
mater.scichina.com link.springer.com Published online 10 October 2020 | https://doi.org/10.1007/s40843-020-1456-x

Sci China Mater 2020, 63(11): 2153–2188

SPECIAL TOPIC: Advanced Photocatalytic Materials

Nanostructured CdS for efficient photocatalytic H2
evolution: A review
Rongchen Shen

1†
, Doudou Ren

1†
, Yingna Ding

2
, Yatong Guan

2
, Yun Hau Ng

3*
, Peng Zhang

4*
and

Xin Li
1*

ABSTRACT Cadmium sulfide (CdS)-based photocatalysts

have attracted extensive attention owing to their strong visible

light absorption, suitable band energy levels, and excellent

electronic charge transportation properties. This review fo-

cuses on the recent progress related to the design, modifica-

tion, and construction of CdS-based photocatalysts with

excellent photocatalytic H2 evolution performances. First, the

basic concepts and mechanisms of photocatalytic H2 evolution

are briefly introduced. Thereafter, the fundamental proper-

ties, important advancements, and bottlenecks of CdS in

photocatalytic H2 generation are presented in detail to provide

an overview of the potential of this material. Subsequently,

various modification strategies adopted for CdS-based pho-

tocatalysts to yield solar H2 are discussed, among which the

effective approaches aim at generating more charge carriers,

promoting efficient charge separation, boosting interfacial

charge transfer, accelerating charge utilization, and suppres-

sing charge-induced self-photocorrosion. The critical factors

governing the performance of the photocatalyst and the fea-

sibility of each modification strategy toward shaping future

research directions are comprehensively discussed with ex-

amples. Finally, the prospects and challenges encountered in

developing nanostructured CdS and CdS-based nanocompo-

sites in photocatalytic H2 evolution are presented.

Keywords: solar fuel, nanostructured cadmium sulfide-based

photocatalysts, modification strategies, hydrogen production,
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INTRODUCTION
Rapid urbanization and industrialization have led to a
shortage of global energy resources, while significant
amounts of harmful and toxic chemical pollutants are
being discharged into the environment [1–5]. This ne-
cessitates research on environment-friendly technologies
to solve the aforementioned environmental and energy
crises. Tremendous efforts have been devoted toward
developing technologies for producing clean and sus-
tainable energy [6–9]. Among the available renewable
energy options, solar energy conversion into chemical
fuels has been extensively studied in recent decades [10–
14]. Solar energy can become the greenest and most
abundant energy source on earth if efficient harvesting
and conversion are enabled [15–20]. Among the pro-
posed technologies, visible-light-activated semiconductor
photocatalytic technology has been considered one of the
most promising strategies for simultaneously overcoming
the challenges of environmental pollution and global
energy shortage [21–26]. Visible-light semiconductor
photocatalytic technologies can convert solar energy into
valuable chemical fuels, such as clean H2 and renewable
hydrocarbon fuel, from water splitting, as well as from the
photoreduction of CO2 [27–36]. Concurrently, photo-
catalytic technology can be used for environmental pur-
ification via photocatalytic degradation of various
harmful chemical pollutants [37–51]. The increasing
public awareness of the impacts of global warming and
energy shortages has led to efforts that promote research
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on new sustainable energy sources [52–55]. Hydrogen
(H2)—a clean energy carrier—has attracted widespread
attention as an alternative to fossil fuel to reduce the
current environmental pollution and energy crisis [45,56–
61]. Carbon-free H2 can either be used in a typical in-
ternal combustion engine to power vehicles or to generate
electricity through fuel cells. Presently, H2 is mainly ac-
quired through the steam reforming of methane using
natural gas, which relies on the use of nonrenewable fossil
products [62–64].
Since Fujishima and Honda [65] first discovered the

photoelectrochemical splitting of H2O using a Pt/TiO2

electrode in 1972, solar H2 generation via artificial pho-
tosynthesis has rapidly emerged as a promising method to
convert and store solar energy in the form of carbon-free
H2. Over the past few decades, photocatalytic water
splitting for H2 evolution has been studied in several
systems, including organic–inorganic hybrid, molecular
material-based homogeneous, and semiconductor-based
heterogeneous systems [19,66–70]. The field of solar H2 is
rapidly expanding and involves multidisciplinary ap-
proaches, including the following branches: (1) under-
standing the fundamental photocatalytic mechanisms and
constructing efficient photocatalytic systems [71–76]; (2)
developing heterogeneous photocatalytic and homo-
geneous molecular-photosensitizer systems [19,77–79];
and (3) designing novel semiconductor photocatalysts
with unique structures and properties [80–82]. The sy-
nergy among all these disciplines plays a key role in im-
proving the efficiencies of photocatalytic systems.
The overall photocatalytic H2O splitting reaction (2H2O

→ 2H2 + O2) requires a positive Gibbs energy change of
237.13 kJ mol

−1
, corresponding to a minimum energy of

1.23 eV [83]. The basic processes of overall photocatalytic

water splitting include three steps (Fig. 1a): (1) light ab-
sorption, (2) charge excitation from the valence band
(VB) to the conduction band (CB) of the semiconductors
to form electron–hole (e

−
–h

+
) pairs, and (3) migration of

photoexcited charge carriers (e
−
–h

+
pairs) to surface ac-

tive sites to react with H2O to generate O2 and H2 [10,84–
86]. During step 3, e

−
–h

+
recombination readily occurs,

resulting in poor photocatalytic activity for overall water
splitting. Notably, the CB, VB, and bandgap energies play
crucial roles in influencing the photocatalytic perfor-
mance of semiconductor photocatalysts [11,87]. The
standard reduction potentials for the half-reactions of O2

and H2 evolution are described in Equations (1) and (2),
respectively.

2H2O → 4H
+
+ 4e

−
+ O2 (pH 0, E

0
= +1.23 V vs. NHE

(normal hydrogen electrode)), (1)

4H
+
+ 4e

−
→ 2H2 (pH 0, E

0
= 0 V vs. NHE). (2)

Over the past few years, numerous semiconductor
photocatalysts have been developed for photocatalytic H2

evolution water splitting, such as metal-free compounds
(g-C3N4 [11,88–94], SiC [78,95,96], and 6,13-pentacene-
quinone [97]), inorganic solid solutions (ZnxCd1−xS [98–
103], ZnIn2S4 [104–108], Bi1−xInxTaO4 [109], HNbx-
Ta1−xWO6 [59], and MnxCd1−xS [110,111]), oxynitrides
(BaTaO2N [112], LaTaON2, and TaON [113]), sulfides
(ZnS [114–117], NiCo2S4 [118], Cu2ZnSnS4 [119], MoS2
[120–123], CuInS2 [124–127], and CdS [128–130]), sele-
nides (WSe2 [131], CoSe2 [132], CdSe [133–135]), and
metal oxides (SrTiO3 [136–138], Ga2O3 [139], Fe2O3

[140–142], Cu2O [143,144], ZrO2 [145], TiO2[146–149],
ZnO [150–152], Ta2O5 [153,154], and CoOx [155]).
Among them, CdS is considered one of the most pro-
mising photocatalysts for H2 production due to its ex-

Figure 1 (a) Schematic of the main processes for photocatalytic H2O splitting on a semiconductor photocatalyst that typically include: (1) light
absorption, (2) charge excitations, (3) charge transfer, (4) H2 evolution, and (5) O2 evolution. (b) Advantages of CdS semiconductor photocatalysts.
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cellent photoresponse in visible light, which is empow-
ered by its suitable bandgap, high stability, as well as low
material and synthesis costs [156–158]. A few review
papers have reported the progress in the use of inorganic
cocatalysts, construction of heterojunctions, and charge
transfer behaviors in heterogeneous photocatalytic H2

production systems [159,160]. In recent years, some re-
view papers have also discussed different classes of
semiconductor photocatalysts, including g-C3N4 [12] and
TiO2 [161,162], for photocatalytic H2 production. How-
ever, there are only limited comprehensive reviews on the
development of photocatalytic H2 generation systems
using CdS-based photocatalysts.
CdS—a classical and vital II–VI photo-semiconductor

with a bandgap of 2.4 eV—has been extensively in-
vestigated as a promising photocatalyst owing to its sev-
eral fundamental advantages, including excellent charge
transport properties, ideal direct bandgap, high electronic
mobility, and suitable band edge positions [17,163,164]
(Fig. 1b). The CdS surface can be conveniently functio-
nalized with a variety of ligands, which not only render
the CdS-based photocatalysts hydrophobicity or hydro-
philicity, but also offer selectivity for interaction with
other relevant functional materials [165]. Furthermore,

CdS evinces efficient photocatalytic performances under
visible light (wavelength <520 nm). It also has excellent
charge carrier transportation capacities, which can effi-
ciently facilitate the migration of photoexcited h

+
and e

−

in a timely manner, thereby prolonging the lifetime of the
photoexcited carriers and resulting in higher photo-
catalytic activity [166].
It is evident from Fig. 2a that research on H2 has rapidly

expanded in recent years due to its attractiveness and
sustainability. Notably, CdS has recently emerged as a hot
research topic owing to its application in nanoscale op-
toelectronic devices and the potential merits of its known
fundamental physical properties (Fig. 2b). The develop-
ment of CdS photocatalysts has been a significant com-
ponent of energy and environmental research over the
past few years. In 1981, Kalyanasundaram et al. [167]
reported the production of photocatalytic H2 and oxygen
(O2) in stoichiometric proportions from overall water
splitting in an aqueous suspension of CdS loaded with Pt
and RuO2 under visible light. In 2007, one-dimensional
(1D) CdS nanowires (NWs) synthesized via a solvother-
mal method in ethylenediamine were found to exhibit a
higher rate of photocatalytic H2 production in the mixed
aqueous solution of Na2S and Na2SO3 as sacrificial re-

Figure 2 (a) Number of publications since 1996 on photocatalytic H2-production cocatalysts involving the use of “photo* or light*” and “hydrogen*
or H2 or H-2”. (b) Number of publications since 1996 on photocatalytic CdS-based H2-production cocatalysts involving the use of “CdS* or Cadmium
sulfide*” and “hydrogen* or H2 or H-2. (Reorganized from ISI Web of Science Core Collection, date of information search: May 16, 2020). (c) The
roadmap of the development of CdS-based photocatalysts for H2 generation.

SCIENCE CHINA Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REVIEWS

November 2020 | Vol.63 No.11 2155© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020



agents [168]. Meanwhile, CdS nanosheets with en-
gineered thicknesses have been fabricated by different
methods [169–172]. Subsequently, various noble-metal or
non-noble-metal cocatalysts, such as Pt–PdS [173], MoS2
[166], NiS [174], Ni(OH)2 [175] and Ni3C [176], have
been applied in photocatalytic H2 evolution over CdS-
based photocatalysts. Additionally, various CdS-based
composite photocatalysts, such as ZnO/CdS [177], CdS/
WO3 [178], CdS/α-Fe2O3 Z-scheme heterojunction [179],
CdS-cluster/graphene [180] and two-dimensional (2D)
layered hybrid CdS nanosheets/MoS2 heterojunctions
[66], have also been reported for enhanced photocatalytic
H2 evolution. Despite the significant development, there
are only a handful of reviews on CdS-based semi-
conductor photocatalysts [17,181]. Therefore, a compre-
hensive review on the strategies to promote CdS-based
semiconductors’ photocatalytic performances is essential
for further development of solar H2.
An excellent CdS-based photocatalyst must be in-

expensive, efficient, visible-light-driven, stable with fast
kinetics, and highly efficient in photocatalytic H2 evolu-
tion (Fig. 3). To achieve these goals, a great deal of effort
has been devoted toward enhancing stability, reducing
cost, improving charge separation and light absorption, as
well as accelerating H2 evolution kinetics. Herein, we
mainly concentrate on the manipulation of the charge
carriers of nanostructured CdS for efficient photocatalytic
H2 evolution (Fig. 4). This includes strategies for gen-
erating more charge carriers, promoting efficient charge
separation, boosting interfacial charge transfer, accel-
erating charge utilization, and suppressing charge-in-
duced self-photocorrosion. All these modification
strategies are thoroughly discussed in this review. Ex-
ploring the important progress in this project may facil-
itate a new opportunity toward designing CdS-based
nanostructured semiconductor photocatalysts for effi-
cient photocatalytic H2 evolution.

GENERATING MORE AVAILABLE
CHARGE CARRIERS IN
NANOSTRUCTURED CdS

Sensitization with dyes and plasmonic metals

As mentioned above, the application of nanostructured
CdS for photocatalytic H2 generation has been attracting
considerable attention [182,183]. It is generally accepted
that the ideal water-splitting bandgap for semiconductor
photocatalysts is ~2.0 eV, wherein an adequate portion of
visible light can be harvested to generate sufficient e

−
and

h
+
with thermodynamic driving forces for photocatalytic

redox reactions. However, the bandgap of CdS is 2.4 eV,
which ensures the sole utilization of solar light with a
wavelength shorter than 520 nm. Various methods have
been developed to increase the visible-light absorption of
CdS-based photocatalysts to generate more available
charge carriers. Sensitized semiconductor photocatalysts
have been widely used in photoelectrochemistry. Dye
sensitization is also a promising strategy to promote
photocatalytic H2 production over CdS-based semi-
conductor materials, whereby the dye molecules normally
do not exhibit photocatalytic H2 production activities
[184,185]. The effectiveness of this step is determined by
choosing a suitable dye, light source, and e

−
donor. Dye

photosensitization can extend the visible-light absorption
range of CdS-based photocatalysts, thereby improving the
photon-harvesting efficiency. With increased light ab-
sorption, an extra population of excited e

−
from the dye

molecules that may speed up charge transfer is presented,
resulting in highly efficient photoelectric conversion
[186,187]. Through this method, the photoexcited e

−

from the dye molecules with a suitable lowest unoccupied
molecular orbital level can pass into the CB of CdS-based
semiconductors, thereby contributing additional charges
for reactions. Compared with hybridized inorganic ma-
terials serving as cocatalysts, metal-free organic dyes
display a stronger visible-light absorption capacity, which
makes them suitable for enhancing photocatalytic H2

production activities [185]. Based on the sensitization
strategy, semiconductor photocatalysts with narrow

Figure 3 Factors governing the photocatalytic H2 evolution efficiency of
CdS-based photocatalysts and the corresponding engineering and
modification strategies.
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bandgaps, such as graphene quantum dots and con-
jugated polymers [188,189], have been extensively studied
and are considered as good photosensitizer candidates for
enhancing the visible-light-driven photocatalysis of CdS-
based semiconductors.
Furthermore, coupling CdS photo-semiconductors with

other plasmonic metals has been extensively applied in
visible-light-driven water splitting activities. The plas-
monic energy transfer from the metal to the semi-
conductor can enhance photocatalytic performances via

light scattering, near-field enhancement, hot-electron
injection, and resonant energy transfer. For example, Ma
et al. [190] reported multi-interfacial plasmon coupling
with CdS for efficient photocatalytic H2 evolution
(Fig. 5a). The (Au/AgAu)@CdS core–shell photocatalysts
exhibited excellent photocatalytic performances owing to
the strong plasmonic light absorption and near-field en-
hancement induced by the multi-interfacial plasmon
coupling, which could significantly enhance the light-
harvesting efficiency from the ultraviolet to the near-
infrared region (Fig. 5b and c). Meanwhile, as the number
of Au/AgAu gaps increased, light harvesting gradually
improved. The four-gap Au/AgAu hybrids displayed the
highest extinction intensity and the broadest absorption

band, accompanied by the red-shifting of the localized
surface plasmon resonance peaks to 576 nm (Fig. 5d–g).
Consequently, the (Au/AgAu)@CdS core–shell photo-
catalysts exhibited an excellent H2 evolution performance
of 4.71 mmol g

−1
h
−1
, which was 47.2 times higher than

that of pure CdS photocatalyst [190]. It is envisaged that
the combination of various sensitization strategies can be
feasibly designed and applied to enhance the photo-
catalytic H2 evolution of CdS-based semiconductors
[191]. In the future, all these sensitization strategies are
expected to be coupled with CdS-based cocatalysts and
thoroughly studied with respect to the mechanisms.

Construction of multicomponent solid solutions

In addition to the extended visible-light absorption, ad-
justing the CB and VB redox potentials to achieve higher
driving forces of the photoexcited charge carriers is an-
other effective strategy. Notably, the fabrication of multi-
component solid-solution CdS-based photocatalysts pro-
vides a platform to fully maximize the advantages of the
different components to generate more available charge
carriers with considerable energetic redox potentials for
photocatalytic reactions. Moreover, the bandgap energy
(Eg) of multicomponent solid-solution photocatalysts can

Figure 4 Engineering the charge carriers of nanostructured CdS for efficient photocatalytic H2 evolution through different modification strategies.
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be continuously tuned by controlling their constituent
stoichiometry, which will be rather helpful to achieve an
optimized balance between visible-light absorption and
redox potential. In recent years, doping transitional metal
ions (e.g., Ni

2+
[192], Cu

2+
[193], Mn

2+
[194, 195] and

Zn
2+

[196–200]) with CdS to construct CdS-based solid-
solution photocatalysts has proven to be effective for
improving photocatalytic water splitting for H2 evolution.
Compared with the original CdS, solid solutions, such as
ZnxCd1−xS and MnxCd1−xS, possess some specific ad-
vantages, such as tunable band edge positions and
bandgap width, more active sites, and better electrical
conductivity [201,202]. Additionally, in long-term photo-
catalytic reactions, the construction of solid-solution
photocatalysts can inhibit photocorrosion during visible-
light irradiation [195,203,204].
Among the solid solutions, Zn-doped CdS ternary al-

loys (ZnxCd1−xS) have received ample attention in the past
few years owing to the crystal structure similarity shared
by both ZnS and CdS. A well-matched coordination
mode between ZnS and CdS can be established [205,206].
However, most reports on ZnxCd1−xS solid solutions re-
veal the morphological features of micro-/nano-spheres
or irregular particles. In a recent example, Han et al. [207]
fabricated 1D cubic Cd0.8Zn0.2S solid-solution NWs via a
facile solvothermal method. Thioglycolic acid (TGA)

served as both the template agent and S source. The TGA
revealed a “levelling effect” to nullify the disparity in the
physicochemical properties of metal ions via its carboxyl
and hydrosulfonyl groups, leading to the formation of a
cubic Cd0.8Zn0.2S solid solution with a cylindrical mor-
phology. Owing to the doping of Zn into the lattice of the
CdS semiconductor, the absorption edges of the
Cd0.8Zn0.2S semiconductor are extended to longer wave-
lengths than those of the CdS semiconductor [208]. In
other words, with increasing Zn content in the ZnxCd1−xS
semiconductor, its VB and CB levels shift to more posi-
tive and negative positions, respectively. Notably, a higher
photo-semiconductor CB level induces a stronger redu-
cing ability, which is pivotal for efficient H2 generation.
Hence, the Cd0.8Zn0.2S solid-solution photo-semi-
conductor displayed enhanced H2 generation activity
compared with pure CdS (52.3 mmol h

−1
, with Na2S–

Na2SO3 as a sacrificial agent).
Li et al. [111] prepared a MnxCd1−xS nanorod (NR)

solid solution in a pure N2 atmosphere through standard
hot-injection synthesis. By adjusting the ratios of Cd and
Mn, the Eg values of the MnxCd1−xS (x = 0–1) solid-so-
lution photocatalysts could be controlled over a wide
range (Eg = 2.21–3.43 eV). The improved photocatalytic
H2 generation performance of the MnxCd1−xS NR solid
solution was attributed to the stronger oxidation and

Figure 5 (a) Transmission electron microscopy (TEM) image of (Au/AgAu)@CdS core–shell hybrids. (b) Extinction spectra of Au@CdS and
multigap (Au/AgAu)@CdS core–shell hybrids. (c) Photocatalytic H2 evolution rates of different samples. (d–g) Calculated local electric field dis-
tributions of one-, two-, three-, and four-gap Au/AgAu hybrids. Reprinted with permission from Ref. [190]. Copyright 2020, Royal Society of
Chemistry.
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reduction ability, charge separation efficiency, as well as
light absorption. In particular, the Mn0.5Cd0.5S NRs ex-
hibited the highest photocatalytic H2 generation rate of
26 mmol g

−1
h
−1

under visible-light irradiation, with an
apparent quantum efficiency (AQE) of 30.3% at 400 nm.
The photocatalytic performance of the solid-solution
MnxCd1−xS NRs was evidently superior to that of the
MnxCd1−xS solid solution and pristine CdS fabricated via

the hydrothermal method [111]. The X-ray diffraction
results proved that the sample formed a homogeneous
MnxCd1−xS rather than a simple mixture of h-CdS and γ-
MnS. The corresponding geometry supercell models for
MnxCd1−xS are illustrated in Fig. 6a, while the CB and VB
edges of the MnxCd1−xS NR photocatalysts are presented
in Fig. 6b. It was apparent that the CB became more
negative with increasing Mn content, thereby resulting in
a significantly extended bandgap. The improved H2

generation activity of the Mn0.5Cd0.5S NR solid-solution
photocatalysts could be ascribed to a suitable bandgap
and an adjusted CB position. In addition, the separation
and transfer capacity of photoexcited e

−
and h

+
play a key

role in photocatalytic H2 generation. Fig. 6c displays the
transient photocurrent response of the Mn0.5Cd0.5S NRs
under visible-light irradiation. Under the same condi-
tions, the photocurrent of the Mn0.5Cd0.5S NR solid so-
lution was evidently higher than that of bare CdS and
MnS. Unfortunately, the photocatalytic H2 generation
performance of these multicomponent solid solutions

remains insufficient for satisfying the basic requirements
for practical applications. Therefore, it is highly desirable
to exploit other novel strategies to further enhance the
photocatalytic H2 generation performance of CdS-based
solid-solution photocatalysts.
Although both the CB position and bandgap of CdS-

based solid-solution semiconductor photocatalysts can be
adjusted to a certain extent by tuning the value of x

(stoichiometric ratio) to enhance the photocatalytic H2

generation activity, the rapid recombination of photo-
excited charges remains a crucial challenge that limits the
further improvement of photocatalytic performances. The
construction of CdS-based solid-solution photocatalysts
results in a tunable bandgap, wherein these adjustable
band potentials may lead to new photoredox reactions
(beyond water splitting) and help in the chemical ad-
sorption of specific reactants. Notably, the environmental
concern of this type of composite semiconductor photo-
catalyst can also be assuaged by reducing the Cd content.
In addition to constructing bimetallic solid solutions, the
photocatalytic H2 generation performance of CdS-based
solid solutions can be further enhanced by intentionally
introducing other transition metal ions.

PROMOTING EFFICIENT BULK CHARGE
TRANSFER IN NANOSTRUCTURED CdS
In the past few years, efforts have been made to control
the morphology, shape, and size of CdS with various

Figure 6 (a) Corresponding geometry supercell models for MnxCd1−xS. (b) CB and VB of the MnxCd1−xS NRs solid solutions. (c) I–t curves of
Mn0.5Cd0.5S, MnS, and CdS. Reprinted with permission from Ref. [111]. Copyright 2018, Elsevier.
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nanostructures (NSs). Many studies have reported the
photocatalytic performance of CdS semiconductor photo-
catalysts with unique NSs, such as the 0D, 1D, 2D, and
3D structures. Different NSs impose varying effects on
the photocatalytic H2 generation performance of CdS
photocatalysts (Fig. 7). Notably, the photocatalytic H2

generation performance of photocatalysts with different
morphologies, structures, and sizes can be affected by
different synthetic methods. Nevertheless, with regard to
CdS and CdS-based nanocomposite photocatalysts, re-
searchers have focused on environmentally friendly and
low-cost synthetic methods. These approaches include
sonochemical, solvothermal, chemical bath deposition,
impregnation, template, and template-free methods.
Some fabrication methods for CdS photo-semiconductors
and CdS-based nanocomposites are listed in Table 1.

Construction of 0D nanostructures

There are many synthetic approaches, such as sol-
vothermal, combustion, sonochemical, biogenic synth-
esis, complex thermolysis, microwave-assisted polyol
synthesis, and chemical precipitation methods, for con-
structing 0D CdS NSs [73,258–264]. Researchers suggest
that although 0D CdS nanomaterials possess large surface
area, they are susceptible to severe agglomeration, which
reduces the photocatalytic efficiency.
Wang et al. [265] fabricated 0D CdS nanoparticles

(NPs) modified with covalent triazine-based frameworks
(CTF-1) in a controlled manner by means of a facile one-
pot solvothermal synthesis. As the triazine unit of CTF-1
has an apparent Lewis property on its nitrogen sites, size-

controlled and highly dispersed CdS NPs can be prepared
and stabilized on CTF-1 layers. The morphology of the
as-fabricated 0D CdS NP nanocomposites was in-
vestigated via scanning electron microscopy (Fig. 8a). The
formation processes of the porous CTF-1 frameworks and
the subsequent decoration with 0D CdS NPs to form
CdS/CTF-1 nanocomposite are presented in Fig. 8b.
Compared with bare CdS, the electrochemical impedance
spectrum of CdS/5%CTF-1 displays a smaller semicircle,
implying that CdS/CTF-1 possesses a reduced charge
transfer resistance for photoinduced e

−
(Fig. 8c). This

result was further supported by the photoluminescence
(PL) spectra, which were used to study the recombination
rate of the photoexcited charge carriers (Fig. 8d). The PL
peak intensity of CdS/5%CTF-1 was evidently lower than

Figure 7 Descriptions of the morphologies of CdS photocatalysts.

Table 1 Synthesis methods for CdS nanostructures

Photocatalyst Synthesis method Morphology Precursor materials HER
(mmol g

−1
h
−1
)

AQE
(420 nm) Ref.

CdS–TiO2 Hydrothermal Nanodots Cd(CH3COO)2·2H2O, dimethyl
sulfoxide 1.5 11.9% [209]

CdS Hydrothermal synthesis Nanoparticles Graphdiyne, Cd(Ac)2·2H2O 4.1 - [210]

CdS Hydrothermal Nanoparticles Cd(CH3COO)2·2H2O, DMSO 58.9 - [211]

CdS Solid-state Nanoparticles Cd(Ac)2·2H2O, thioacetamide 1.15 16.5% [212]

CdS Microwave Nanoparticles C4H10CdO4·2H2O, H2NCSNH2 11.4 - [213]

CdS Hydrothermal Nanoparticles Cd(NO3)2·4H2O, NH2CH2CH2NH2 0.56 - [214]

CdS Hydrothermal Nanoparticles Cd(CH3COO)2, Na2S 14.2 8.7% [215]

CdS Hydrothermal Nanoparticles Na2S, Cd(CH3COO)2 5.9 8.6% [57]

CdS Solvothermal Nanoparticles CdCl2·2.5H2O, thiourea 1.89 - [216]

CdS Hydrothermal Nanoparticles Cd(NO3)2·4H2O, dimethyl sulfoxide 0.61 - [217]

CdS Hydrothermal Nanoparticles Cd(NO3)2·4H2O, thiourea 1.26 - [218]

CdS/CdWO4 Hydrothermal Nanoparticles CH3CSNH2, Cd(CH3COO)2·2H2O 9.17 - [219]
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(Continued)

Photocatalyst Synthesis method Morphology Precursor materials HER
(mmol g

−1
h
−1
)

AQE
(420 nm) Ref.

CdS Directly reacting Nanoparticles Na2S, Cd(CH3COO)2 5.89 19% [220]

CdS Hydrothermal Nanoparticles NaS2·9H2O, Cd(NO3)2·4H2O 0.33 34.3% [221]

CdS Hydrothermal Nanoparticles Cd(Ac)2·2H2O, CH4N2S 2.85 10% [222]

CdS/Cu2O/g-C3N4 Hydrothermal Nanoparticles Na2S, CdCl2 1.84 - [223]

CdS–BCNNTs Hydrothermal Nanoparticles Cd(NO3)2·4H2O, Na2S 0.526 4.01 [224]

CdS/ZnS Solvothermal Nanorod CdCl2·2.5H2O, thiourea 24.1 9.3% [225]

CdS/TiO2 Solvothermal Nanorod Cd(NO3)2, thiourea 1.118 - [226]

CdS@MoOx
Solvothermal photode-

position Nanorod Cd(NO3)2, thiourea 5.42 - [227]

CdS/g-C3N4 Solvothermal method Core/shell nanowires Cd(NO3)2·4H2O, thiourea 4.15 4.3% [228]

CdS Solvothermal Nanowires CdCl2·2.5H2O, (C2H5)2NCSSNa 0.15 44.9% [229]

CdS Self-templated synthesis Nanoporous structures CdCl2·2.5H2O, NaOH, Na2S·9H2O 27.33 60.34% [169]

CdS One-pot synthesis Nanorods Cd(NO3)2·4H2O, CS(NH2)2, H2PtCl6 10.29 - [230]

CdS Hydrothermal Nanorods (CH3CO2)2Cd·xH2O, CH4N2S 15.56 - [231]

CdS Hydrothermal Nanorods Cd(NO3)2·4H2O, thioacetamide 24.15 - [232]

CdS Hydrothermal Nanorods Cd(NO3)2·4H2O, NH2CSNH2 15.55 6.9% [233]

CdS Hydrothermal Nanorods Cd(NO3)2·4H2O, thiourea 1.131 - [234]

CdS Hydrothermal Nanorods CdCl2·2.5H2O, CH4N2S 106 29% [235]

CdS Hydrothermal Nanorods CdCl2·2.5H2O, NH2CSNH2 4.64 11.8% [236]

CdS Hydrothermal Nanorods CdO, Na2S 11.58 16.3% [237]

CdS Solvothermal Nanorods CdCl2·2.5H2O, thiourea 3.5 - [155]

CdS/Ti3C2 Hydrothermal Nanorods Cd(NO3)2·4H2O 2.407 35.6% [238]

Pt–CdS/g-C3N4-MnOx Hydrothermal Nanorods Cd(NO3)2·4H2O 924,4 1.745% [239]

CdS Hydrothermal Nanorods Cd(NO3)2, NH2CSNH2 1.84 21.2% [240]

CdS Hydrothermal Nanorods Cd(NO3)2, thiourea 167.1 1.5% [241]

CdS/ZnS Solvothermal, chemical
bath deposition Nanorod CdCl2, CH4N2S 239 16.8% [18]

CdS Solvothermal, Nanorod Cd(Ac)2·2H2O, CH4N2S 20.2 - [242]

CdS Directly reacting Nanorod Cd(NO3)2, thiourea 37.1 43% [243]

CdS Solvothermal Nanorod Cd(NO3)2, thiourea 0.206 - [244]

CdS/g-C3N4 vapor deposition Nanotubes CdCl2·2.5H2O 0.392 - [245]

CdS Hydrothermal Nanosheets Cd(Ac)2·2H2O, sulfocarbamide,
ethylenediamine 27.8 14.7% [246]

CdS/GO Hydrothermal Nanosheets CdCl2·2.5H2O, DETA 10.5 29.5% [247]

CdS Hydrothermal Nanosheet CdSO4, DL-dithiothreitol 1.293 - [248]

CdS Hydrothermal Nanosheets CdCl2·2.5H2O, S powder 138.7 - [249]

CdS–FeP Hydrothermal Nanosheets CdCl2·2.5H2O, S powder 18.63 11.2 [250]

CdS Hydrothermal Nanosheets CdCl2·2.5H2O, DETA 7.37 - [251]

MoS2/CdS Two-step hydrothermal Core/shell-like Ammonium molybdate, thiourea 38.75 14.7% [252]

CdS Precipitation Cubic-Phase Cd(NO3)2, Na2S, Na2SO3 18 - [253]

CdS One-pot wet-chemical Nanocrystals CdO 1.98 - [254]

CdS Hydrothermal Nanospheres Cd(CH3COO)2·2H2O, thiourea 4.65 7.31% [255]

CdS Hydrothermal Nanospheres Cd(CH3COO)2, thiourea 44.65 - [256]

CdS Hydrothermal Nanospheres Cd(Ac)2·2H2O, thiourea 1.44 - [257]
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that of the bare 0D CdS NPs, suggesting that the charge
recombination rate decreased in the nanocomposites. The
photocatalytic H2 generation performance of the as-fab-
ricated CdS/CTF-1 was investigated using Pt as a coca-
talyst in a lactic acid medium under visible-light
irradiation. Fig. 8e shows that the H2 generation rate of
CdS/5%CTF-1 was better than those of bare CdS NPs and
CTF-1. An insignificant amount of H2 was released when
bare CTF-1 was used as the catalyst. Hydrogen could not
be detected without photocatalysts or visible-light irra-
diation, which suggested that H2 generation was induced
by irradiating CdS/5%CTF-1.

Construction of 1D nanostructures

Generally, 1D CdS NRs with improved charge transport
properties compared with the 0D CdS quantum dots
displayed quantum constraint effects and directional
charge carrier transport. This reduced the recombination
losses at the grain boundaries and enhanced the light
harvesting capability [266–268]. The visible-light ab-
sorption occurred along the longer dimensions (microns
or more) of the 1D NSs, while carrier separation through
diffusion took place over a short radial distance [269].
The enhanced light absorption, combined with the merits
of long distance as well as fast charge transfer, makes the
1D NS a promising candidate for solar energy conversion.

There is increasing attention on the fabrication of 1D
photocatalytic NSs, such as NWs, NRs, and their core–
shell structures [270–273].
In 1D CdS NRs, the transfer velocity of the carrier is

different in the axial and radial directions. Generally, the
carrier moves much faster in the radial direction than in
the axial one [274]. Thus, it is particularly vital to con-
struct the morphology of CdS nano-semiconductors for
1D NR semiconductors with ideal diameters and high
aspect ratios. Several methods, including ion-exchange
[163], ligand-assisted growth [275,276], and metal parti-
cle-seeded growth [277], have been developed to fabricate
1D rod-shaped semiconductor materials. For example,
Wu et al. [278] prepared 1D CdS NRs using the seeded
growth method and studied the effects of 1D CdS and
CdS–Pt NRs with different diameters on the dissociation
kinetics and exciton localization. They studied the ex-
citation dynamics and electronic structure of the photo-
catalytic 1D CdS–Pt NRs. In the presence of Pt, e

−
were

efficiently transferred from CdS to Pt, and photoexcited
e
−
-h

+
pair recombination was suppressed. The tips of 1D

CdS NRs can offer selective deposition sides for Pt,
wherein the selectively tip-deposited Pt can promote the
charge separation of 1D CdS NRs and CdS-based NSs.
These results demonstrate that 1D CdS NRs with larger
diameters possess more specific properties than tradi-

Figure 8 (a) SEM image of CdS, (b) schematic of the formation of 0D CdS NPs/CTF-1, (c) Nyquist plots, (d) PL spectra, and (e) amount of H2

evolved over CTF-1 (1), CdS (2), CdS NPs/0.5%CTF (3), CdS NPs/1%CTF (4), CdS NPs/3%CTF (5), CdS NPs/5%CTF (6), CdS NPs/10%CTF (7),
without catalyst or visible-light irradiation (8), and physically mixed CdS and CTF-1 (9). Reprinted with permission from Ref. [265]. Copyright 2018,
Royal Society of Chemistry.
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tional CdS NR structures. Many factors, including reac-
tion time and temperature, as well as reactant and sur-
factant amounts, influence the synthesis of 1D CdS NSs.

Construction of 2D nanostructures

The photochemical, optical, and photoelectrical proper-
ties of the photo-semiconductors can be indirectly in-
fluenced by their morphology, size, and structure [279–
281]. Since the discovery of 2D photocatalytic nanoma-
terials, 2D CdS NSs have attracted much attention be-
cause of their unique phase characteristics, and excellent
photocatalytic properties, larger surface area and lower
recombination rate of e

−
-h

+
pairs [171,246,282,283]. To

synthesize 2D CdS photo-semiconductors, it is important
to seek a low-cost and environment-friendly process that
can control the formation of reasonable sizes and pre-
dictable shapes.
Apparently, the decreased thickness of 2D semi-

conductor nanosheets can effectively reduce the migra-
tion distance of photogenerated e

−
from the bulk phase to

the semiconductor photocatalyst surface, thereby pre-
venting the recombination of photogenerated e

−
-h

+
pairs

inside the semiconductor. For instance, in 2013, Xu et al.

[170] synthesized ultrathin CdS nanosheets with thick-
ness of ~4 nm via ultrasonic-induced aqueous exfoliation
of lamellar CdS–diethylenetriamine hybrid nanosheets
using L-cysteine as a stabilizing agent. The as-obtained
CdS ultrathin nanosheets achieved H2 production rates of
41.1 mmol g

−1
h
−1

with an AQE of 1.38% at 420 nm. In
2018, Bie et al. [171] synthesized the thinnest CdS na-
nosheets (1.5-nm-thick) through a simple and low-cost
oil-bath method using sodium citrate as the structure-
directing agent. They exhibited a photocatalytic H2 pro-
duction rate of 2.155 mmol g

−1
h
−1
, which was approxi-

mately 3.7 times higher than that of CdS NPs
(0.582 mmol g

−1
h
−1
). More recently, Xie et al. [172]

constructed five-layer ultrathin Cd4S5 nanosheets with
unsaturated surface S anions via chemical vapor deposi-
tion. The thickness of the CdS nanosheet was approxi-
mately 1 nm. The average H2 evolution rate of the
ultrathin nanosheets was 29.44 mmol g

−1
h
−1
. Evidently,

this unique structure induces a higher CB position than
that of their thicker counterparts, which can fundamen-
tally improve electrical conductivity, reduce recombina-
tion rate, and eventually enhance the driving force for the
H2 evolution reaction (HER). Consequently, ultrathin
CdS nanosheets achieve a high AQE of 4.15% under 420-
nm light irradiation.
Meanwhile, exposing the reactive facets on the surface

of 2D CdS nanosheets is another strategy to boost the

photocatalytic H2 evolution. For instance, Li et al. [284]
synthesized flake-like hexagonal phase CdS micro-/nano-
leaves with exposed (0001) facets to promote the photo-
catalytic activity toward H2 generation (Fig. 9a). The
growth process of the dendrites is shown in Fig. 9b.
Compared with CdS NPs, the photocatalytic H2 genera-
tion activity of CdS micro-/nano-leaves with NR-bran-
ched NSs was significantly enhanced (468.4 mmol h

−1
)

(Fig. 9c). The average H2 evolution rate of photocatalytic
reactions reached 740.9 mmol h

−1
, which was more than 6

times that of spheroidal particles under visible-light ir-
radiation. The catalysts also evinced good stability
(Fig. 9d). The enhanced activity of the CdS micro-/nano-
leaves was partly due to the unique 2D micro-/NS and the
exposure of high surface energy facets (0001) [284].
Additionally, constructing a 2D/2D NS coupled with

layered composite photocatalysts could further boost
charge separation between the CdS nanosheets and the
other 2D cocatalysts owing to strongly coupled contact
interfaces [179,285,286]. For example, Ma et al. [66]
successfully synthesized 2D/2D layered hybrid CdS/MoS2
nanocomposites via a one-step hydrothermal method.
The coupling of 2D MoS2 NSs as cocatalysts boosted the
photocatalytic H2 evolution performance of CdS NSs
(Fig. 10). It was confirmed that the 2D CdS/1%MoS2
nanocomposites exhibited the highest photocatalytic H2

generation activity (1.75 mmol g
−1
h
−1
) in an aqueous

solution containing sulfite and sulfide under visible light.
The loading of ultrathin 2D MoS2 NSs and the tight 2D/
2D coupling interfaces led to excellent H2 generation
performances owing to the effectively boosted separation
and migration of charge carriers as well as improved
surface H2 evolution kinetics. In our previous study, we
demonstrated that the 2D/2D CdS/Cu7S4 nanocomposite
could serve as advanced photocatalysts for photocatalytic
water splitting toward H2 generation [246]. The highest
achieved H2 generation rate of the 2D/2D CdS/2%Cu7S4
nanocomposites was 27.8 mmol g

−1
h
−1
, which was ap-

proximately 11 times higher than that of pure CdS NSs
(2.6 mmol g

−1
h
−1
). The construction of the 2D/2D CdS/

Cu7S4 heterojunction not only promoted photoexcited e
−
-

h
+
pair separation, boosted photoexcited e

−
transfer, and

prolonged the lifetime of the photoexcited e
−
, but also

increased the visible-light absorption and H2 generation
kinetics.
Compared with the interfaces of 0D/1D, 0D/2D, 1D/

1D, and 1D/2D, the 2D/2D coupled nanocomposites
display a larger contact surface, which is conducive to
more efficient interfacial charge migration [285]. There-
fore, the construction of unique interfaces with tight 2D/
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2D coupling and large surface areas is critical for
achieving efficient charge separation and photocatalytic
H2 generation activity.

Construction of 3D nanostructures

CdS photocatalysts with 3D NSs, such as hierarchical
dendritic CdS, porous CdS flowers, and hollow spheres,
have been widely studied [284,287–291]. Because of their
unique structural characteristics, such as low material
density and high surface/volume ratio, constructing 3D
CdS NSs has been considered as a useful strategy to boost
the photocatalytic activity. For example, to overcome the
shortcomings of traditional non-porous CdS/TiO2 sphe-
rical nanocomposites (rapid recombination of e

−
-h

+
pairs

and inferior light absorption), Wu et al. [292] designed
non-noble metal cocatalysts covered in hollow core–shell
NSs for photocatalytic H2 evolution. The unique hollow
structure enhanced the absorption in the visible spectral
range, while the non-noble metal cocatalysts provided
active sites for H2 evolution. The coupling of these three
components reduced photogenerated e

−
-h

+
recombina-

tion. The synergistic effects of photocatalysts and e
−
-h

+

separation were preliminarily studied. Chen et al. [293]
synthesized hollow core–shell CdS/TiO2/Ni2P photo-
catalysts for H2 production with SiO2 spheres as sacrificial
templates (Fig. 11a and b). The formation of CdS/TiO2

nanocomposites extended the absorption range of TiO2

into the visible-light region, while the outer TiO2 layer
protected the CdS core from photocorrosion. The hollow
structure improved the transmission capacity of light and
reduced the reflectance of visible light. The H2 generation
rate of CdS@TiO2 (4.65 mmol g

−1
h
−1
) showed significant

improvement compared with that of CdS/TiO2/Ni2P
nanocomposites (13.91 mmol g

−1
h
−1
). The H2 generation

rate for the CdS/TiO2/Pt nanocomposite was
16.81 mmol g

−1
h
−1
, which was slightly higher than that of

CdS/TiO2/Ni2P (Fig. 11c and d). The activity of CdS/Ni2P
and CdS/TiO2/Ni2P remained rather unchanged after 5
cycles. However, CdS/Pt and CdS/TiO2/Pt exhibited a
diminishing photocatalytic activity after each recovery
cycle due to photocorrosion and poor stability of the Pt
deposit (Fig. 11e) [293]. In the future, it is expected that
more 3D CdS-based NS photocatalysts can be constructed
through the self-assembly of promising 2D ultrathin CdS

Figure 9 (a) Crystal structure of the hexagonal CdS. (b) Schematic of the growth process of CdS. (c) Average photocatalytic H2 generation rate of
CdS. (d) Time courses of photocatalytic H2 generation on CdS, (1) without HF, and with (2) 0.125 mol L

−1
HF, (3) 0.200 mol L

−1
HF, and (4)

0.500 mol L
−1

HF. Reprinted with permission from Ref. [284]. Copyright 2012, Royal Society of Chemistry.
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nanosheets, which could maximize all the advantages of
2D nanosheets by circumventing their unfavorable
stacking.

BOOSTING INTERFACIAL CHARGE
SEPARATION IN NANOSTRUCTURED CdS
Boosting the interfacial charge transfer of CdS-based
photocatalysts can also be achieved by constructing
semiconductor heterojunctions, which induce an internal
electrical field for interfacial charge transfer [10]. Usually,
semiconductor heterojunctions are categorized into the
Schottky junction, as well as carbon-based, direct Z-
scheme, Type I, Type II, and Type III heterojunctions.
The Schottky and Type II junctions are beneficial for
constructing efficient CdS-based photocatalysts. For in-
stance, heterojunctions between CdS and other semi-
conductors (such as Fe2O3 [179], TiO2 [63,226,294,295],
g-C3N4 [296,297], NiWO4 [298,299], BiOBr [300], WO3

[165,178,222,301], MoO2 [302], ZnO [150,303–306],
LaFeO3 [307], SiC [308], Bi2WO6 [309], and Co3O4 [310])
have been widely used in photocatalytic H2 evolution.
However, there are still debatable aspects associated

with the separation mechanism of photogenerated e
−
-h

+

pairs in these heterojunctions [311]. In addition, the re-
duction and oxidation potentials will be compromised

after forming the Type II heterojunction, restricting their
activity enhancement. Therefore, various favorable het-
erojunctions, such as p-n, Z-scheme, Schottky-based,
carbon-based, and multicomponent heterojunctions, have
also been studied to improve the photocatalytic perfor-
mance of CdS-based photocatalysts.

p–n heterojunction

The p–n heterojunction has been widely applied toward
enhancing the photocatalytic performance of CdS-based
photocatalysts. The formation mechanism of the p–n
heterojunction is shown in Fig. 12 [311]. Under visible-
light illumination, the e

−
from the n-type semiconductor

are transferred to the p-type semiconductor owing to the
larger work function of the latter. This results in the
formation of a built-in electric field, which is beneficial
for the transfer of photogenerated e

−
between p-type and

n-type semiconductors.
Ai et al. [224] designed novel CdS/boron carbon nitride

nanotubes (BCNNTs) using a new band-matching
transformation strategy. In this system, they realized the
heterojunction transformation from Type I to Type II by
tuning the carbon content of BCNNTs (Fig. 13a). The
rational design of the band-matching process played an
important role in constructing efficient photocatalysts via

Figure 10 (a) TEM image of CdS/1%MoS2, (b) time-dependent of H2 generation (1: CdS NSs, 2: CdS-0.5% MoS2, 3: CdS-1% MoS2, 4: CdS-2% MoS2,
5: CdS-3% MoS2, 6: CdS-5% MoS2) , (c) the average rate of photocatalytic H2 generation over the photocatalysts, and (d) comparison of H2 generation
activities of CdS/1%MoS2, CdS/1%Pt, and physically mixed sample of CdS/1% MoS2. Reprinted with permission from Ref. [66]. Copyright 2017,
Elsevier.
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the formation of a strong internal electric field to guar-
antee rapid charge separation and transfer. As the C
content increased, the bandgap of BCNNTs decreased
from 2.79 to 2.05 eV. At low C content, the CdS/BCNNTs
belong to the Type I heterojunction, and all of the pho-
togenerated e

−
and h

+
were transferred to the CB and VB

of CdS, respectively. With a high C content, the CB po-
tential of BCNNTs was more positive than that of CdS,

and VB was negative relative to CdS. This composite also
belongs to the Type I heterojunction, wherein the CdS
photogenerated e

−
and h

+
were all transferred to

BCNNTs. However, with moderate C-doping, both the
CB and VB of BCNNTs were more positive than those of
pure CdS, thereby fulfilling the requirement for the for-
mation of Type II heterojunctions (Fig. 13c). The internal
electric field between the CdS and BCNNTs could boost
the separation of photogenerated e

−
-h

+
pairs. Hence, the

photocatalytic performance of the Type II heterojunc-
tions exceeded that of the Type I heterojunction between
CdS and BCNNTs (Fig. 13b) [224]. Zhang et al. [310]
constructed a ZIF-67(Co)-derived Co3O4 framework
modified with a CdS p–n heterojunction photocatalyst
(Fig. 14a–c). The formation of p–n heterojunctions could
effectively reduce the bandgap of the composite, enhance
the light absorption intensity, shorten the fluorescence
lifetime (2.61 ns), accelerate the electron injection rate
(KET = 1.17 × 10

8
s
−1
), and improve electron injection

efficiency (ηinj = 30.6%) (Fig. 14d–f). The hollow structure
of the Co3O4 framework served not only as a h

+
collector

Figure 11 (a) Schematics of CdS@TiO2/Ni2P preparation, (b) TEM images of SiO2, SiO2/CdS, SiO2/CdS/TiO2, CdS/TiO2, and CdS/TiO2/Ni2P, (c) pho-
tocatalytic H2 evolution, (d) rate of H2 evolution and (e) stability of H2 evolution. Reprinted with permission from Ref. [292]. Copyright 2019, Elsevier.

Figure 12 Formation mechanism of the p–n heterojunction: (a) before
contact, (b) in contact, (c) photogenerated charge transfer, and (d)
unsuccessful direct Z-scheme transfer of photogenerated charge carriers.
Reprinted with permission from Ref. [311]. Copyright 2018, Elsevier.
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but also as a supporting material for CdS, thus increasing
the specific surface area of the catalyst [310]. The results
further confirmed the key roles of the p–n heterojunction
toward achieving efficient charge separation and transfer
across the heterojunction interface as well as the pro-
longed lifetime of the charge carriers.

Schottky junctions

Enhancing the photocatalytic activity of CdS-based
semiconductors could also be realized by constructing
Schottky junction-based internal electrical fields [4,87].
The Schottky junction can boost the spatial separation of
e
−

and h
+
, thus delaying their recombination and

lengthening their lifetime. Usually, for metal photo-
semiconductor systems, because of the higher work
function (Φm) of the metal than that of the semiconductor
(Φs), the photoexcited e

−
in the photo-semiconductor

migrate to the metal and realign their Fermi levels; this
leads to the formation of a Schottky barrier with an up-
ward band bending and depletion layer (Fig. 15). As an
effective method to trap photogenerated e

−
, Schottky-

based heterojunctions can promote e
−
-h

+
separation in

photocatalysis [312].

When photo-semiconductors are coupled with metal,
the e

−
in the CB of the photo-semiconductor approach

the metal until the two Fermi energy levels are in equi-
librium. A space–charge layer is formed on the surface of
the metal, resulting in efficient separation of photoexcited
e
−
-h

+
pairs and migration of the charge carriers. For ex-

ample, the work functions of metallic Cd clusters and CdS
are 4.08 and 5.18 eV, respectively (Fig. 16a and b) [313].
After contact, the e

−
in Cd migrate to the CdS until the

Fermi levels are realigned, triggered by the higher Fermi
level in metallic Cd than CdS. When CdS is excited by
visible-light irradiation, the built-in field drives the mi-
gration of the photoexcited e

−
on the CdS to the Cd sites.

Thus, the construction of a Schottky junction can en-
hance visible-light-driven water splitting for H2 genera-
tion. Similarly, Shang et al. [314] decorated CdS NPs on
Cd nanosheets to form Schottky junctions by the polyol
reduction method and oxidation–sulfurization process
(Fig. 16c and d). The Cd nanosheets that served as a
support were evidently better than those of carbon na-
notubes and graphene in that study because the work
function of Cd is much higher than that of the nano-
carbon materials (Fig. 16e). More importantly, the black

Figure 13 (a) Schematic for band-matching transformation of the CdS/BCNNTs photocatalytic system, (b) average H2 evolution rate of CdS/
BCNNTs, (c) schematic of the band-matching transformation process between BCNNTs (X= 1, 2, 3, 4, 5) and CdS. Reprinted with permission from
Ref. [224]. Copyright 2020, Elsevier.
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color of the nanocarbon shields a fraction of the visible
light from reaching CdS [314]. Xiao et al. [238] demon-
strated that a 1D CdS NR/2D MXene nanosheet with
Schottky junctions reached an excellent photocatalytic H2

evolution rate of 2407 μmol g
−1
h
−1
, which was attributed

to the high charge carrier mobility of highly conducting
metallic Ti3C2 and strong interfacial coupling between
CdS and Ti3C2 [238].
Additionally, it is well known that nanocarbon mate-

rials (e.g., graphene [291,315–319], carbon quantum dots
[211,236,257,320,321], carbon black [322], carbon fiber
[323–325] and carbon nanotubes [78,326–328]) have
been considered as outstanding promoters for photo-
catalytic performances. The attraction is attributed to
their superior adsorption capacity, unique electronic
conductivity, nontoxicity, low cost, high stability, and
large surface area. The formation of carbon-based
Schottky junctions and the narrowing bandgap by carbon
doping are both beneficial to photocatalytic reactions.

Direct Z-scheme heterojunction

Biomimetic artificial photosynthesis by constructing di-
rect Z-scheme photocatalysts represents a feasible strategy
for improving the photocatalytic performance
[46,204,306,329–332]. Specifically, the direct Z-scheme
photocatalytic system has a charge carrier transfer path-
way similar to the letter “Z” (Fig. 17) [333]. During the
photocatalytic reaction, the photoexcited e

−
(with lower

reduction capacity) in semiconductor A recombine with
the photoexcited h

+
(with lower oxidation capacity) in

semiconductor B. Therefore, the photoexcited e
−
(with

high reduction capacity) in semiconductor B and pho-
toexcited h

+
(with high oxidation capacity) in semi-

conductor A can be utilized. The direct Z-scheme

Figure 14 (a) Schematic of the fabrication of [Co3O4/CdS/Ni]. Schematics for energy bands of p-CdS and n-Co3O4 (b) before contact and (c) after the
formation of the p–n heterojunction. (d) PL spectra, (e) time-resolved PL spectra, and (f) photocurrent of the as-prepared photocatalysts. Reprinted
with permission from Ref. [310]. Copyright 2018, Elsevier.

Figure 15 Schematic for the formation of the Schottky barrier (Φm>Φs):
(a) before contact and (b) thermal equilibrium after contact (Eg, Φ, EF,
and χ represent the bandgap energy, work function, Fermi level, and
electron affinity, respectively).
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photocatalyst possesses an enlarged and stronger redox
capacity. Furthermore, the charge carrier transport for
direct Z-scheme nanocomposites is more physically fea-
sible because the transport of photoexcited e

−
from the

CB of photo-semiconductor A to the photoexcited h
+
-rich

VB of photo-semiconductor B is favorable due to the
electrostatic attraction between h

+
and e

−
.

In 2009, Cheng’s group [177] reported the direct Z-
scheme of CdS/ZnO heterostructure photocatalysts. They
found that the formation of Z-scheme heterostructures
between ZnO and CdS could effectively prolong the
lifetime of photogenerated e

−
, reaching a 14-fold im-

provement in H2 evolution performance compared with
that of pure CdS. Since then, numerous direct Z-scheme
CdS-based photocatalysts have been applied in photo-

catalytic H2 generation applications [334], including CdS/
WO3−x [222], FeC2O4·2H2O/CdS [335], CdS/WO3

[165,301], CdS/MoO3−x [336], CdS/g-C3N4 [337,338],
CoWO4/CdS [44], CdS/Fe2O3 [179], CdS/BiVO4 [339],
TiO2/CdS [329,340,341], CdS/CdWO4 [219,342], ZnO/
CdS [306] and CdS/PI [217]. In our previous study, we
reported the fabrication of 2D/2D CdS/g-C3N4 direct Z-
scheme heterojunction nanocomposites through the in-

situ growth of 2D CdS NSs on 2D g-C3N4 NSs [338]. As
shown in Fig. 18a and b, the direct Z-scheme CdS/g-C3N4

nanocomposites displayed improved photocatalytic H2

generation activity compared with pure g-C3N4 and CdS.
The highest H2 generation rate is realizable with the CdS/
0.7 g-C3N4 direct Z-scheme heterostructures at
15.3 mmol g

−1
h
−1
, which is 3000 and 4 times higher than

those of bare g-C3N4 and CdS, respectively. After 21 h of
continuous visible-light irradiation, the 2D/2D CdS/0.7 g-
C3N4 maintained excellent photocatalytic H2 generation
activities without noticeable decay (Fig. 18c). The ap-
parent efficiency of the direct Z-scheme CdS/0.7 g-C3N4

was 6.86% at 420 nm (Fig. 18d). Based on the calculations
and experimental results, a schematic for photocatalytic
H2 generation with CdS/g-C3N4 nanocomposite photo-
catalysts was suggested (Fig. 18e). This work highlights
the synergistic effect between the direct Z-scheme and the
2D/2D NS in promoting photocatalytic H2 generation
reactions.
Shen et al. [179] reported 2D/2D Z-scheme nano-

composites fabricated via the in-situ growth of CdS NSs
on α-Fe2O3 NSs (Fig. 19a). In addition, the modification

Figure 16 (a) Schematic of the laser irradiation-induced formation of a CdS/Cd Schottky junction, (b) synthesis process [313], (c) schematic of
photocatalytic H2 generation performance, (d) TEM image and (e) charge transfer mechanisms in CdS/Cd photocatalysts. Reprinted with permission
from Ref. [314]. Copyright 2016, Wiley-VCH.

Figure 17 Mechanisms of charge carrier separation in the Z-scheme
system.
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of CdS/α-Fe2O3 Z-scheme nanocomposites could be
performed with metallic β-NiS, which continued to
construct an ohmic junction as H2-generation active sites
(Fig. 19b). The CdS/α-Fe2O3/NiS ultrathin 2D/2D het-
erojunction exhibited an outstanding H2 generation rate
(45 mmol g

−1
h
−1
) with high AQEs at 420 nm (46.9%).

The outstanding photocatalytic performance was ascribed
to: (1) ohmic-based heterojunction that offered a large
number of H2-evolution sites; (2) large and intimate in-
terfaces, which facilitated charge transfer; and (3) boosted
charge migration in the direct Z-scheme heterojunction
(Fig. 19c–e).
Besides 2D/2D Z-scheme nanocomposites, those with

core–shell structures also offer advantages in photo-
catalytic water splitting. Compared to 2D/2D structures,
core–shell structures can better protect CdS from pho-
tocorrosion. Ma et al. [304] synthesized CdS@ZnO core–
shell structured photocatalysts via atomic layer deposition
(ALD) (Fig. 20a). The growth of ZnO along certain facets
was effectively controlled by the number of ALD cycles
(Fig. 20b and c). The formation of core–shell structures in
the Z-scheme composite could suppress the recombina-
tion of photogenerated e

−
-h

+
pairs and induce strong and

intimate heterojunction interfacial contact between CdS

and ZnO. Upon loading Pt and PdS as cocatalysts on the
CdS@ZnO surface, the photocatalytic H2 evolution rate
reached 98.82 mmol g

−1
h
−1

with an AQE of 69.59% at
420 nm (Fig. 20d–f) [304].
These results highlight the promising performance of

the 2D/2D layered Z-scheme heterojunctions with larger
contact area for fast separation of photoexcited charge
carriers across their interfaces with respect to the 0D/2D
and 1D/2D coupling systems. Notably, coupling semi-
conductors at their active facets are apparently more
promising for efficient photogenerated e

−
transfer. It is

expected that CdS-based composites with 2D/2D layered
Z-scheme heterojunctions coupled with their active facets
can be rationally fabricated for photocatalytic H2 evolu-
tion [179,338].

ACCELERATING SURFACE CHARGE
UTILIZATION OF NANOSTRUCTURED
CdS
Structural defects in CdS may result in fast recombination
of photo-excited e

−
-h

+
pairs [257,343]. As photocatalytic

H2 generation from water is a thermodynamically un-
favorable reaction, the sluggish kinetics on the CdS sur-
face need to be addressed. It is common to use suitable

Figure 18 (a) Time-dependent photocatalytic H2 evolution, (b) average H2 evolution rates for different samples (1: g-C3N4, 2: CdS, 3: CdS/0.5g-C3N4,
4: CdS/0.6g-C3N4, 5: CdS/0.7g-C3N4, 6: CdS/0.8g-C3N4), (c) repeated time courses of photocatalytic H2 evolution, (d) apparent quantum efficiency for
CdS/0.7 g-C3N4, and (e) proposed schematic for 2D/2D CdS/g-C3N4 S-scheme heterostructures. Reprinted with permission from Ref. [338]. Copyright
2020, Wiley-VCH.
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Figure 19 (a) TEM image of CdS/α-Fe2O3, (b) photocatalytic mechanism of CdS/α-Fe2O3/NiS, (c) simulated charge density difference distribution at
the CdS/α-Fe2O3 heterojunction interface, (d) and (e) the band bending in the space charge region at the interface before and after coupling α-Fe2O3

and CdS. Reprinted with permission from Ref. [179]. Copyright 2020, Elsevier.

Figure 20 (a) Synthesis process, (b) TEM image, and (c) HRTEM image of CdS@ZnO core–shell photocatalysts. (d) H2 evolution over CdS, ZnO, and
CdS@ZnO; (e) average H2 evolution rate; (f) cyclic runs for photocatalytic H2 evolution over the CdS@ZnO-PdS. Reprinted with permission from Ref.
[304]. Copyright 2017, Elsevier.
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cocatalysts to promote the kinetics of photocatalytic H2

generation. To date, various cocatalysts, such as Au
[344,345], Pt [321,346,347], Ag2S [348], MXenes
[238,349–352], CoMoSx [353], MoOxSy [354], MoS2
[222,355–358], Ni3C[176], Ni2P [359,360], NiSx
[63,322,361], NiCoP [362], CoPx [199,363], CuSx
[212,246], and WS2 [364,365], have been coupled with
CdS-based semiconductors for photocatalytic H2 evolu-
tion. Typically, noble metals (Pt, Ag, and Au) are known
as excellent cocatalysts for this application. For example,
Liu et al. [232] demonstrated a facile and rapid ultra-
sonic-chemistry-based approach to load Pt onto CdS
NRs, and the resulting Pt/CdS showed efficient H2 evo-
lution performances. The maximum H2 evolution rate
could reach 24.15 mmol g

−1
h
−1
over 0.5 wt.% Pt/CdS. Bao

et al. [169] reported a facile aqueous solution process for
the large-scale synthesis of nanoporous CdS NSs and CdS
hollow NRs by the air-insensitive inorganic reactants of
Na2S·9H2O and CdCl2·2.5H2O at room temperature. The
obtained CdS/Pt exhibited the highest AQEs (60.34%) at
420 nm for photocatalytic H2 generation.
However, the scarcity and high cost of noble metals

restrict their large-scale applications in photocatalytic H2

generation. Therefore, earth-abundant-metal-based and
noble-metal-free cocatalysts have received increasing at-
tention [4,18,366,367]. For example, Li et al. [229] found
that a 0.2 molar ratio of NiS improved the average charge
carrier lifetime of CdS by 97 times, potentially leading to
more efficient charge separation and transfer. They syn-
thesized CdS NWs and NiS with tight connections using a
two-pot solvothermal synthesis. Tight interfaces between
CdS and NiS with a smaller intrinsic bandgap led to
significantly enhanced photocatalytic H2 evolution activ-
ities. As the content increased, NiS aggregated on the
surface of CdS and unfavorably caused fast recombina-
tion of photogenerated e

−
-h

+
pairs. An evident decay was

observed in the broad transient bleach signal after loading
NiS, which indicated that the NiS improved the separa-
tion of CdS photogenerated e

−
and h

+
pairs. CdS with a

NiS molar ratio of 20 reached an optimal photocatalytic
H2 evolution rate of 1512.4 μmol g

−1
h
−1

in lignin and
lactic acid aqueous solution, which was 5041 times higher
than that of pristine CdS [229]. The resulting CdS/NiS
also exhibited excellent stability for 900 min of experi-
ments in the lignin and lactic acid solution [229].
Cocatalysts supported on semiconductors can facilitate

the prompt separation and migration of photoexcited
charge carriers. For example, we reported a novel strategy
to form 2D/2D nanocomposites by coupling Ni2SP NSs
with CdS NSs [286]. Fig. 21a depicts the ultrathin 2D NS

of CdS/Ni2SP. The as-fabricated 2D/2D CdS/Ni2SP
photocatalysts displayed an outstanding H2 generation
performance under visible light (λ ≥ 420 nm). The
CdS/2%Ni2SP yielded the highest H2 generation rate of
18.96 mmol g

−1
h
−1
, which was approximately threefold

higher than that of bare 2D CdS without the cocatalysts
(Fig. 21b). As shown in Fig. 21c, the highest AQE was
4.8% at 420 nm. The I–t curve of CdS/2%Ni2SP compo-
sites is obviously higher than that of nanostructured CdS,
indicating that the 2D Ni2SP cocatalysts promoted in-
terfacial charge migration and accelerated charge utili-
zation of nanostructured CdS (Fig. 21d). The interfacial
coupling effects between the 2D Ni2SP cocatalyst and 2D
CdS enhanced photocatalytic H2 generation by increasing
the number of active sites, thereby facilitating rapid
charge separation and transfer, while enhancing H2 gen-
eration kinetics (Fig. 21e).
Recently, single metal atoms (serving as active sites)

have shown excellent performances in photocatalytic and
electrocatalytic reactions. The atomically dispersed single
metal atoms on the semiconductor surface exhibit unique
catalytic performances. For example, Zhang et al. [368]
designed atomically dispersed Ni single atoms anchored
on the surface of CdS NRs. Under visible light, the
photocatalytic H2 rate reached 630.1 mmol g

−1
h
−1
. The

single Ni atoms were stabilized by the Ni–O bonds.
Density functional theory calculations revealed that the
Ni atoms could optimize H2 binding and electronic
properties, thus improving the separation of photo-
generated e

−
-h

+
pairs. Meanwhile, Ni–CdS composites

showed a stabilized photocatalytic performance during
16 h of irradiation. Some examples of CdS photocatalysts
modified with cocatalysts are presented in Table 2.
In future, dual cocatalysts that combine different types

of cocatalysts [369,370], including metal, metal oxide/
sulfide/carbide/phosphide, and nanocarbons, might at-
tract increasing attention in photocatalytic H2 evolution
over CdS-based photocatalysts. Additionally, apart from
loading H2 evolution cocatalysts, it should be noted that
the oxidation cocatalysts are also expected to be loaded on
CdS-based photocatalysts to boost charge separation and
suppress photocorrosion, thereby fundamentally enhan-
cing photocatalytic H2 evolution [371].

SUPPRESSING CHARGE-INDUCED
PHOTOCORROSION IN
NANOSTRUCTURED CdS
Presently, research on the reaction mechanism and the
fundamental carrier dynamics in CdS-based nano-
composite half-reaction systems has seen meaningful
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progress. However, due to the photocorrosion phenom-
enon of CdS-based nanocomposites, the stability and
durability of most reported CdS-based photocatalysts
need further improvement. The accumulation of photo-
excited h

+
in its VB can induce the self-oxidation of S

2−
in

CdS, which results in the dissolution of Cd
2+
. Apparently,

the effective removal of photoexcited h
+
from the VB of

CdS impedes the self-oxidation of S
2−
, enhancing the

durability and photostability of CdS. It is well known that
the use of sacrificial reagents (such as Na2S–Na2SO3,
ethanol, and lactic acid) as e

−
donors for CdS photo-

catalysts in photocatalytic H2 generation systems is an
effective strategy to suppress photocorrosion of CdS.
Furthermore, Z-scheme heterojunctions could reduce

the accumulation of h
+
in the VB of CdS. Li et al. [381]

found that the formation of CdS–MnS Z-scheme photo-
catalysts through a cation exchange process could main-
tain good stability over 42 h of measurement (Fig. 22a
and b). The chopped photocurrent density–voltage mea-
surements show that the pure CdS was photocorroded
rapidly within 800 min of illumination (Fig. 22c). After
the formation of the Z-scheme heterojunction between

CdS and MnS, the photocorrosion phenomenon was
suppressed. Moreover, the formation of Z-scheme hetero-
junctions also increased the light-absorption range from
520 to 800 nm (Fig. 22d). Consequently, the obtained
CdS–MnS showed an optimal H2 evolution rate of
1595 μmol g

−1
h
−1
with an AQE of 22.6% at 420 nm [381].

Constructing a p–n heterojunction is another strategy
to transfer h

+
from the VB of CdS. After the formation of

the p–n heterojunction, the h
+
in the VB of CdS could be

transferred to the relatively positive VB of a p-type
semiconductor, which effectively reduces h

+
accumula-

tion in the VB of CdS. Ai et al. [382] designed CdS@
Ti3C2@CoO with a hierarchical tandem p–n heterojunc-
tion for photocatalytic HER. The insertion of Ti3C2 on the
surface of CdS served as a platform for the growth of CoO
NPs, which were introduced as a bridge to consolidate
CdS and CoO into a special tandem p–n heterojunction.
Meanwhile, Ti3C2 also served as a bridge with a powerful
unidirectional internal electric field wherein another in-
ternal electric field was generated between Ti3C2 and
CoO, causing photogenerated carriers to transfer to Ti3C2

and restricting h
+

migration (Fig. 23a). Thus, CdS@

Figure 21 (a) HRTEM image of CdS/Ni2SP, (b) average rate of H2 evolution (1: CdS, 2: CdS/1%Ni2SP, 3: CdS/2%Ni2SP, 4: CdS/3%Ni2SP, 5: CdS/4%
Ni2SP, 6: Ni2SP, 7: CdS/2% NiS, 8: CdS/2%Ni2SP nanoparticles), (c) AQEs of CdS/2%Ni2SP, (d) photocurrent responses, and (e) proposed mechanistic
scheme: (a) CdS; (b) CdS/1%Ni2SP; (C) CdS/2%Ni2SP; (d) CdS/3%Ni2SP; (e) CdS/4%Ni2SP; (f) Ni2SP; (g) CdS/2%NiS; (h) CdS/2%Ni2SP nano-
particles. Reprinted with permission from Ref. [286]. Copyright 2020, Elsevier.
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Ti3C2@CoO (CTC-5-5) maintained good stability over 10
cycles, which was significantly better than that of
CdS@Ti3C2 (CT-5) and CdS @CoO (CC-5) (Fig. 23b and
c). These results indicate that its combination with a p-
type semiconductor to form a p–n heterojunction can
suppress the extent of photocorrosion [382].
Besides constructing a heterojunction to avoid the ac-

cumulation of h
+
in the VB of CdS, coating a chemically

inert shell could also prevent the undesirable photo-
corrosion. Ning et al. [383] constructed a thin shell layer
of Al2O3 on CdS NPs, which could remove the dissolved
O2 to inhibit photocorrosion (Fig. 24a). During the
photocatalytic reaction, the photogenerated h

+
are trap-

ped by the A1
3+

cationic vacancy network in amorphous

Table 2 Cocatalyst loading on CdS for photocatalytic H2 production

Nanocomposites Content of cocatalysts Light source Sacrificial reagent HER (mmol g
−1
h
−1
) AQE (420 nm) Ref.

Pt-PdS/CdS 0.3 wt.% 300 W Xe lamp Na2S–Na2SO3 29.23 93 [173]

MoS2/CdS 0.2 wt.% 300 W Xe lamp Lactic acid 5.4 - [166]

WS2/CdS 1 wt.% 300 W Xe lamp Lactic acid 4.2 - [364]

NiS/CDs/CdS 10 wt.% 350 W Xe lamp Na2S–Na2SO3 1.44 - [257]

CdS/Co-MoSx 2 mol% 300 W Xe lamp Lactic acid 0.54 23.5 [263]

NiS/CdS 1.2 mol% 300 W Xe lamp Lactic acid 2.18 51.3 [174]

CdS/WS2/graphene 4.2 wt.% 300 W Xe lamp Na2S–Na2SO3 1.84 21.2 [240]

PdNi/CdS 2 wt.% 300 W Xe lamp (NH4)2SO3 32.4 63.97 [372]

PtNix/CdS 2.0 wt.% 300 W Xe lamp (NH4)2SO3 11.4 51.24 [373]

CdS/g-C3N4/CuS 10 wt.% 350 W Xe lamp Na2S–Na2SO3 1.15 16.5 [212]

CuS/CdS 25 wt.% 300 W Xe lamp Lactic acid 5.62 19.7 [374]

Pt/CdS 0.5 wt.% 300 W Xe lamp Lactic acid 24.15 - [232]

MoS2/CdS 3 wt.% 300 W Xe lamp Na2S–Na2SO3 11.4 - [213]

Ni@NiO/CdS/g-C3N4 1 wt.% 300 W Xe lamp Triethanolamine 1.26 - [218]

Ni2P/CdS 3.51 wt.% 300 W Xe lamp Na2S–Na2SO3 44.65 - [256]

Co(OH)2/CdS 6.5 mol% 350 W Xe lamp Lactic acid 14.43 - [375]

NiSe2/CdS 5 wt.% 300 W Xe lamp Na2S–Na2SO3 167.1 1.5 [241]

VC/CdS 15 wt.% 300 W Xe lamp TEOA 14.2 8.7 [215]

Cobalt–salen/CdS 0.015 mmol L
−1

300 W Xe lamp Na2S–Na2SO3 106 29 [235]

NiOx/CdS 1 mol% 300 W Xe lamp Methanol and
Ni(CH3COO)2

5.9 8.6 [57]

NiS/CdS 20 mol% 300 W Xe lamp Lignin and lactic acid 0.15 44.9 [229]

CDs/CdS-S 1 wt.% 300 W Xe lamp Lactic acid 4.64 11.8 [236]

MoS2/CdS 5 wt.% 300 W Xe lamp Na2S–Na2SO3 4.65 7.31 [255]

CdS/MnS 5 wt.% 300 W Xe lamp Lactic acid 15.55 6.9 [233]

Cu2MoS4/CdS 5 wt.% 150 W Xe lamp Lactic acid 15.56 - [231]

Ni2P/MCdS-DETA 0.4 wt.% 300 W Xe lamp Na2S–Na2SO3 6.84 26.4 [359]

NixB/CdS 0.8 wt.% 300 W Xe lamp Lactic acid 4.8 21 [376]

RhP/CdS 20 wt.% 5 W LED Lactic acid 0.33 34.3 [221]

P-MoS2/CdS 20 wt.% 300 W Xe lamp Na2S–Na2SO3 5.89 19 [220]

Mn13-cluster/CdS 7 wt.% White-light LED Lactic acid 3.6 - [377]

Ni2−xCoxP/CdS 40 wt.% 300 W Xe lamp Ethanol-water 218 76.3 [378]

CdS/Ti3C2 10% 300 W Xe lamp Lactic acid 2.407 35.6 [238]

CdS/MoN2 - 300 W Xe lamp Lactic acid 9.2 - [379]

MXene@CdS - 300 W Xe lamp Na2S–Na2SO3 12.34 - [349]

CdS/SnO2 5% 150 W Xe lamp Lactic acid 20.2 - [242]

CdS/Mo2C 3% 300 W Xe lamp Na2S–Na2SO3 1.843 - [380]

CdS-FeP 5% 300 W Xe lamp Lactic acid 18.63 11.2 [250]
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Al2O3. Compared with pure CdS, only trace amounts of
Cd

2+
were dissolved in the reaction solutions. Thus, CdS/

Al2O3–Pt exhibited excellent stability during the photo-
catalytic HER (Fig. 24b and c). Moreover, CdS/Al2O3–Pt
could induce overall water splitting by avoiding photo-

corrosion (Fig. 24d) [383].

CONCLUSIONS
In recent years, CdS-based nanostructured photocatalysts
have been widely investigated. Significant progress has

Figure 22 (a) Schematic of the synthesis process, (b) cyclic experiment of H2 generation using CdS–MnS, (c) amperometric photocurrent density
measurements (0.5 mol L

−1
Na2SO4, 100 mW cm

−2
, visible light), (d) Z-scheme electronic band structures between CdS and MnS heterojunction

photocatalysts. Reprinted with permission from Ref. [381]. Copyright 2020, Wiley-VCH.

Figure 23 (a) Schematic of CdS@Ti3C2@CoO hierarchical tandem p–n heterojunction; recycling tests of photocatalytic H2 evolution of (b) CT-5 and
CC-5, (c) CTC-5-5. Reprinted with permission from Ref. [382]. Copyright 2020, Elsevier.
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been made in the field of solar–fuel conversion and en-
vironmental purification using CdS [15,213,364,384].
This review first systematically discusses the recent pro-
gress of CdS-based nanostructured photocatalysts with a
detailed summary of the design strategies adopted to
enhance H2 generation efficiency. Although great ad-
vances have been made in recent years, many challenges
remain, entailing the need for an in-depth understanding
of the underlying mechanism for the observed H2 evo-
lution enhancement. Their intrinsic relations with mod-
ification routes should be unambiguously established
[361,370,385,386].
Various strategies have been devised to increase pho-

tocatalytic H2 generation using photocatalytic CdS-based
nanomaterials: constructing multicomponent solid solu-
tions, loading cocatalysts, constructing Z-scheme het-
erojunctions, designing 2D NSs, and reducing
photocorrosion. These aspects are thoroughly highlighted
and discussed. Notably, 2D nanomaterials possess many
advantages, such as good chemical and physical stability,
high interlayer adhesion, large surface area, high electron
mobility, and rich surface-active sites, which facilitate
photocatalytic H2 evolution. In addition, bandgap tuning
and heterojunction construction can be conveniently

engineered by combining the strengths of different 2D
nanomaterials in the form of 2D/2D layered nano-
composites [72,387]. Therefore, it is possible to obtain
CdS photocatalysts with extended visible-light absorption
and enhanced redox capacities, as well as better charge
separation efficiencies. The durability and stability of
photocatalysts remain an urgent problem that needs to be
solved in the future.
A knowledge gap remains in the fundamental revela-

tion of the actual active sites in CdS photocatalysts.
Specifically, a far-reaching investigation into the detailed
mechanisms of how CdS photocatalysts function through
the advancement in situ/operando characterizations is
highly sought. The e

−
transfer mechanisms between the

heterojunctions of CdS and other components are still
debatable. Upon clarifying the transfer mechanism, tar-
geted e

−
transfer to the selected active sites can sig-

nificantly improve the photocatalytic HER performance
of CdS photocatalysts. In addition, shortening the mi-
gration distance is effective in increasing the consump-
tion rate of the photogenerated e

−
-h

+
pairs. The

construction of single-layer CdS nanosheets could mini-
mize the charge migration distance from the bulk to the
CdS surface. Therefore, developing methodologies to

Figure 24 (a) TEM image of CdS@Al2O3, (b) cyclic runs of the photocatalytic H2 evolution activity under visible light over various catalyst samples:
(1) CdS NPs, (2) Pt/CdS, (3) Pt/CdS@Al2O3 with artificial gill and (4) Pt/CdS@Al2O3 without artificial gill, (c) the changes in cadmium ion
concentration in the CdS NPs and Pt/CdS@Al2O3 composite solution with extended irradiation time, and (d) mechanism of overall water splitting
over Pt/CdS@Al2O3 composite under visible illumination. Reprinted with permission from Ref. [383]. Copyright 2018, Elsevier.
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synthesize ultrathin CdS is expected to continue to re-
ceive widespread attention.
A theoretical mechanistic study using computational

methods is another important aspect to assist in the ra-
tional design of CdS photocatalysts with ideal electronic
structures, species adsorption, and other properties. In
addition, it could provide insights into the cocatalyst/
semiconductor loading sites and interfacial interactions to
guide the preparation of functional CdS. In summary, the
exploration of new strategies to strengthen the overall
performance of CdS-based nanocomposites, including
their stability, can offer new opportunities toward the
efficient utilization of solar energy for chemical fuel
conversion.
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纳米结构硫化镉光催化分解水产氢综述
沈荣晨1†

, 任豆豆1†
, 丁英娜2

, 关雅彤2
, 吴永豪3*

, 张鹏4*
, 李鑫1*

摘要 太阳能驱动光催化分解水制氢是实现可持续制氢气的一种
有效策略. 硫化镉半导体光催化剂基于其较强的可见光响应、适
宜的氧化还原反应带边位置以及优异的电荷传输性能而备受关注.

本文综述了近年来国内外在提高硫化镉基光催化剂制氢性能的设
计、改性和制备等方面的研究进展. 首先简要介绍了光催化制氢
的基本概念和机理, 阐述了硫化镉光催化制氢的基本性质、重要
进展和瓶颈, 综述了该材料的发展前景. 随后, 重点讨论了硫化镉
基光催化剂光催化分解水产氢的各种改性策略, 其中有效的策略
是产生更多的载流子, 促进电荷的有效分离, 促进界面电荷转移,

加速电荷利用, 以及抑制电荷诱导的自光腐蚀. 针对每一种改性策
略, 都详细讨论了影响光催化剂性能的重要因素和未来潜在的研
究方向. 最后介绍了纳米结构硫化镉和硫化镉基纳米复合材料在
光催化分解水产氢中的发展前景和面临的挑战. 本综述将为开发
镉基半导体光催化剂提供重要和及时的理论指导, 并促进其在太
阳能氢气生产中的应用.
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