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Abstract

We present the official land uplift model NKG2016LU of the Nordic Commission of Geodesy (NKG) for northern Europe. 
The model was released in 2016 and covers an area from 49° to 75° latitude and 0° to 50° longitude. It shows a maximum 
absolute uplift of 10.3 mm/a near the city of Umeå in northern Sweden and a zero-line that follows the shores of Germany 
and Poland. The model replaces the NKG2005LU model from 2005. Since then, we have collected more data in the core 
areas of NKG2005LU, specifically in Norway, Sweden, Denmark and Finland, and included observations from the Baltic 
countries as well. Additionally, we have derived an underlying geophysical glacial isostatic adjustment (GIA) model within 
NKG as an integrated part of the NKG2016LU project. A major challenge is to estimate a realistic uncertainty grid for the 
model. We show how the errors in the observations and the underlying GIA model propagate through the calculations to the 
final uplift model. We find a standard error better than 0.25 mm/a for most of the area covered by precise levelling or uplift 
rates from Continuously Operating Reference Stations and up to 0.7 mm/a outside this area. As a check, we show that two 
different methods give approximately the same uncertainty estimates. We also estimate changes in the geoid and derive an 
alternative uplift model referring to this rising geoid. Using this latter model, the maximum uplift in Umeå reduces from 
10.3 to 9.6 mm/a and with a similar reduction ratio elsewhere. When we compare this new NKG2016LU with the former 
NKG2005LU, we find the largest differences where the GIA model has the strongest influence, i.e. outside the area of geodetic 
observation. Here, the new model gives from − 3 to 4 mm/a larger values. Within the observation area, similar differences 
reach − 1.5 mm/a at the northernmost part of Norway and − 1.0 mm/a at the north-western coast of Denmark, but generally 
within the range of − 0.5 to 0.5 mm/a.

Keywords Glacial isostatic adjustment · Fennoscandia · Postglacial land uplift · Empirical land uplift modelling ·  
Least squares collocation · Remove-compute-restore technique · Uncertainty estimation

1 Introduction

The ongoing Fennoscandian postglacial rebound due to the 
last glaciation has been investigated in many ways and from 
different perspectives (e.g. Ekman 1996, 2009; Vestøl 2006; 
Steffen and Wu 2011). This rebound is most prominent in 
the Nordic and Baltic countries, but also affects the north-
ern parts of the Netherlands, Germany and Poland as well 
as north-western Russia. The major visible consequence is 
the land uplift which has its maximum of slightly more than 
1 cm/a near the city of Umeå in Sweden (Steffen and Wu 
2011), and leads to about 700 ha of new land in Sweden and 
Finland emerging from the sea every year (Poutanen and 
Steffen 2014).

In geodesy, knowledge of the uplift is important since 
satellite techniques operate in global reference frames, in 
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which this deformation is directly observable. Whenever we 
transform data referring to such global reference frames into 
national Earth-fixed reference frames, for instance European 
Terrestrial Reference System 1989 (ETRS 89) realizations, 
we must account for land uplift. At the same time, the Con-
tinuously Operating Reference Station (CORS) tracking of 
Global Navigation Satellite System (GNSS) satellites ena-
bles accurate measurement of it.

To measure the land uplift in Fennoscandia is one of the 
major goals of the project BIFROST (Baseline Inferences 
for Fennoscandian Rebound Observations, Sea Level, and 
Tectonics). This project, initiated already in 1993, presently 
uses more than 200 CORS in the Nordic, Baltic and adjacent 
countries. Results have been published in several publica-
tions, e.g. Scherneck et al. (1998, 2003), Milne et al. (2001), 
Johansson et al. (2002), Mäkinen et al. (2003), Lidberg et al. 
(2007, 2010) and Kierulf et al. (2014). In this study, we use 
the latest reprocessing (Kierulf et al. in preparation).

There are different ways to generate land uplift models, 
but two methods dominate. The first uses geodetic obser-
vations (such as tide gauges, precise spirit levelling and/or 
GNSS) to calculate a model by some estimation method, 
such as Least Square Collocation (LSC). This method was 
successfully applied by, for instance, Danielsen (2001) and 
Vestøl (2006) and gives a strictly empirical model. The sec-
ond method computes the model in a geophysical meaning-
ful way based on the combination of an Earth model and 
geologically constrained ice thickness history, selected so 
that the model best fits selected land uplift observations such 
as GNSS-derived velocities and/or geological relative sea-
level (RSL) changes. This method yields a so-called GIA 
model. Many GIA models have been developed for Fen-
noscandia, and an overview can be found in Steffen and Wu 
(2011). Since then, Zhao et al. (2012), van der Wal et al. 
(2013), Kierulf et al. (2014), Schmidt et al. (2014), Steffen 
et al. (2014), Nordman et al. (2015), Root et al. (2015) and 
Simon et al. (2018) have provided new studies and models.

Here, we combine the two approaches, i.e. combine a 
strictly empirical model with a GIA model, which gives us 
what we refer to as a semi-empirical model. For the empiri-
cal model, we use geodetic precise levelling and GNSS 
uplift rates from the BIFROST project together in a LSC 
approach, while we compute the GIA model by testing many 
ice-history models and Earth model parameters, and find 
the GIA model that fits both geological and geodetic GNSS 
observations the best. The idea is that the GIA model will fill 
in with uplift information in the gaps between the observa-
tion points and extend the empirical model outside the area 
of observations. The resulting semi-empirical NKG2016LU 
model replaces the old NKG2005LU model, which was 
computed in a similar way under the umbrella of the NKG 
(Vestøl 2006; Ågren and Svensson 2007). This approach has 
many similarities to the method described by e.g. Hill et al. 

(2010) or Simon et al. (2018). They also do this combina-
tion in a least squares adjustment, but use the observation 
directly when constraining the a priori GIA model. This is 
principally the same as our alternative one-step approach, 
discussed in Sect. 3.4

Our semi-empirical model gives the uplift expressed in 
a global reference frame, in this case the International Ter-
restrial Reference Frame 2008 (ITRF2008), since the uplift 
rates from the CORS are calculated and expressed in this 
frame. We call this “absolute land uplift”, and the corre-
sponding absolute model is NKG2016LU_abs. It makes 
sense to say that this uplift is relative to the reference ellip-
soid. For some purposes, however, we are more interested 
in uplift relative to the geoid. This is for instance the case 
when we correct levelling lines to a common epoch, and 
subsequently we call such an uplift for levelled uplift and 
the corresponding model is NKG2016LU_lev.

To convert from “absolute” to “levelled” uplift, we need 
a model of the geoid rise. We obtain this model in the GIA 
calculation. We expect this GIA-induced geoid rise model 
to represent the geophysical geoid change in Fennoscandia 
reasonably well and to have low uncertainty (see further 
Sect. 2.3 and the introduction to Sect. 3).

The new model is computed based on similar calcula-
tion methods as in 2005. However, there are two important 
differences: (1) the types of observational data employed 
and (2) the underlying background model of glacial isostatic 
adjustment (GIA). In 2005, the observational data consisted 
of precise levelling, uplift rates from Continuously Operat-
ing Reference Stations (CORS) and tide gauge uplift rates. 
For the new model, we have omitted the latter mainly due 
to influence of climate-change related effects. Furthermore, 
the GIA model is now calculated within NKG and replaces 
the model of Lambeck et al. (1998) used for NKG2005LU.

The NKG2016LU models were officially released in 
2016 and have not been changed since then. They are useful 
for the mapping authorities in the Nordic and Baltic coun-
tries to reduce current observations to the reference epochs 
of the national reference frames, but can also be applied 
for different types of research. We provide the model for 
open access download in two versions, as absolute uplift in 
NKG2016LU_abs with respect to the Earth’s centre of mass 
in ITRF2008, and as levelled uplift in NKG2016LU_lev 
with respect to the levelling reference surface (the geoid). 
Both models, as well as the estimated uncertainty file, are 
provided in several file formats.

The methods for making GIA and empirical models are 
well described in the above-mentioned papers and will only 
be briefly discussed in Sect. 2. More details can be found 
in the Supplementary Material. The focus in this study is to 
estimate the uncertainty of the final semi-empirical uplift 
model NKG2016LU (Sect. 3). After that, in the last sec-
tion, the conclusions are accompanied by a discussion of 
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the method and resulting models and recommendations for 
future improvements.

2  The calculation of NKG2016LU

An optimal uplift model would use all available constraint 
information, including observations as well as the results of 
GIA modelling. In our case, a natural way is to start with the 
GIA model and use the observations to calculate correlated 
corrections to this GIA model as signals in a LSC approach. 
However, this is not what we have done for the officially 
released NKG2016LU model. Instead, we have used a 
two-step procedure where we divide this complex compu-
tation into two manageable parts, which historically have 
been performed by different researchers and groups from 
different countries. In general, geodesists calculate empiri-
cal models and geophysicists make GIA models. Another 
historical motivation has been to keep the empirical model 
completely clean from any kind of GIA modelling, relying 
only on geodetic observations.

In the first step, we calculate an empirical model and a 
GIA model separately, and in the second step, we combine 
these two models. To be able to explain the rather elaborate 
computation of the uncertainty for the final combined uplift 
model in Sect. 3, we first briefly describe the data and mod-
els involved as well as how we combine the models.

2.1  The empirical model

Based on observations with known accuracy, we estimate the 
land uplift via LSC. Important advantages with an empirical 
approach are the ability to calculate uncertainty estimates 
for the result and to detect and remove statistical outliers.

We use geodetic precise levelling observations and esti-
mate GNSS uplift rates from a CORS network. The levelling 
observations and CORS data cover the Nordic and Baltic 
countries (Fig. 1a). There are also additional CORS data 
from some stations in northern Central Europe (Fig. 1b).

Re-levelled lines contain direct information of the land 
uplift as they give the change in the height difference 
between two epochs and consequently of the relative uplift 

1 �me

2 �mes

3 �mes

≥4 �mes

a b

Fig. 1  a The levelling network used for the empirical model. b All CORS used in the calculation with observed uplift written. The symbols indi-
cate the standard deviation: Red squares < 0.2 mm/a, yellow dots: < 0.5 mm/a and green dots > 0.5 mm/a
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between the points. In addition, closed loops (or polygons) 
consisting of lines from different epochs also contain land 
uplift information (Danielsen 2001). The longer the time 
span between the epochs, the more accurate and valuable is 
this type of land uplift information.

For all CORSs, daily solutions are available from a new 
BIFROST reprocessing (Kierulf et al. in preparation). The 
GNSS data are analysed with GAMIT/GLOBK, and the 
results are given in ITRF2008. Uplift rates and uncertain-
ties are estimated using the time-series analysis software 
Cheetah (Bos et al. 2008) including both white noise and 
power law noise. The spatial correlation between the sta-
tions was neglected in the time-series analysis. The accuracy 
depends very much on the time span of the data (Kierulf 
et al. 2014). All stations used in this study have at least three 
years of data. Following the multiple Student’s t test proce-
dure described in Pelzer (1985) and Vestøl (2006), we have 
rejected seven out of 177 stations and associated uplift rates.

“Appendix” lists the uplift value and the correspond-
ing standard uncertainty for all 177 stations. Following the 
variance component estimation method described by, for 
instance, Caspary (1988), Förstner (1979a, b) and Pelzer 
(1985), we calculate variance components for all the differ-
ent datasets (see Table S3 in Supplementary Material). The 
results of this calculation indicate that the uncertainty esti-
mates listed in the “Appendix” should be scaled by a factor of 
1.41. The uncertainty estimates for the CORS in Kierulf et al. 
(in preparation) are in other words generally too optimistic.

Since we do not use a GIA model in the LSC adjustment 
for the strictly empirical model, we instead solve determin-
istically for a polynomial trend surface of the 5th degree to 
describe the main uplift. In addition, we estimate signals in 
all observations stochastically. In summary, trend plus signal 
describes the uplift. For more details, see Vestøl (2006). 
In between the observation points, we have filled in with 
points in which we have calculated the signals by using the 
prediction ability in LSC, and then added the polynomial 
value. From all these single point values, observed or just 
predicted, we can interpolate a model as shown in Fig. 2.

2.2  The GIA model

The GIA model used for NKG2016LU is computed by 
Steffen et al. (2016) in the NKG Geodynamics Working 
Group and is called NKG2016GIA_prel0306. It is part of 
an NKG activity to generate a new GIA model for Fennos-
candia based on a thermodynamically coupled ice-sheet 
model and a laterally varying Earth model. In the first 
steps of this long-term activity, a laterally homogeneous 
(i.e. only varying with depth) Earth model is used. Hence, 
we apply the commonly used viscoelastic normal-mode 
method (Peltier 1974; Wu 1978) that is integrated in the 
software ICEAGE (Kaufmann 2004) and generate a set 

of spherically symmetric (1D), compressible, Maxwell-
viscoelastic earth models that differ in lithospheric thick-
ness, upper and lower mantle viscosity. The surface load 
is made of a selected ice-sheet history model and the cor-
responding ocean load that is determined via the sea-level 
equation (Farrell and Clark 1976). A difference to previous 
GIA modelling studies is that we do not use one ice model 
for Fennoscandia, the Barents/Kara seas and the British 
Isles only. We use a high-variance set of 25 relatively low 
misfit model runs from an archive called GLAC (Tarasov 
2013; Tarasov et al. 2012; Root et al. 2015; Nordman et al. 
2015) in our analysis. More than 11,000 different GIA 
models are then compared to vertical rates of the GNSS 
data (see “Appendix”) and a large dataset of geological 
and paleontological relative sea-level (RSL) observations 
for northern Europe to identify the best-fitting GIA model 
to the observations. The detailed description of the GIA 
modelling and the selection of our best-fitting GIA model 
can be found in the Supplementary Material. The result-
ing preliminary GIA model is applied for NKG2016LU. 
Further improvements towards a 3D GIA model will be 
undertaken in the next years.

Our selected GIA model, called NKG2016LU_prel0306, 
consists of a 160 km lithospheric thickness, an upper-man-
tle viscosity of 7 × 1020 Pa s, a lower mantle viscosity of 
7 × 1022 Pa s, and uses the GLAC ice-history model #71340. 

Fig. 2  The empirical model, uplift in mm/a. The block dots are 
observed or predicted values from which we generate the contour 
lines using the method “Triangulation with linear interpolation” in 
the Surfer version 10.7 software (https ://www.golde nsoft ware.com). 
The figure shows no extrapolated values, so outside the area with 
observed or predicted values the figure is grey

https://www.goldensoftware.com
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The NKG2016LU_prel0306 uplift field for northern Europe 
is shown in Fig. 3.

The model is considered as best compromise in fitting 
data of the whole study area (see Supplementary Material). 
This is of major importance for our land uplift model, as 
we are interested in a GIA model that fills the large data 
gaps naturally existing for instance due to the presence of 
the Baltic Sea. On land, we have very good control with the 
observation points that are the base of the empirical part 
of the land uplift model. The GIA model performs well in 
most parts of Norway except for larger misfits along the 
Norwegian Sea coast and an area north of Oslo (Fig. 4). We 
attribute the first to likely other geodynamic (tectonic), yet 
not fully defined processes, see also Kierulf (2017). The 
second misfit north of Oslo also appears in the comparison 
of the strictly empirical model and the GNSS data and there-
fore deserves further investigation in future.

The fit of the GIA model to observations in Denmark and 
northern Central Europe is not good, i.e. in the forebulge 
area south-west of the Tornquist Suture zone (see Supple-
mentary Material). This is because we use laterally homo-
geneous models. It is known from seismic observations that 
there is a remarkable jump in lithospheric thickness at the 
Tornquist Suture zone (Gregersen et al. 2002). Best-fitting 
GIA models to observation data south-west of this zone 
(mainly in Denmark, Germany and western Poland) indicate 
a much lower lithospheric thickness of 100 km only and sup-
port the seismic findings. The next GIA model generation 
should therefore incorporate such lateral variation.

Together with the best-fitting GIA model, we also calculate 
the corresponding geoid change model illustrated in Fig. 5 
(using the ICEAGE software package, Kaufmann 2004).

2.3  The combined model

The combined model is created in a remove-interpolate-
restore approach, very similar to how the old NKG2005LU 
model was computed; see Ågren and Svensson (2007).

Fig. 3  The uplift in northern Europe as calculated with the best-fit-
ting GIA model called NKG2016GIA_prel0306. Unit in mm/a

Fig. 4  Difference between the GNSS uplift rates (observations) and 
the NKG2016GIA_prel0306 model. Red means that the GNSS uplift 
rates are larger than the GIA model

Fig. 5  Geoid change of the best-fitting GIA model NKG2016GIA_
prel0306. Unit in mm/a
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We summarize the technique in three steps:

• At the observation points (i.e. in the GNSS CORS and 
levelling nodal benchmarks), we subtract the GIA model 
land uplift from the corresponding value of the purely 
empirical model.

• The resulting reduced observations (i.e. the difference 
between the two models) are then gridded by LSC 
(Moritz 1980) assuming a 1st order Gauss–Markov sig-
nal covariance function. The statistical parameters for the 
signal are chosen based on empirical covariance analy-
sis. We use the estimated standard error of the empirical 
model at each observation point as observation noise. 
This step gives the residual surface.

• Finally, we restore the GIA model to the residual surface 
grid to get the NKG2016LU_abs grid.

In other words, we take out values from the purely empiri-
cal model and handle these as real observations with known 
uncertainties. In the following, we call these observations 
model observations. The above procedure implies that the 
purely empirical model is smoothed. How much depends on 
the signal-to-noise variance ratio and the density of the reduced 
observations. The above choice of covariance function further 
means that NKG2016LU_abs will approach the GIA model 
with increasing spatial separation from the observations.

Mathematically, the remove-interpolate-restore method 
can be summarized as follows,

where the notation is obvious from the above discussion. 
The residual surface for grid node (i, j), RSij , is then found 
by a combination of filtering and prediction (interpolation) 
given by the standard LSC formula (e.g. Moritz 1980),

Here, C is the signal variance–covariance matrix (in the 
observation points), D is the variance–covariance matrix for 
the model observations, and Cij is a signal cross-covariance 
column vector expressing the covariance between the signal in 
grid node (i, j) and in all the observation points. The column 
vector A

ij
= CT

ij
(C + D)

−1 is introduced for use in Sect. 3.3. 
The propagated variance for grid node (i, j) becomes,

where C
0
 is the (homogeneous) signal variance.

(1)

ḣ
grid

NKG2016LU_abs
= ḣ

grid

GIA
+

Residual Surface (grid)

�������������������������������������������

LSC
{

ḣ
obs.points

empirical_abs
− ḣ

obs.points

GIA

}

,

(2)

RSij = CT
ij
(C + D)

−1
{

ḣ
obs. points

empirical_abs
− ḣ

obs. points

GIA

}

= AT
ij

{

ḣ
obs. points

empirical_abs
− ḣ

obs. points

GIA

}

.

(3)�
2

ij
= C0 − CT

ij
(C + D)

−1Cij,

We split the error in the reduced observations into noise 
and signals and interpret the errors in the model observa-

tions as noise described by the variance–covariance matrix 
D, while the errors of the GIA model are considered as 
signals to estimate, statistically specified through the vari-
ance–covariance matrix C and vector Cij . It follows that the 
residual surface computed by Eq. (2) then is an estimate 
of the errors of the GIA model. (Theoretically, other sys-
tematic non-GIA effects may also occur. If so, they stem 
from the empirical model and remain in the final model.) 
In this section, we assume that the signal variance–covari-
ance function is homogeneous and isotropic.

The variance–covariance matrix D is assumed to be 
diagonal (uncorrelated observations) containing only 
variances estimated when calculating the purely empirical 
model. Assuming uncorrelated observations is a shortcut 
approximation since these observations, the model obser-

vations, are in fact values taken from the empirical model 
and therefore correlated. The impact of this approximation 
on the result is not crucial, for the uncertainty estimates 
however, the effect may be significant and correlation has 
to be accounted for (see Sects. 3.3 and 3.4).

In the next step, NKG2016LU_lev is derived by remov-
ing the geoid rise of the NKG2016GIA_prel0306 model 
(cf. Fig. 5) from NKG2016LU_abs:

As previously mentioned, NKG2016LU_lev describes 
the land uplift relative to the geoid. Since the GLAC ice 
model used to compute NKG2016GIA_prel0306 does not 
contain any contemporary ice melting and consequent sea-
level change, the geoid rise must here be interpreted as an 
equipotential surface that is still rising due to historical 
ice melting in the past, through GIA. It can thus be used 
in present-day sea-level studies to correct postglacial land 
uplift that is due to old historic deglaciations. Another suit-
able application of the NKG2016LU_lev model is to reduce 
precise levelling observations to a chosen reference epoch.

We start by examining the empirical model, the GIA 
model and the reduced observations at the 1111 observa-
tion points (GNSS CORS and levelling nodal benchmarks). 
The corresponding statistics are given in Table 1, and the 
reduced observations are illustrated in Fig. 6. The reduced 

observations show a very clear spatial correlation, which 
should primarily be due to the errors in the GIA model. We 
also add statistics for the difference between the 172 cleaned 
GNSS observations and the GIA model (Fig. 4).

It should be noted that we have chosen not to remove and 
restore the mean value of the differences between empirical 
and GIA models in Eq. (1), contrary to the method used 
for NKG2005LU (Ågren and Svensson 2007). In principle, 

(4)Ḣ
grid

NKG2016LU_lev
= ḣ

grid

NKG2016LU_abs
− Ṅ

grid

NKG2016GIA_prel0306
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there might be a bias between the two models. Since the 
empirical model refers to the reference frame ITRF2008, we 
may consider this bias as the GIA model’s deviation from 
ITRF2008, and this must be further checked numerically:

It can be seen in Table 1 that the straightforward mean 
value is − 0.13 mm/a. However, as the observation points 
are significantly denser in some areas than in others and 
we consider the observations to be uncorrelated, this is 
most likely not a good estimate of how close the GIA 
model is to ITRF2008. There is for instance a dense net 
of nodal benchmarks in the southern parts of Norway 
(blue area), which would highly influence the result since 
these benchmarks are clearly positively correlated. If we 
instead study the reduced GNSS observations, which are 
more evenly distributed, then we get the much smaller 

mean value − 0.03 mm/a (last row of Table 1). In view 
of this, and of all the uncertainties involved (cf. Sect. 3), 
we decided to neglect the mean value remove-restore in 
Eq. (1). The resulting difference between using and not 
using mean value remove-restore is mainly that the final 
model will differ by this amount (i.e. − 0.03 mm/a) from 
ITRF2008 far away from the observations. Near the obser-
vation points, this choice will affect the estimated model 
negligibly.

The next step in the computation of NKG2016LU_
abs is to calculate the residual surface by Eq. (2). This 
requires that we compute the signal variance C0 and the 
correlation length (half-length), which we do by fitting 
the chosen analytical function (1st-order Gauss–Markov) 
to an empirical covariance function, computed using the 
cleaned GNSS observations (see Sect. 2.1). We here pre-
fer to study only the 172 GNSS differences from the GIA 
model, and not all the 1111 reduced observations, as the 
latter stem from a previous collocation step and are con-
sequently filtered and most likely correlated. Using the 
reduced observation to find the signal covariance would 
lead to difficulties in separating the signal correlation 
from the observation correlation. The empirical covari-
ance function is computed in the way described by Sanso 
and Sideris (2013, Section 5.8). We couple two and two 
differences in all combinations and group the couples in 
classes depending on the distance �  between the points 
in the couple. In all classes, we calculate the empirical 
covariances as

where the summation extends over all pairs of points P and 
Q in the interval 𝜓 − Δ < 𝜓PQ < 𝜓 + Δ . Notice that, since 
the mean value ḣ

GNSS
− ḣ

GIA
 is so small (0.03 mm/a; see 

Table 1), it does not matter in the present case whether it is 
subtracted or not.

It is assumed that the GNSS observations are uncorre-
lated, which means that the GNSS noise only affects the 
empirical variance, not the covariances. The signal variance 

(5)

COV(𝜓) =
∑

(P,Q)

(

ḣGNSS,P − ḣGIA,P − ḣGNSS − ḣGIA

)

×

(

ḣGNSS,Q − ḣGIA,Q − ḣGNSS − ḣGIA

)

,

Table 1  Statistics for the empirical model, GIA model and the reduced observations (all in the observation points). The last row contains statis-
tics for the difference between the cleaned GNSS observations and the GIA model

Unit: mm/a

# Min Max Mean SD

Empirical model 1111 − 0.75 10.29 4.19 2.71
GIA model (NKG2016GIA_prel0306) 1111 − 1.08 10.47 4.32 2.73
Reduced observations (empirical minus GIA) 1111 − 1.23 1.24 − 0.13 0.34

Reduced GNSS observations (GNSS minus GIA) 172 − 1.58 1.52 − 0.03 0.54

Fig. 6  Reduced observations (differences between the empirical 
model and the GIA model in the observation points). The scale is 
given by the 1  mm/a arrow in the Southern Baltic Sea. Red means 
that the empirical model gives larger uplift than the GIA model
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at zero distance, i.e. C0, is therefore computed by reducing 
the empirical variance (containing both signal and noise) by 
the mean variance of the GNSS noise as follows,

where �
GNSS- noise,i

 are the standard uncertainties for the 
GNSS observations (noise) after rescaling by the variance 
factor 1.41 estimated in the computation of the empiri-
cal model (see Sect. 2.1). The correlation length becomes 
150 km. The empirical and analytical covariance functions 
are plotted in Fig. 7. Using the above parameters, the grid-
ded residual surface in Fig. 8 is obtained.

The final NKG2016LU_abs model (Fig. 9) is obtained 
by restoring the GIA model to the residual surface [cf. 
Eq. (1)].

The residuals of NKG2016LU_abs are presented in 
Fig. 10 and their statistics in Table 2. They are very small 
and almost nothing remains of the systematic effects in 
Fig. 6. The semi-empirical model thus agrees very well with 
the empirical model near the observation points, just some 
minor extra filtering has been made. Farther away from the 
observations, NKG2016LU_abs approaches the GIA model 
(as the residual surface approaches zero in Fig. 8). The dif-
ferences between the original clean GNSS observations and 

(6)

C0 =
1

172

172
∑

i=1

(

ḣ
GNSS,i

− ḣ
GIA,i

)2

−
1

172

172
∑

i=1

𝜎
2
GNSS- noise,i

= 0.13 mm2∕year2,

NKG2016LU_abs are presented in Fig. 11 and Table 2, sec-
ond row. The latter values are considerably larger than the 
residuals, which is because of the filtering effect in LSC 
and the fact that the empirical model is computed from both 
GNSS and levelling observations and that the levelling 
sometimes has sufficient weight to overrule the GNSS obser-
vations. To what extent this effect will happen depends on 
the relative weighting of the GNSS and the levelling obser-
vations and the a priori variance–covariance function of the 
signals—in other words the key challenges of LSC.

The last step is to compute NKG2016LU_lev using 
Eq. (4).

Compared to NKG2005_abs, there are huge differ-
ences to NKG2016LU_abs outside the area of observa-
tions as shown in Fig. 12. These are mainly caused by 

Fig. 7  Empirical signal covariance function estimated using the 172 
GNSS observations (red) and the analytical 1st-order Gauss–Markov 
function computed with variance 0.131 mm2/a2 and correlation length 
of 150 km (blue)

Fig. 8  The residual surface, i.e. the gridded difference between the 
empirical model and the GIA model. The observation points (model 
observations) are indicated by black dots

Fig. 9  The final NKG2016LU_abs land uplift model. Unit: mm/a
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the replacement of the GIA model from Lambeck et al. 
(1998) with the NKG2016GIA_prel0306 model. In the 
north-west, it also plays an important role that the values 
in NKG2005 were deliberately truncated to − 0.72 mm/a 
here. Inside the area of observations, the differences are 
much smaller with differences mainly less than 0.5 mm/a. 
In northern Denmark and the northernmost part of Norway 
however, the differences reach 1.0 mm/a and have other 
explanations. For Denmark, a reason may be that no level-
ling dataset is used in the NKG2005LU-calculation, and 

for Northern Norway we suspect that the tide gauge dataset 
used for NKG2005 could be part of the explanation since 
omitting/including tests show that the tide gauge data have 
the most effect here.

Fig. 10  Residuals of the NKG2016LU_abs model, i.e. differ-
ences between the model observations (empirical model) and 
NKG2016LU_abs. Unit: mm/a. Red means that the model observa-
tions are higher than the NKG2016LU_abs model

Table 2  Statistics for the residuals of the NKG2016LU_abs model 
(differences between the empirical model in the observation points 
and NKG2016LU_abs) and the differences between the cleaned 
GNSS observations and NKG2016LU_abs

Unit: mm/a

# Min Max Mean SD

Residuals of 
NKG2016LU_abs

1111 − 0.15 0.45 0.00 0.04

Difference 
GNSS and 
NKG2016LU_abs

172 − 1.16 1.32 0.04 0.32

Fig. 11  Difference between the GNSS uplift rates (observations) and 
the NKG2016LU_abs model. Red indicates that the GNSS uplift 
rates are higher than the NKG2016LU_abs model

Fig. 12  The difference between NKG2016LU_abs and 
NKG2005LU_abs. Positive values mean that the former is larger
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3  Uncertainty estimation

The main purpose of this section is to estimate a realistic 
standard uncertainty grid for the official semi-empirical 
model NKG2016LU_abs. The uncertainty of the purely 
empirical model is determined by standard uncertainty 
propagation in the method of least squares adjustment and 
least squares collocation. The challenge is to find good 
estimates for the combined model where we bring in a geo-
physical GIA model in the combination step. An impor-
tant part is to estimate a standard uncertainty grid for the 
underlying GIA model and then a correlation function that 
makes it possible to compute variances and covariances for 
the errors of the GIA model (remember that in our LSC 
model, the error of the GIA model is viewed as the signal 
to estimate; cf. Sect. 2.3).

In Sect. 3.1, we calculate preliminary uncertainties for 
both the empirical and the semi-empirical model in a sim-
ple approach assuming a homogenous covariance function 
describing the GIA model uncertainty. In Sect. 3.2, we 
elaborate on the technique by developing an uncertainty 
grid for the GIA model, and in Sect. 3.3, we use this grid 
together with an empirical correlation function to calculate 
a final and official uncertainty grid for the already released 
semi-empirical model NKG2016LU. To check this uncer-
tainty grid, we develop in Sect. 3.4 an alternative and more 
direct approach for calculating the semi-empirical uplift 
model as well as the corresponding uncertainties, and fur-
ther demonstrate that the uncertainty grid obtained this 
way differs very little from the official one.

Below we often speak of just the uncertainty. We then 
always mean the one standard error uncertainty (1 σ).

In the following, we discuss the uncertainty of the 
absolute model NKG2016LU_abs. The uncertainty of 
NKG2016LU_lev, which gives the uplift relative to the ris-
ing geoid, is not specifically addressed. Since the latter is 
derived from the absolute model by subtracting the geoid 
rise given as a model (Fig. 5), the uncertainty will increase 
somewhat. However, as this geoid change rate is quite well 
known, this contribution to the uncertainty is for practical 
use negligible in relation to the total value. The magnitude 
for this rise is very low, less than 0.7 mm/a, and as such even 
a relative uncertainty as high as 10% contributes very little 
to the total uncertainty.

3.1  Preliminary uncertainties for the empirical 
and semi‑empirical models

We first present the straightforward uncertainties obtained 
in standard least squares collocation/adjustment computa-
tions of the empirical and semi-empirical models, assuming 
in both cases the homogenous and isotropic signal covari-
ance function used in the respective computations. The 
uncertainty grids are computed exactly as is described in 
Sects. 2.1 (and Section 1 in the Supplementary Material) 
and 2.3, respectively.

The uncertainty for the purely empirical model is illus-
trated in Fig. 13. In the area where we have observations, 
the uncertainty is about the same everywhere (Fig. 13a). As 
soon as we move away from that area, the uncertainty of 

Fig. 13  Uncertainty of the empirical model. a For the area of observations only. b For the whole project area. The red dots are either observation 
points or so-called prediction points (points where the land uplift is predicted in the LSC process)
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the coefficients in the polynomial surface dominates and the 
estimates blow up (Fig. 13b).

In the combined solution, the accuracy of the model in 
this extended region will depend very much on the uncer-
tainty of the GIA model. The estimated standard uncer-
tainty grid for the semi-empirical model, using Eq. (3), is 
given in Fig. 14. We see that the uncertainties gradually 
approach 0.36 mm/a when one moves away from the obser-
vations. This maximum value is equal to the square root of 
the adopted signal variance, C

0
 , which is a homogeneous 

measure of the uncertainty of the GIA model. This value is 
obtained empirically using Eq. (6) and assumed valid also 
outside the observation area. This is most likely too optimis-
tic as the GNSS observations in question have been used in 
the selection of the best-fitting GIA model (See Section 2.4 
in Supplementary Material).

Another problem for the semi-empirical uncertainty 
grid is that it becomes too low in areas with dense observa-
tions. By comparing Figs. 13a and 14, we can see that the 
uncertainties are almost 2 times lower for the semi-empir-
ical model in the areas with densest observations (like in 
southern Norway). This is because the correlation between 
the observations is not considered in the LSC solution in 
question; see Sect. 2.3 and matrix D in Eq. (3). This does 
not affect the estimated residual surface much at all, but the 
uncertainty estimation is more sensitive in this respect.

We conclude that both the collocation uncertainty grids 
in Figs. 13 and 14 are problematic in that the GIA uncer-
tainty is not well modelled outside the area of observations. 
The semi-empirical model is best in this respect, but it is 
still not realistic that the GIA model accuracy is the same 

everywhere; the uncertainty is more likely to vary and can 
even be higher than 0.36 mm/a. We should first know the 
uncertainty of the GIA model, which then should be com-
bined with the uncertainty of the empirical model to obtain 
the uncertainty of the final semi-empirical model.

3.2  Uncertainty of the GIA model

Here, we derive an uncertainty grid for the NKG2016GIA_
prel0306 model (Sect. 2.2) and then estimate a homogene-
ous and isotropic correlation function, which will be used 
to compute heterogeneous and non-isotropic variances and 
covariances in Sects. 3.3 and 3.4. In other words, we will 
introduce individual variances for all node points, but keep 
the same isotropic correlation between them.

This best-fitting GIA model NKG2016GIA_prel0306 was 
selected in a fitting procedure that involved 11,025 different 
GIA models as described in the Supplementary Material. 
We compute the standard deviation for a subset of good GIA 
models (including the best-fitting NKG2016GIA_prel0306) 
at each grid node. This provides a grid, �

STD
 , with higher 

standard deviation in areas where the GIA model is more 
sensitive to the choice of Earth and ice models, which 
is exactly what we want. However, GIA models are also 
affected by other types of errors due to various assumptions 
and approximations (e.g. assumed viscoelastic rheology, 1D 
distribution of rheological parameters, non-modelled effects, 
presence of non-GIA effects like tectonic motion in the fit-
ted observations, etc.). It is difficult to model the latter type 
of uncertainty. In this paper, we assume that the total GIA 
modelling uncertainty is the square root of the squared sum 
of �

STD
 and a homogeneous uncertainty factor E that models 

all “other types of errors”,

The extra term E is estimated using the differences 
between the GNSS observations and the GIA model.

To select the subset for �
STD

-calculation, we compare 
11,025 models with the selected GIA model (NKG2016GIA_
prel0306) by weighted sum of squared residuals (ψ):

Here, Pbest is NKG2016GIA_prel0306, pi(aj) is the 
predicted value for model aj in point i, Δoi is the uncer-
tainty of a test observation in point i and n the number of 
points. These points are either the locations of GNSS uplift 
rates or RSL observations. The points are here restricted 

(7)�
GIA

=

√

�
2

STD
+ E2.

(8)� =

√

√

√

√
1

n

n
∑

i=1

(

p
best

− pi(aj)

Δoi

)2

.

Fig. 14  Preliminary uncertainty of NKG2016LU_abs. The maximum 
uncertainty far away from the observations is equal to signal standard 
deviation = 0.36 mm/a. The contour interval is 0.05 mm/a
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to central Fennoscandia where the uplift is higher than 
6 mm/a to avoid very unreliable values from some models 
that rather best fit the periphery of the GIA-affected area. 
Such unreliable values may ruin the uncertainty estima-
tion. This is because there are naturally models which have 
very small differences to NKG2016GIA_prel0306 in areas 
with low uplift or subsidence but large differences in the 
uplift centre. Nonetheless, the weighted sum can result in 
a very low ψ-value comparable to that of models that, in 
turn, provide a very good fit in the uplift centre but not in 
the outskirts.

By using all models with ψ-value lower than 1.5, we end 
up with 21 models. This limit, 1.5, is chosen after testing 
different values from 1 to 2 in 0.125 steps and analysing 
the number of different ice and Earth models and their sta-
tistics (Table 3). The 21 models falling within the 1.5 limit 
cover 7 different ice models (out of 25) and 14 different 
Earth models (out of 441) that result in an average differ-
ence to NKG2016GIA_prel0306 of 0.66 mm/a and a differ-
ence of 0.53 mm/a at the location of the maximum uplift. 
This is a good balance of model numbers and, in view of 
the GNSS uncertainty, maximum and average differences 
to NKG2016GIA_prel0306. A ψ value of 1.75 or higher, 
for example, yields quite high differences above 0.9 mm/a 
at the maximum uplift location, which we judge is quite well 
determined by GNSS within 0.4 mm/a. Hence, the difference 
of 0.53 mm/a as found for a ψ value of 1.5 seems reliable. 
Choosing a ψ value of 1.625 instead of 1.5 does not change 
the difference statistics much, although a larger number of 
GIA models fall within the 1.625 limit.

We then compare all these 21 models plus NKG-
2016GIA_prel0306 and compute the standard deviation 
(STD) for each grid node, which gives �

STD
 in Eq. (6).

The next step is to compute uncertainty factor E by study-
ing the agreement between the 172 cleaned GNSS observa-
tions and the GIA model NKG2016GIA_prel0306.

To compute the uncertainty term E, we consider the 
variance �2

0
 of the standardized difference between GNSS 

and GIA model (i.e. difference between GNSS and GIA, 
divided by the uncertainty of this difference),

where �
GNSS,i

 is the uncertainty of GNSS observation i mul-
tiplied by the variance factor 1.41 estimated in Sect. 2.1. 
For E equal to zero, we get �̂�

0
 = 1.45. We choose E so 

that �
0
 becomes exactly equal to 1, which happens when 

E = 0.34 mm/a. This yields the final GIA uncertainty grid 
in Fig. 15.

(9)

𝜎
0
=

√

√

√

√

√

√

√

172
∑

i=1

(

ḣ
GNSS,i

− ḣ
GIA

)2

(

𝜎
2

GNSS,i
+ 𝛤

2

GIA,i

) =

√

√

√

√

√

√

√

172
∑

i=1

(

ḣ
GNSS,i

− ḣ
GIA

)2

(

𝜎
2

GNSS,i
+ 𝛤

2

STD,i
+ E2

) ,

Table 3  Tested ψ value limits, 
resulting number of different 
GIA models as well as different 
ice and Earth models that fall 
within this limit, the maximum 
difference to NKG2016GIA_
prel0306 (mm/a) at the 
maximum land uplift location 
and over the whole area and the 
average difference (mm/a) to 
NKG2016GIA_prel0306

ψ value limit # GIA models # Ice models # Earth 
models

Max. difference at 
max. land uplift 
(mm/a)

Max. 
difference 
(mm/a)

Average 
difference 
(mm/a)

1.000 2 1 2 0.23 0.24 0.12
1.125 5 2 5 0.52 1.94 0.54
1.250 6 2 6 0.52 1.94 0.55
1.375 13 5 11 0.52 1.94 0.60
1.500 21 7 14 0.53 2.29 0.66
1.625 31 10 18 0.53 2.29 0.71
1.750 39 11 21 0.91 2.64 0.86
1.875 58 15 28 1.06 2.64 0.96

2.000 88 19 31 1.06 2.75 1.04

Fig. 15  Uncertainty grid for the GIA model NKG2016GIA_prel0306 
derived using Eq.  (7) with E = 0.34  mm/a. The contour interval is 
0.05 mm/a



1771NKG2016LU: a new land uplift model for Fennoscandia and the Baltic Region  

1 3

3.3  Improved uncertainty estimates 
for the semi‑empirical model

In the following, we derive a better uncertainty grid for 
NKG2016LU_abs than Fig. 14 by making use of the above 
GIA uncertainty grid in Fig. 15 and derive the correspond-
ing covariance function. For this purpose, we assume the fol-
lowing type of heterogeneous and non-isotropic covariance 
function COV for the errors in the GIA model,

where �PQ is the spherical distance between points P and Q, 
CORR is the correlation function, and �GIA,i is the standard 
deviation for point i obtained from the GIA uncertainty grid, 
either directly or by interpolation.

As it is assumed that the correlation function is homo-
geneous and isotropic, we can estimate an empirical cor-
relation function using the differences of the 172 clean 
GNSS observations from the GIA model in the same way 
as described in Sect. 2.3 and Eq. (5). The only difference is 
that we now divide by the respective standard uncertainties 
�GIA,P and �GIA,Q , taken from the GIA uncertainty grid, to 
obtain correlation instead of variance,

where the summation extends over all pairs of points P and 
Q in the interval 𝜓 − Δ < 𝜓PQ < 𝜓 + Δ and where the mean 
value is not subtracted; cf. the comment after Eq. (5). We 
assume that the GNSS errors are uncorrelated, which means 
that they do not affect Eq. (11) if 𝜓 > 0 . For the zero dis-
tance, we need to divide by the variance 

(

�
2

GNSS,P
+ �

2

GIA,P

)

 , 

where the GNSS variance has been multiplied by 1.412 as 
before. Note that our choice of E by normalizing Eq. (9) 
implies that the empirical estimate of CORR(0) becomes 
exactly 1. The empirical correlation function for the present 
case is illustrated in Fig. 16 together with a fitted analytical 
correlation function (1st order Gauss–Markov) with variance 
1 and correlation length 100 km.

Using the estimated analytical correlation function in 
Fig. 16, Eq. (10) and the GIA model uncertainty grid of 
Fig. 15, we are now able to compute the covariance func-
tion for the GIA model errors and obtain a new and updated 
variance–covariance matrix C

GIA
 . The next step is to use this 

new covariance information to compute an updated uncer-
tainty grid for the semi-empirical NKG2016LU_abs. To do 
this, we rewrite Eqs. (1) and (2) as

(10)COV
(

�PQ

)

= �GIA,P�GIA,QCORR
(

�PQ

)

,

(11)

CORR(𝜓) =
∑

(P,Q)

(

ḣGNSS,P − ḣGIA,P

)(

ḣGNSS,Q − ḣGIA,Q

)

𝜎GIA,P𝜎GIA,Q

,

(12)

ḣ
NKG2016LU_abs,ij

= ḣ
GIA.ij

+ AT
ij

(

ḣ
obs.pts

empirical
− ḣ

obs.pts

GIA

)

= ḣ
GIA.ij

+ AT
ij
ḣ

obs.pts

empirical
− AT

ij
ḣ

obs.pts

GIA
,

or in a rearranged matrix form,

where the coefficients in the column vector A
ij
 are exactly 

those used to compute NKG2016LU_abs in Sect. 2.3. With 
updated variances and covariances for the GIA model errors, 
we recalculate the uncertainty. If we assume that the errors 
of the empirical model observations and GIA model are 
uncorrelated, and split the variance and covariance of the 

GIA model into 
[

�
2

GIA.ij
CT

GIA,ij

CGIA,ij CGIA

]

 , then straightforward uncer-

tainty propagation yields,

where �2

GIA.ij
 is the variance of the GIA model error in the 

node point ij, C
GIA

 is the variance–covariance matrix of the 
GIA model errors in the observation points, CGIA,ij is the 
corresponding cross-covariance column vector between grid 
node (i, j) and the observation points, and Dempirical is the 
variance–covariance matrix for the observation noise (see 
below). Note that before (e.g. in Sect. 2.3) we referred to the 
GIA model error as signals, now we consider all errors as 
noise and use the derived variances and covariances and 
apply the statistical law of uncertainty propagation directly 
on Eq. (13), keeping A

ij
 fixed to the existing values from 

Sect. 2.3. Note further that, if the same homogeneous and 
isotropic variance–covariance matrices as in Sect. 2.3 are 
used in Eq. (14), then this equation turns into Eq. (3) exactly.

(13)
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1 −AT
ij
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ḣ
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ḣ
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GIA

]T

+ AT
ij
ḣ
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(14)
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= �
2
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(

CGIA + Dempirical

)

A
ij
− 2AT

ij
CGIA,ij,

Fig. 16  Empirical correlation function for the GIA model errors esti-
mated using the GNSS observations and the GIA uncertainty grid in 
Fig.  15 (red line). The analytical 1st-order Gauss–Markov function 
computed with unit variance and correlation length
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Another problem with the preliminary standard uncer-
tainty grid for the semi-empirical model NKG2016LU_abs 
in Fig. 14 is that the correlations between the (purely) 
empirical model observations are not properly consid-
ered. We now model these correlations by assuming an 
analytical 1st-order Gauss–Markov correlation function 
and set the correlation length to the length used for the 
computation of the purely empirical model, i.e. 40 km; see 
Figure S3 in the Supplementary Material. This correlation 
function is then used to compute the matrix Dempirical from 
the individual observation standard uncertainties using 
Eq.  (10). Note that this correlation length is based on 
residuals with respect to the signals. In reality, the uplift 
in the model is estimated signals plus trend, and a longer 
correlation length is very likely. Using the full covariance 
matrix from the empirical calculation would be the opti-
mal solution. Using the above correlation function is a 
stepwise improvement, and we refer to Sect. 3.4 for a more 
optimal handling of the observation noise.

The final NKG2016LU_abs uncertainty grid computed 
according to the above developments is illustrated in 
Fig. 17.

Now, we have replaced the homogeneous and isotropic 
covariance function used in Sect. 2.3 (in Eqs. 2 and 3) 
with a more realistic function, which is constructed from a 
homogeneous and isotropic correlation function. We have 
also changed the variance–covariance matrix D so that 
the correlations of the empirical model observations are 
taken care of (no longer diagonal). These refinements to 
the error model imply that NKG2016LU_abs is now non-
optimal. The reason for not making a new LSC solution 
based on the above updates is that the NKG2016LU_abs 

model has already been officially released (in June 2016). 
The next subsection examines how the uncertainties of 
such a new optimal LSC collocation solutions differ from 
the uncertainty estimates in Fig. 17.

3.4  Heterogeneous least square collocation  
in one step

As mentioned in Sects. 1 and 2, calculating the combined 
semi-empirical uplift model in one step is an alternative 
to the two-step approach used for the officially released 
NKG2016LU model. A one-step approach is more straight-
forward and makes the uncertainty calculation easier and 
more optimal in a statistical sense. This is a promising future 
development, which is presented here mainly to check the 
quality of the above uncertainty grid for NKG2016LU illus-
trated in Fig. 17.

In the one-step approach, we replace the 5th degree poly-
nomial surface used as trend in the purely empirical model 
of Sect. 2.1 with the GIA model, and calculate the difference 
between GIA model and observation as signals. Just as in 
Sect. 2.3, we assume no significant offset between ITRF2008 
and GIA model. We use the above-mentioned variance and 
covariance as statistical characteristics of these signals, 
meaning that we use the GIA model uncertainty grid in 
Fig. 15 and the analytical correlation function in Fig. 16. I.e. 
the GIA uncertainty grid is �

GIA
=

√

�
2

STD
+ (0.34 mm/a)

2 

and the correlation length is 100 km.
The fundamental difference concerning uncertainty esti-

mation is that we now use the given observation uncertain-
ties directly when forming the D matrix, later used to calcu-
late the normal equations.

Fig. 17  Final uncertainty grid of NKG2016LU_abs, based on the 
GIA model uncertainty grid in Fig.  15, the analytical correlation 
function in Fig.  16 and the above modelling of correlations for the 

empirical model observations. The two plots only differ in that they 
have different colour scales. Plot a has the same colour scale as 
Fig. 14. Both figures have a contour interval of 0.05 mm/a
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Since we no longer estimate a trend surface, we must 
modify the observation equation given in Subsection 1.2 
in Supplementary Material. We have for the levelling 
observations,

and for the CORS data,

where  GIAb−a is the difference in GIA model value between 
point a and point b, and  GIAi is the GIA model value in 
CORS i. Furthermore, h

a
 and h

b
 are the unknown height in 

point a and b, respectively, and s
a
 and s

b
 are the unknown 

signals in the same points. For the CORS, s
i
 is the unknown 

signal in CORS i. For both observations types, lj is the 
observed value and nj the error in observation j. Finally, tj is 
the year of observation of levelling line j. Since the rise of 
the geoid affects the two types of observations differently, 
we correct the levelling observations from levelled to abso-
lute uplift using the model in Fig. 5 before the adjustment.

In matrix form, we have

where l is an observation vector, A is the design matrix for 
the unknowns, B is the design matrix for the signals, n is the 
noise vector, x is the unknown vector, i.e. unknown heights 
at all levelling benchmarks, and s is the unknown signal 
vector.

All GIA model terms in Eqs. (15) and (16) can be moved 
to the left-hand side of the equality sign and become a part of 
the observation vector l. As parametric part of the system of 
equations, only the unknown heights remain.

(15)lj = −1�
�
+ 1�

�
+ tj

{

GIAb−a

}

−tj�� + tj�� + nj,

(16)lj = GIAi + 1�
�
+ nj,

(17)� = �� + �� + �

As explained in Vestøl (2006) and mentioned in the Sup-
plementary Material, we here do not calculate the signals in 
the normal way described in, e.g. Moritz (1980), that is used in 
Sect. 2.3. Instead, we follow the equivalent method suggested 
by Schwarz (1976) and consider also the stochastic signals as 
unknown parameters. This is allowed if we add the inverted 
variance–covariance matrix for the signals, i.e. the C matrix, 
to the lower right corner of the normal matrix N (cf. Figure 4 
in Vestøl 2006). By doing so, the variance–covariance matrix 
of the calculated semi-empirical land uplift model in the obser-
vation points is just the variance–covariance of the estimated 
signals, easily found as mo

2  N−1, where  N−1 is the inverted 
normal matrix and mo

2 is the variance of the unit weight.
We also want to find the variance and covariance for the 

predicted signals, i.e. in points with no observation (e.g. grid 
points). This is done, similar to ordinary least squares adjust-
ment, by expanding B in Eq. (17) with a null matrix and, in 
addition, expanding the C matrix to also include variances 
for predicted signals and covariance between signals in points 
with and without observations,

where n is the number of points with observation(s), m is the 
number of prediction points, and k is the number of obser-
vations. The D matrix, i.e. the variance–covariance matrix 
for the observations, is in use when calculating the normal 
matrix N and forming the right side of the normal equations.

The uncertainty model obtained by following this pro-
cedure is shown in Fig. 18. When we compare this with 

(18)Bnew =
�

B

k×m

null

�
and Cnew =

⎡⎢⎢⎣

n×n

Cobs

n×m

C
T

obs∕pred
m×n

Cobs∕pred

m×m

Cpred

⎤⎥⎥⎦
,

Fig. 18  a Alternative NKG2016LU uncertainty grid using the one-step approach. b Difference to the official uncertainty grid in Fig. 17. The 
uncertainty grid in a is not part of the official NKG2016LU release
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Fig. 17, we see very similar values. It is also interesting 
to compare with the uncertainty of the purely empiri-
cal model in Fig. 13. We note that we now have realistic 
uncertainty estimates also outside the observation area.

Using this one-step approach results in an uplift model 
that differs slightly from the officially released one; see 
Fig. 19 in Sect. 4.

4  Discussion and conclusions

We have shown how we have calculated a purely empiri-
cal land uplift model from geodetic observations and a 
GIA model based on a geophysical approach and further 
how we have merged these two models to obtain a more 
accurate and reliable semi-empirical land uplift model, 
NKG2016LU. We have then developed the corresponding 
uncertainty grids, where we have tried to take all error 
sources into account. The two-step procedure has been 
used to compute the final NKG2016LU model and its 
uncertainty grid. Since the official release of NKG2016LU, 
we have developed a new one-step method, which is more 
correct from the statistical point of view. Here, the one-
step method has been used mainly to check and verify the 
NKG2016LU uncertainty grid.

4.1  The role of the tide gauges

In the previous model from 2005, one important dataset was 
the tide gauge rates of Ekman (1996), consisting of 58 sta-
tions in the Baltic Sea and adjacent waters, including coastal 
Norway. We have omitted this dataset and rejected the whole 
idea of using tide gauge rates to estimate the land uplift.

There are several reasons behind this decision. One is 
that there are spatial variations in the mean sea-level rise 
that makes it difficult to separate this effect from the land 
uplift. There is also a temporal variation in the mean sea-
level rise, making the separation even more difficult. The 
apparent uplift computed at the tide gauges will always refer 
to a certain time interval, and it is difficult to combine tide 
gauge rates referring to different periods.

By omitting the tide gauge rates, the postglacial land 
uplift model becomes independent of tide gauge and sea-
level-related information. This is of principal importance 
when correcting for vertical land motion in climate studies 
when mean sea-level variation is involved. We can then use 
an independent model to correct relative sea-level rise for 
vertical land motion. However, an omitting/including test 
shows that the effect of omitting the tide gauge observa-
tions is generally less than 0.1 mm/a (after conversion to the 
same type of uplift). One exception is the northernmost part 
of Norway where the effect reaches 0.4 mm/a. This could 
be due to the geographical variation of sea-level rise, but 

further studies are necessary to find the reason for the dif-
ference in that region.

4.2  Reference frame

It is important to be aware of the relationship between a 
physical phenomenon and the reference frame in which we 
express this phenomenon. The NKG2016LU land uplift 
model refers to ITRF2008. This is not necessarily the right 
frame to describe a geophysical process. ITRF2008 is a 
global reference frame with its theoretical origin at the 
Earth’s centre of mass (including oceans and atmosphere) 
(Altamimi et al. 2011), while GIA is mainly related to 
solid earth processes and might be better described in a 
centre of Earth reference frame where the atmosphere is 
omitted.

Using another reference frame will give slightly different 
values. Uncertainties, differences and drift in the reference 
frame might bias the results (see e.g. Argus 2012, for a thor-
ough discussion of the uncertainty of ITRF2008). A possible 
drift of − 0.6 ± 0.2 mm/a along the z-axis in ITRF2008, as 
estimated by Wu et al. (2011), will have a systematic effect 
on the GNSS rates and the final uplift model. Kierulf et al. 
(2014) showed that the scale drift, causing the difference 
between ITRF2000 and ITRF2008, resulted in different best 
fit GIA models.

To avoid the problem with possible drift in the reference 
frame, and to ensure consistency between geophysical pro-
cesses (e.g. GIA) and the frame, Kierulf et al. (2014) trans-
formed the GPS velocity field to a reference frame deter-
mined by the GIA model subject to validation. The method 
was named the GIA-frame approach. However, for GIS and 
positioning applications, a model consistent with a conven-
tional reference frame, like ITRF2008, is preferable.

4.3  One‑ or two‑step approach

The one-step procedure is a recent development of our 
method, which will be used to compute future semi-
empirical models. The reason for including it already here 
for uncertainty is to check and verify the final standard 

uncertainty grid of NKG2016LU, which was based on the 
two-step approach described in Sect. 3.3 and illustrated in 
Fig. 17.

The two alternative uncertainty grids for the 
NKG2016LU_abs uplift model differ very little (see 
Fig. 18b). For the observation area, the uncertainty varies 
from 0.1 to 0.3 mm/a in both alternatives. Outside this area, 
the uncertainty of the GIA model influences both alterna-
tives in almost the same way with extremes in the Norwe-
gian Sea outside the north-western coast of Norway, and at 
the northern coast of the Kola Peninsula in Russia.
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Both alternatives have up and down sides. One is more 
optimal in the statistical sense, but is not strict in accordance 
with the way the released NKG2016LU model was actually 
calculated. The other represents the calculation procedure, 
but takes a few extra shortcuts concerning variance and 
covariance for signal and noise, mainly due to the two-step 
division of the problem.

To demonstrate the effect on the uplift model itself, we 
have tentatively calculated an alternative grid model using 
the one-step approach, see Fig. 19. The effect is, with a few 
exceptions, within the calculated standard error. Comparing 
this with Fig. 17, showing the uncertainty, we see that the 
differences are mostly within the level of the uncertainty. 
However, in some areas there seem to be systematic differ-
ences larger than the standard error. We have most confi-
dence in the alternative model since the calculation is more 
optimal in a statistical sense.

4.4  Future developments

We have fitted our GIA model only to RSL data and the uplift 
component of the GNSS data. Future steps will therefore 
include additional fits to satellite and terrestrial gravity data 
as well as GNSS-derived horizontal velocities. The latter may 
require the inclusion of an extra sub-lithospheric layer in the 
Earth model as suggested by Peltier and Drummond (2008) to 
get a good fit. This will at the same time increase the number 
of model combinations and may also affect the weighing ratios 
in the fitting test. This also applies when gravity observations 
are used. Further constraints that could reduce the number of 
reliable models may be obtained from a comparison of stress 

changes at the location of prominent glacially induced faults 
evident in northern and central Europe (e.g. Lagerbäck and 
Sundh 2008; Brandes et al. 2015; Lund 2015).

Concerning the calculation of semi-empirical mod-
els, the described two-step combination approach will be 
replaced by the more direct one-step counterpart, where we 
just improve the GIA model using LSC applied to geodetic 
observations. Nevertheless, we still think that the calcula-
tion of purely empirical models that can be compared with 
GIA models will continue to be very valuable. For example, 
when we compare the empirical and GIA models in the pre-
sent study, we notice remarkable differences in some areas 
such as the Norwegian Atlantic coast. In Kierulf (2017), a 
denser network of both campaign-based observations and 
permanent GNSS stations at the west coast of Northern Nor-
way was analysed in detail. He found that the GIA models 
agree with the observations at 0.5 mm/a level for most sta-
tions except for the outermost coastal ones. Here, the GIA 
model was not able to reproduce the steep gradient and gave 
more than 1 mm/a higher uplift. Kierulf (2017) points at 
neo-tectonic processes and erroneous GIA models, e.g. the 
omission of lateral heterogeneities in the Earth model, as 
possible explanations. There is much to learn by comparing 
strictly empirical and GIA models.

As we have not tried to separate the long wavelength 
uplift caused by postglacial rebound from uplift having other 
geophysical explanations, there is an interesting and likely 
difficult issue left for further studies to identify the sources 
of this difference.
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Appendix: GNSS velocities and standard 
uncertainties from the BIFROST project

The reference frame is ITRF2008, more details in Kierulf 
et al. (in preparation).

Some CORS are moved and renamed during their history. 
For these stations, we combine the old and new time series 
and use new names. The stations in question are TRO1, 
BOD3, DGLS, SUR4 and TOR2, earlier TROM, BODS, 
DAGS, SUUR and TORA, respectively, and in this study 
called TROX, BODX, DGLX, SUUX and TORX. Variance 
component estimation documented in Subsection 1.3 in Sup-
plementary Material indicates that the standard uncertainty 
in column 5 should be multiplied by 1.41. 

* = rejected Latitude Longitude Uplift 
(mm/a)

Std. uncer-
tainty 
(mm/a)

Name

62.476 6.199 1.73 0.10 ALES
69.977 23.296 3.63 0.20 ALTC
61.231 14.037 8.15 0.20 ALV0
69.326 16.135 1.63 0.13 ANDE
69.278 16.009 1.26 0.13 ANDO
66.318 18.125 7.97 0.12 ARJ0
60.120 11.478 5.76 0.18 ARNC
58.422 24.314 2.42 0.18 AUDR
69.240 19.227 3.41 0.22 BALC
68.860 18.351 4.58 0.39 BARC 
69.000 16.565 2.78 0.09 BJAC
64.481 21.575 10.03 0.12 BJU0
57.247 17.059 3.30 0.57 BOD0
67.288 14.434 3.88 0.11 BODX
52.476 21.035 − 0.37 0.14 BOGO
52.277 17.073 − 0.44 0.11 BOR1
53.579 6.666 − 0.65 0.23 BORJ
53.564 6.747 − 0.19 0.24 BORK
60.289 5.267 2.20 0.22 BRGS
50.798 4.359 − 0.14 0.16 BRUS
55.739 12.500 1.23 0.08 BUDP
60.032 20.385 6.38 0.61 DEGE
51.986 4.388 − 0.49 0.09 DELF
50.934 3.400 − 0.88 0.10 DENT
60.417 8.502 3.54 0.30 DGLX
62.073 9.114 4.64 0.27 DOM1

* 66.098 12.472 2.03 0.59 DONC
55.494 8.457 0.21 0.08 ESBC
56.523 8.118 0.46 0.48 FER5
69.231 17.987 3.74 0.23 FINC
60.613 12.012 7.11 0.42 FLIC
61.600 5.038 1.30 0.15 FLOC
63.865 8.660 2.04 0.16 FROC
54.574 11.923 0.18 0.07 GESR

* = rejected Latitude Longitude Uplift 
(mm/a)

Std. uncer-
tainty 
(mm/a)

Name

49.914 14.786 0.44 0.35 GOPE
63.041 13.968 8.07 0.29 GRN0
62.060 12.317 6.88 0.49 GRO0
55.972 11.355 1.00 0.32 HABY
70.674 23.664 2.69 0.32 HAMC
61.075 4.840 1.78 0.09 HARC 
56.092 13.718 1.62 0.04 HAS0
59.814 7.197 2.50 0.27 HAUC 
62.419 13.513 7.86 0.44 HED0
60.605 9.743 4.47 0.36 HEDC

* 62.036 6.765 3.03 0.33 HELC
54.174 7.893 0.52 0.28 HELG
63.292 9.080 3.28 0.20 HEMC
60.144 10.249 5.14 0.21 HFSS
57.591 9.968 2.55 0.13 HIRS
53.051 10.476 0.11 0.14 HOBU
70.977 25.965 2.36 0.19 HONS
63.673 20.389 10.05 0.13 HOS0
57.554 21.852 2.19 0.74 IRBE
65.156 21.486 10.26 0.27 JAV0
62.391 30.096 3.43 0.18 JOEN
57.745 14.060 3.61 0.05 JON0
52.097 21.032 − 0.31 0.22 JOZE
56.230 12.676 1.19 0.21 JTP0
66.149 19.989 9.00 0.54 KAB0
59.444 13.506 5.58 0.14 KAD0
69.022 23.020 5.11 0.49 KAUS
69.756 27.007 4.34 0.16 KEVO
67.878 21.060 7.08 0.19 KIR0
62.820 25.702 6.51 0.19 KIVE
68.099 16.387 4.29 0.14 KJOC
61.573 11.043 5.82 0.68 KOPC
52.178 5.810 − 0.33 0.14 KOSG
62.875 17.928 9.75 0.26 KRA0
50.066 19.920 0.07 0.27 KRAW 
58.083 7.907 1.74 0.09 KRSS
56.104 15.589 1.51 0.25 KUN0
58.256 22.510 2.70 0.26 KURE
65.910 29.033 7.29 0.11 KUUS
66.942 17.739 7.31 0.66 KVI0
61.163 5.901 2.55 0.20 KYRC 
53.892 20.670 − 0.12 0.13 LAMA
64.502 10.897 3.71 0.12 LAUC 
60.722 14.877 7.47 0.15 LEK0

* 61.137 10.439 6.73 0.37 LILC
60.734 5.164 1.70 0.21 LINC
55.767 12.996 1.55 0.27 LOD0
68.412 15.986 3.83 0.14 LODC
67.888 13.037 2.17 0.12 LOFS
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* = rejected Latitude Longitude Uplift 
(mm/a)

Std. uncer-
tainty 
(mm/a)

Name

66.737 15.464 5.81 0.21 LONC
70.239 22.349 2.85 0.21 LOPC
59.338 17.829 5.88 0.08 LOV0
66.513 13.010 3.92 0.14 LURC 
60.595 17.259 7.59 0.10 MAR6
60.217 24.395 4.29 0.14 METS
65.188 18.759 9.68 0.34 MLA0
68.915 15.087 1.78 0.14 MYRC 
68.439 17.428 4.19 0.53 NARC 
58.590 16.246 4.95 0.03 NOR0
65.796 23.170 9.40 0.13 NYB0
58.903 17.944 5.75 0.44 NYN0
61.240 21.473 6.79 0.37 OLKI
57.395 11.926 2.90 0.06 ONSA
59.907 10.754 4.75 1.04 OPEC
57.066 15.997 2.71 0.08 OSK0
59.737 10.368 4.73 0.14 OSLS
63.443 14.858 8.64 0.11 OST0
60.284 12.758 6.93 0.24 OTM0
65.087 25.893 8.58 0.09 OULU
66.318 22.773 8.97 0.13 OVE0
58.804 9.429 3.49 0.10 PORC
52.379 13.066 − 0.15 0.22 POTS
59.489 6.254 2.17 0.15 PREC

* 56.290 26.725 − 1.18 1.11 PREI
52.296 10.460 − 0.70 0.19 PTBB
59.772 30.328 1.92 0.67 PULK
63.986 20.896 10.02 0.20 RAT0
61.140 11.368 6.86 0.40 RENC
56.949 24.059 1.24 0.14 RIGA

* 64.207 10.302 2.55 0.12 ROAC
64.217 29.932 5.58 0.14 ROMU
62.575 11.388 6.70 0.50 RORC
59.984 6.012 2.55 0.16 ROSC
64.897 13.526 6.70 0.45 ROYC
54.514 13.643 0.03 0.17 SASS
64.972 15.347 8.09 0.28 SAX0
59.486 8.634 3.26 0.38 SELC
58.503 5.790 1.66 0.12 SIRC
64.879 21.048 10.31 0.17 SKE0
70.034 20.976 2.81 0.27 SKJC
55.414 12.858 0.84 0.30 SKN0
59.623 9.684 4.42 0.15 SKOC
60.651 10.928 6.11 0.32 SKRC
65.432 16.245 8.28 0.44 SLU0
55.641 9.559 0.49 0.05 SMID
58.353 11.218 3.93 0.15 SMO0
60.437 18.416 7.54 0.27 SOD0
67.421 26.389 7.61 0.26 SODA

* = rejected Latitude Longitude Uplift 
(mm/a)

Std. uncer-
tainty 
(mm/a)

Name

57.715 12.891 3.58 0.12 SPT0
67.488 18.341 6.53 0.37 SSJ1
62.119 5.317 1.11 0.16 STAC 
59.018 5.599 1.39 0.11 STAS
63.302 12.122 7.02 0.50 STL0
58.937 11.181 4.05 0.20 STR0
56.842 9.742 1.15 0.10 SULD
49.836 24.014 0.33 0.22 SULP
62.232 17.660 9.62 0.08 SUN0
59.464 24.380 3.95 0.27 SUUX
62.017 14.700 8.14 0.17 SVE0
58.486 7.466 1.38 0.46 SVEC
68.232 14.562 2.99 0.46 SVOC
60.533 29.781 2.60 0.28 SVTL
57.246 22.587 2.16 0.48 TALS

* 55.248 14.839 − 0.23 0.71 TEJH
58.006 7.555 1.60 0.17 TGDE
62.912 8.207 2.55 0.25 TINC
59.127 10.399 3.46 0.23 TJMC
57.965 12.112 4.23 0.30 TJU0

* 58.666 6.707 0.69 0.49 TNSC
59.422 27.537 2.33 0.20 TOIL
58.265 26.462 1.21 0.30 TORX
63.371 10.319 4.21 0.12 TRDS
59.020 8.521 2.61 0.31 TREC
69.663 18.940 3.13 0.17 TROX
61.423 12.382 7.15 0.21 TRY1
60.416 22.443 5.72 0.14 TUOR
61.184 8.233 3.38 0.25 TYIC
59.278 9.284 3.74 0.18 ULEC
63.578 19.510 10.32 0.05 UME0
59.865 17.590 6.41 0.06 UPP0
62.961 21.771 8.41 0.26 VAAS
58.693 12.035 4.69 0.05 VAE0
70.375 31.104 3.20 0.28 VARD
70.336 31.031 3.23 0.20 VARS
65.673 11.964 3.94 0.38 VEGS
62.374 17.428 9.17 0.44 VIB0
64.864 11.242 3.51 0.30 VIKC
64.698 16.560 8.50 0.16 VIL0
61.596 9.748 5.49 0.53 VINC
60.539 27.555 3.08 0.07 VIRO
57.654 18.367 3.17 0.18 VIS0
54.653 25.299 − 0.26 0.15 VLNS
51.113 17.062 0.01 0.20 WROC
52.915 6.605 − 0.80 0.10 WSRT

49.144 12.879 − 0.39 0.16 WTZR
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