteers and the sensitivity to the
disease process.

2. Scan types

L

ii.

=

iii.

iv.

V.

For studies involving GBCA, the preferred
outputs are native T1 and ECV, and not partition
coefficient and post contrast T1 in isolation.
Haematocrit for ECV calculation should be
measured contemporaneously with the

CMR study.

A “bolus only” approach to ECV measurement is
sufficient for most myocardial ECV applications.
For the bolus only approach, with single
timepoint postcontrast measurement, a

15 minutes minimum delay should be used

for ECV measures in non-infarcted
myocardium [56,63,66].

GBCA should not be a protein bound variant for
ECV measurement.

3. Scan planning and acquisition

i

ii.

iii.

Through plane partial volume averaging should
be minimized by optimal slice orientation relative
to the tissue (i.e., structures should be orthogonal
to the imaging plane to minimize obliquity)
Ensure proper adjustment of shim and center
frequency to minimize off resonance

Native and post contrast T1 maps should be
acquired using the same slice prescription
parameters and the same cardiac phase

4. Quality control

i

Quality measure maps such as “goodness of fit”
or parameter error maps [9,18,67] should be
included in the interpretation to assess the quality
of acquired data. Preferably this should be
performed during scanning to allow an immediate
repeat of suboptimal measurements.
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ii. Multiple (=2) acquisitions in different slice
orientations are recommended to add diagnostic
confidence.

5. Visualisation and analysis
i. T1 and ECV maps may be displayed in color

(or grayscale) with appropriate scale to maximize
differentiation from normal and this scale should
be kept the same within a study.

ii. Measurements from regions of interest should
minimize in plane and through plane (obliquity)
partial volume effects.

iii. Regions of interest should have adequate margins
of separation from tissue interfaces prone to
partial volume averaging such as between
myocardium and blood.

iv. The exclusion/inclusion of LGE areas for ECV
measures (i.e., myocardial infarction, non-
ischemic LGE atypical of myocardial infarction)
in T1/ECV quantification should be stated. It is
acceptable for regions of interest to exclude
infarcts (i.e., remote myocardium) and include
non-ischaemic LGE.

6. Technical development
i. New pulse sequences and/or imaging protocols

should be validated in phantoms and uniquely
named.

ii. T1 and T2 of phantoms should have values
expected for the tissue of interest with and
without contrast, at the desired field strength.
Evaluations should use a relevant range of heart
rates. Any applied corrections, (e.g., heart rate)
should be clearly defined.

iv. The proposed approach should be validated
against a gold standard such as spin echo
relaxometry.

v. Research studies, should consider, as a guide, the
general standards for the reporting of diagnostic
accuracy studies (STARD) [68].

iii.

=

Justification for the consensus recommendations

1. Site preparation
Significant biases in T1 measurement may depend
on the specific method and imaging protocol.
Caution must be exercised on relying on phantom
or simulation validation which may not account for
effects such as T2 relaxation or magnetization
transfer (MT) which may be different in-vivo [69].
The “bias” errors may be strongly influenced by
imaging parameters such as flip angle, matrix size,
slice profile, and numerous other factors. The
sensitivity of T1 mapping to imaging parameters is
not well quantified, therefore, it is recommended to
tightly control the imaging protocol for the duration
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of the study in order to minimize unintended
variation in measured T1 due to these factors.
Sequence and software upgrades, even if apparently
not affecting T1 mapping (such as new tune up/
shims), need to be approached with caution. Normal
values for a specific protocol may vary from system
to system due to changes in software versions or
scanner type, will vary with field strength, and
should be measured for each specific configuration.
Caution is advised when sharing normative data to
ensure that scanner configuration is indeed identical.
Normal values should ideally be acquired on normal
subject samples (with n > 10, or more if small
differences are being sought) representative of the
target population distribution. The underlying
sequence and imaging protocol should be
described or referenced in sufficient detail such
that it may be reproduced. A typical scan protocol
is supplied, Figure 1.

. Scan types

The relationship between the interstitium and other
related parameters, the partition coefficient and
isolated post contrast T1, are confounded by
clinically relevant conditions arising from variation
in the hematocrit, the GBCA dose which varies
according to patient weight and GBCA dose
conventions (0.1-0.2 mmol/kg) across centres, and
the renal clearance after a bolus. Haematocrit varies
considerably in large CMR cohorts [21]. To date,
ECV appears better associated with patient
outcomes [20,21], compared to the partition
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coefficient and post contrast T1. Agreement with
the collagen volume fraction appears significantly
higher for ECV [24,54,63] compared to isolated post
contrast T1 [70,71] which does not vary linearly
with GBCA concentration. Further study of these
issues would be beneficial.

Equilibrium infusion does not give substantially
different results to the bolus only approach except at
high ECV values where an overestimation bias
appears [66]. Whilst longer delays post bolus may
have advantages, a 15 minute minimum appears a
reasonable compromise balancing with the need for
clinical throughput, and is supported by the
literature [56,63,66]. Although one ECV publication
[72] employed a protein bound GBCA variant, the
authors pointed out that such blood protein binding
renders two key assumptions invalid: firstly, the
assumption of equal extracellular Gd concentrations
in blood and tissue at equilibrium; secondly that the
Gd relaxivity will be the same (protein binding
increases relaxivity by slower molecular tumbling).
Use of protein bound GBCA is not currently
recommended without a more sophisticated
modeling approach and more data.

. Scan planning and acquisition

— Shim. The MR reference frequency should be
adjusted using a volume region over the heart
both within and through the image slice. At
higher magnetic fields shimming is particularly
important to reduce non-uniformity of the
resonance frequency over the heart. Through-

Blood sampling

Assessment of hematacrit

Native T1 mapping

|¢

Two views for each segment analyzed

Single-breathhold cardiac T1 mapping pulse sequence
8mm slice thickness, €2 mm in-plane resolution

|¢

Administration of contrastagent

Gadolinium-based, extracellular, non-protein-binding

intravenous bolus

'¢

Post-contrast T1 mapping

215min after administration of contrast agent

Corresponding to native T1 mapping

Figure 1 Sample scheme for measuring myocardial native T1 and ECV which can be integrated into routine CMR practice.
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slice extent of the volume region used can be
important for two reasons: a simple frequency
adjustment procedure might not be gated to the
same cardiac phase, and motion in the through-
plane direction can transport consequences of
resonance frequency offsets [73]. Positioning the
region of interest near the magnet isocenter is
often beneficial [74].

— Breath-hold. Failures of breath-holding will result
in the later images not being registered to the
initial ones, which causes substantial errors in the
calculated maps. Shortened acquisition and
motion correction can be beneficial but
fundamentally ensuring a good breath-hold is
desirable.

— Timing of cardiac phase. Gating intervals (e.g.,
diastole) should not be changed within patients
or between patients and normal controls. It is
acknowledged that image field of view may need
to be changed for patients. As any changes in
timing parameters can potentially affect T1
measurements, modification of field-of-view are
preferably done without changing acquisition
matrix size or allowing any sequence timings to
change.

Creation of good quality maps can only be achieved

if all of the constituent images are also of good

quality. The following need optimization:

. Quality control

It is useful to establish quality measures in order to

aid the interpretation and improve the confidence of

T1 and ECV maps and associated measurements. In

cases of suspected artefacts in T1 or ECV maps, it

may be useful to examine the raw magnitude and
phase images for image artefacts at the
corresponding location. Parametric error maps are
useful for quantitatively assessing the validity of T1
or ECV results with the direct estimate of the
underlying pixel measurement precision (SD)

[18,67]. The precision may be estimated from

standard deviation maps generated for each T1 map

[67]. Non random appearance to the error maps

showing anatomy may be indicative of uncorrected

motion, and thereby raise a cautionary flag in those
regions. Motion correction for parametric maps,
ideally employing inline automated processing as part
of the pulse sequence, is desirable to minimize artefacts
related to motion and misregistration, but breath-
holding remains desirable. Off-resonance variation
across the heart may result in regional variations in
apparent T1 [74]. When available, it is useful to have
field maps that may be used to ensure that apparent T1
variations are not related to systematic biases rather

than true variation in T1 [74].
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Although not as yet evidence based, more than one
acquisition is a reasonable approach if clinical
decisions are being potentially made on the
quantitative results of T1 mapping. This issue is
analogous to phase swaps or orthogonal cross-cuts
often used for non-ischemic LGE.

. Visualisation and analysis

During analysis, significant biases in the value of
tissue T1 in a given voxel may arise due to
contamination by tissue in adjacent voxels. Regions
of interest (ROI) at the interface between
myocardium and blood or other tissues such as fat
will result in values which represent a complicated
distortion of the fundamental curve-fitting
assumptions and should be excluded from ROI
measurements. The partial volume effect is apparent
from both in-plane and through plane sources so
care must be exercised to have adequate spatial
resolution and slice thickness for the structures of
interest, to orient slices judiciously to minimize
obliquity during acquisition. During post processing,
care must be exercised to draw ROIs sufficiently far
from tissue interfaces which represents a key
advantage of parametric maps. Criteria used for ROI
delineation may have a strong influence on values
and should be clearly described. These effects may
not only introduce imprecision, but also bias—
thinner myocardial walls (eg DCM compared to
HCM, females compared to males) include
proportionately more blood pool in ROIs, altering
T1 (higher native, lower post contrast) and
potentially inflating ECV measures.

ECV can be measured in areas of LGE; [75,76]
although for ischaemic heart disease, it may reflect
pathology better to dichotomise measurement into
“infarct” and “remote”. For non-ischaemic
cardiomyopathy, where LGE likely represents the
most focal fibrosis in a continuum and where LGE
extent is highly thresholding method dependent
[77], LGE may be included in the ECV.

. Technical development

Pulse sequences are continually being developed and
refined, but they require initial validation prior to
clinical research application. It is important that the
evolution is traceable, therefore sequence naming
must be unambiguous, and modifications of pulse
sequences should utilize version numbers. T1
accuracy and precision should be tested
systematically in sets of phantoms that should have
T1 and T2 values expected for the tissue of interest
with and without contrast, at the desired field
strength, with temperature recordings. For example
at 1.5 T, consider T1s in the range of T1 = 300-
1800 ms, HR =40-120 bpm, and with two settings of
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T2 (50 ms and ~180 ms). The proposed approach
should be validated against a gold standard such as a
series of inversion recovery spin echo acquisitions
with long TR and minimal echo trains. The
algorithms used for T1 estimation and any applied
corrections (e.g., heart rate, systematic bias) should
be fully described to allow replication and/or
reversing the calculations. The STARD guidelines
[68] do not specifically apply to T1 mapping, but
would benefit the field as a guide, so have been
included here.
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research that correlate well with histological gold
standards. In addition to the question of
surrounding the simplified notion of a single T1 and
how it is measured, there is also a debate over the
biological influences and implications for increased
or decreased T1 and/or ECV that may result with
different disease states.

. What is the best method for image acquisition?

A central question posed often to the CMR
community is which method to use and more
specifically which protocol to use. There are
numerous approaches described in the literature and

Controversies
The following areas have generated controversy and re-
quire further research.

that are available to users as research “sequences”
[7,51,56,80,82-85]. However, there are no current
standards, and many approaches are not generally
accessible. Thus, it is not possible to make a

a. What else influences what we are measuring? T1 consensus recommendation on a specific method/

mapping promises to improve diagnosis, improve
prognosis, and inform mechanisms of disease.
Robust T1 measures with high accuracy and
precision would support these goals. Yet, there may
be trade-offs for various T1 measuring schemes in
terms of their accuracy and precision. While
accuracy is desirable, precision is especially
important to avoid misclassification of individuals
and to stratify samples efficiently. Several factors
may influence accuracy and precision of T1
measures.

The current methodology for in-vivo measurement
and mapping of T1 or ECV assumes a relatively
simple model that classifies a voxel as consisting of a
single compartment with a homogeneous single
value of the parameter T1 or ECV. According to
this approximation a mono-exponential may be used
to fit the measured response to either inversion or
saturation recovery. In fact, we know that biological
and molecular structures found in-vivo are more
complex and the characteristic time constants will
depend on the measurement time scales. Further,
the effects such as magnetization transfer (MT),
diffusion distance and time, contrast mechanisms,
trans-cytolemmal water exchange rate, flow, T2 or
T2* relaxation may significantly alter the apparent
T1 estimates indicated by any specific method
[69,78-80]. Based on these issues, there is active
debate about what influences what we are really
measuring, whether some methods are preferable, or
whether there are still better approaches. Validation
of methods based on phantoms such as agar gel is
an important step but does not provide sufficient
complexity to answer many of these questions.
Despite this uncertainty it has been shown that
current methods, if applied carefully, are
reproducible [81] and are valuable tools in clinical

protocol at this time. There are numerous
questions/factors that are important when
comparing methods such as: what influences what is
really being measured, what is the accuracy and
precision of the method, how reproducible is the
measurement and how is it affected by variables
such as motion, flow, off-resonance, how long is the
measurement, and numerous others that are
generally relevant in CMR. There are methods based
on inversion recovery, saturation recovery, as well as
hybrid methods combining inversion and saturation
recovery. There are also a number of sampling and
fitting strategies, and methods for image
reconstruction and motion correction. Furthermore,
sampling schemes could be designed differently for
pre and post contrast expected T1s for optimal
precision.

All of these considerations are important, and in lieu
of a consensus protocol at this time, we have
recommended more general guidelines for
establishing normal baseline values and achieving
reproducible measurements. In addition, image
acquisition for T1/ECV of thin structures (RV, atria)
will require new sophisticated approaches.

. Can T1 mapping be performed in all patients?

To achieve wide clinical application, T1 mapping
methods should have consistent measurement
properties. Any corrections should be properly
documented to assure that they can be replicated or
reversed if needed. Currently, the properly breath-
held single-slice 2D acquisition is preferred. This
group could not identify criteria to exclude
individuals given the lack of evidence. There are few
data examining the degree to which respiratory
motion, arrhythmia and the extremes of heart rate,
perturb T1 and ECV measures. Furthermore, there
are potential disease related factors—thin vs. thick
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myocardium; presence of arrhythmia; residual heart
rate effects that could influence measured T1 and
introduce bias to some unknown degree. These
topics deserve further investigation

. Which level of spatial coverage do we need?

Basal to mid short axis slices are generally preferred
given their greater thickness and the generally lower
obliquity compared to apical short axis slices. Thin
structures and obliquity of myocardium relative to
the imaging plane can introduce partial volume
effects that inflate native T1 and ECV values [49,85].
Long axis slices may be more prone to errors related
to through plane respiratory motion. The minimum
numbers of slices and ideal slice orientation remain
undefined. The solution is likely to be different for
different diseases (whole heart coverage vs single
representative region). These issues deserve further
study. In general, for diffuse diseases the mean ECV
or T1 seems reasonable to report while for highly
regional disease, such as hypertrophic
cardiomyopathy, whole heart coverage may
eventually become the standard. Peak values may
depend on the size of region of interest and the
spatial distribution of the disease process being
studied.

. Impact of GBCA types and concentration on ECV
measures?

The concentration of GBCA (or other factors such
as cell size) could introduce deviations from the fast
exchange limit assumption and influence how much
intracellular water is relaxed in any given area of
tissue due to trans-cytolemmal water exchange.
“Fast water exchange” assumes water exchange is
fast between intracellular and extracellular
compartments relative to their differences in
relaxivity [79,86]. Higher GBCA concentrations
would be more prone to departure from the fast
water exchange assumption and potentially measure
lower ECV values [78,86]. Higher concentrations
also occur post bolus with early time point
measurement, renal impairment and obesity. There
is some evidence for this phenomenon with upward
drift of ECV measures with longer measurement
times post Gd or low bolus doses [56,63,72].
Although these effects appear small, further work is
needed. There are plenty of potential solutions if
required (for example ECV measurement at fixed
GBCA concentration; more sophisticated dosing or
ECV measurement timing based on lean mass or
renal function). However, none of these has been
thoroughly investigated at this time.

. How should we analyse images?

There are as yet no standard tools to analyse CMR
images, with most research being performed using
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relatively restricted in-house developed tools, early-
stage commercial packages, or manufacturer
prototypes. Image analysis quality control and
quantifying bias from partial volume error is not yet
well developed. Automated ECV maps can speed
measurement compared to ECV measures from
manual regions of interest; additional advantages/
disadvantages are unknown. The advantages of two
timepoint (pre and post contrast) vs multi-timepoint
ECV calculation are also unknown. Multi-timepoint
may provide superior robustness to error estimates,
but compromise potential spatial coverage and ECV
map creation due to additional burden related to
processing. Different situations may have different
preferred approaches.. The industry is encouraged to
provide highly adaptable and robust tools for
standardized T1 quantification and map
presentation.

. What should we report?

The biological significance of the outputs of T1
mapping is not yet known. Multiple parameters can
be reported: Global or regional ECV or T1;
heterogeneity in areas with or without LGE.
Currently, most studies report a singular ECV value
per individual, which may be an average over short-
axis slice(s) or is sometimes taken from the septum
alone. A 16 segment approach however may have
problems with regional measurement differences from
off resonance effects or partial volume error [74].

. Standardization for clinical utility.

Clinical delivery of T1 mapping at the level of
healthcare systems to permit the change of therapy
based on T1 measurements has major challenges
including magnet QC, normal values and the use of
multiple platforms, sequences and contrast agents.
In the interim, for multicenter T1 or ECV studies,
we recommend performing stratified statistical
analyses to adjust for variation related to each site’s
scanner characteristics (assuming one scanner per
site). Further robust solutions will need to evolve.
Complementary value of multiparametric
approaches: native T1, ECV, LGE and others.
Native T1 detects both intracellular and
extracellular changes (focal and diffuse). ECV
estimates changes in the myocardial interstitium
(focal and diffuse). LGE measures focal interstitial
changes. There are advantages and disadvantages
to each. Native T1 has the advantage of not
requiring contrast, detects iron and diffuse fat
missed by the other two, but is more sensitive to
changes in the type of pulse sequence, including
many of its user-dependent parameters, scanner
pulse sequence and T1-reconstruction
implementation.



Moon et al. Journal of Cardiovascular Magnetic Resonance 2013, 15:92
http://jcmr-online.com/content/15/1/92

Because ECV is a ratio, ECV might be more
comparable across platforms and sequences since
any systematic biases in T1 estimation may cancel
one another, analogous to any volumetric biases
incurred during ejection fraction measures. LGE is
well established and the gold standard for infarction,
provides important diagnostic and prognostic
information, but misses diffuse changes [41-47].
Nonetheless, ECV has advantages over LGE for
quantifying myocardial fibrosis and the interstitial
space. LGE is less suitable for quantifying lesser
degrees of ECM expansion [48-54] resulting from
pathologies other than myocardial infarction where
the differences between normal and affected
myocardium are less distinct
[20,49-51,54,56,77,87,88]. ECV can detect early
fibrosis changes not always detectable by LGE
[20,49-51,55,56]. For every disease, the optimal use
of these techniques will require exploration. These 3
techniques are also just a subset of tissue
characterization techniques with other techniques
(T2, diffusion, spectroscopy) and modalities (e.g.,
ECV by CT) [89] to be addressed in the future.

Conclusion

Native T1 mapping and ECV may be able to provide im-
portant insights into fundamental disease processes af-
fecting the myocardium that otherwise can be difficult
to ascertain clinically. Both appear destined to affect
clinical decision making but lack multi-centre applica-
tion and face significant challenges, which demand a
community-wide approach (MRI vendors, funding agen-
cies, academics, software companies, contrast agent
manufacturers, clinicians). At present, subject to the
stated conditions, measures of ECV and native T1 map-
ping appear sufficiently robust for many diseases; yet
more research is required before a large-scale applica-
tion for clinical decision-making can be recommended.
It remains the centre’s responsibility to implement
quality control measures, to provide sufficient training
for readers and to use validated post-processing and
evaluation tools.
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