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Let Bn = �1/N�T1/2
n XnX

∗
nT

1/2
n , where Xn is n×N with i.i.d. complex

standardized entries having finite fourth moment and T1/2
n is a Hermitian

square root of the nonnegative definite Hermitian matrix Tn. It is known
that, as n → ∞, if n/N converges to a positive number and the empir-
ical distribution of the eigenvalues of Tn converges to a proper probabil-
ity distribution, then the empirical distribution of the eigenvalues of Bn
converges a.s. to a nonrandom limit. In this paper we prove that, under
certain conditions on the eigenvalues of Tn, for any closed interval outside
the support of the limit, with probability 1 there will be no eigenvalues in
this interval for all n sufficiently large.

1. Introduction. For n = 1�2� � � � let X = Xn = �Xij�, T = Tn and T1/2
n

denote, respectively, an n×N matrix consisting of i.i.d. standardized complex
entries (EX11 = 0, E�X11�2 = 1), an n×n nonnegative definite matrix and any
square root of T. For any square matrix A having real eigenvalues, let FA

denote the empirical distribution function (e.d.f.) of its eigenvalues. The matrix
Bn = �1/N�T1/2

n XX∗T1/2
n can be viewed as the sample covariance matrix of a

broad class of random vectors, T1/2
n X•1 (X•j denoting the jth column of X).

Previous work on understanding the behavior of the eigenvalues of Bn when
n and N are large but have the same order of magnitude has been on FBn
and on the extreme eigenvalues when T = I, the identity matrix. Assuming
N = N�n� with n/N → c > 0 as n → ∞ and FT →� H, a proper p.d.f., it is
known that almost surely FBn converges weakly to a nonrandom p.d.f. F [see
Silverstein (1995)]. Proving this result, along with describing F (which can be
explicitly expressed in only a few cases), is best achieved with the aid of the
Stieltjes transform, defined for any p.d.f. G by

mG�z� ≡
∫ 1
λ− z dG�λ�� z ∈ C

+ ≡ z ∈ C� Im z > 0��
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Because of the inversion formula

G��a� b�� = 1
π

lim
η→0

∫ b
a

ImmG�ξ + iη�dξ

(a� b continuity points of G), weak convergence of p.d.f.’s can be proven by
showing convergence of Stieltjes transforms.

For each z ∈ C
+, m = mF�z� is a solution to the equation

m =
∫ 1
t�1 − c− czm� − z dH�t��

which is unique in the set m ∈ C� − �1 − c�/z + cm ∈ C
+�. Let Bn =

�1/N�X∗TX. Since the spectra of Bn and Bn differ by �n − N� zero eigen-
values, it follows that

FBn =
(

1 − n

N

)
I�0�∞� + n

N
FBn�

from which we get

mFBn �z� = −�1 − n/N�
z

+ n

N
mFBn �z�� z ∈ C

+�

and, with F denoting the limit of FBn , we have

F = �1 − c�I�0�∞� + cF
and

mF�z� = −�1 − c�
z

+ cmF�z�� z ∈ C
+�

It follows that

mF = −z−1
∫ 1

1 + tmF

dH�t�

for each z ∈ C
+, m = mF�z� is the unique solution in C

+ to the equation

�1�1� m = −
(
z− c

∫ t dH�t�
1 + tm

)−1

and mF�z� has an inverse, explicitly given by

�1�2� z�m� = − 1
m

+ c
∫ t dH�t�

1 + tm �

Much of the analytic behavior of F can be inferred from these equations
[see Silverstein and Choi (1995)]. Indeed, continuous dependence of F on c
and H is readily apparent from (1.2) and the inversion formula, and it can
be shown that F →� H as c → 0. Moreover, it is shown in Silverstein and
Choi (1995) that, away from zero, F has a continuous density. As an example
Figure 1a is the graph of the density when c = 0�1 and H places mass 0.2, 0.4
and 0.4 at, respectively, 1, 3 and 10.

The focus of this paper is on intervals of R
+ lying outside the support of

F. The inverse (1.2) can be used to identify these intervals, mainly because,
on any such interval, mF exists and is increasing. Consequently, its inverse
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Fig. 1. (a) Graph of the limiting density when c = 0�1 and H places mass 0�2� 0�4 and 0�4 at,
respectively, 1� 3 and 10. (b) Graph of x = −m−1 + c

∫
t�1 + tm�−1 dH�t� corresponding to (a).

The bold lines on the vertical axis indicate the support of the density, the set in R
+ remaining

after removing intervals where the graph is increasing. Using the fact that the density at x ∈ R
+

is equal to �cπ�−1 times the imaginary part of mF�x� [see Silverstein and Choi (1995)], the graph
in (a) was created by applying Newton’s method to (1.2) for values of z = x in the support.

will also exist and will be increasing on the range of this interval. Silverstein
and Choi (1995) confirm each m in this range is such that −1/m lies outside
the support of H. Therefore, plotting (1.2) on R and observing the range of
values where it is increasing will yield the complement of the support of F
and, together with c (to determine whether there is any mass at zero), the
complement of the support of F. Figure 1b provides an illustration. It is the
graph of (1.2) corresponding to the density in Figure 1a.

For large n one would intuitively expect no eigenvalues to appear on a
closed interval outside the support of F. This, of course, cannot be inferred
from the limiting result on FBn . The two important cases when T = I have
been settled. Here the support of F lies on ��1 − √

c�2� �1 + √
c�2�, with the
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addition of 0 when c > 1. When the entries of X come from the upper-left
portion of a doubly infinite array of independent random variables having
finite fourth moment, Yin, Bai and Krishnaiah (1988) and Bai and Yin (1993)
show, respectively, the largest eigenvalue of Bn converges a.s. to �1 + √

c�2,
and the min�n�N�th largest (which is the smallest eigenvalue when c < 1)
converges a.s. to �1 − √

c�2 [we remark here that in Bai, Silverstein and Yin
(1988), it is proven that E�X11�4 < ∞ is necessary for the former to hold].

Extensive computer simulations, performed in order to show the impor-
tance of the spectral limiting results to the detection problem in array signal
processing [Silverstein and Combettes (1992)], resulted in no eigenvalues ap-
pearing where there is no mass in the limit. Under reasonably mild conditions,
this paper will provide a proof of this phenomenon, again in the form of a limit
theorem as n → ∞.

It will be necessary to impose stronger conditions on the eigenvalues of Tn
than simply weak convergence of FTn to H. For this, if we let Fc�H denote F
and cn = n/N, then Fcn�Hn is the “limiting” nonrandom d.f. associated with
the “limiting” ratio cn and d.f. Hn. As will be seen, the conditions on Hn are
reflected in Fcn�Hn .

Theorem 1.1. Assume:

(a) Xij, i� j = 1�2� � � � � are i.i.d. random variables in C with EX11 = 0,

E�X11�2 = 1 and E�X11�4 < ∞.
(b) N = N�n� with cn = n/N → c > 0 as n → ∞.
(c) For each n, T = Tn is n × n Hermitian nonnegative definite satisfying

Hn ≡ FTn →� H, a p.d.f.
(d) �Tn�, the spectral norm of Tn, is bounded in n.

(e) Bn = �1/N�T1/2
n XnX

∗
nT

1/2
n , T

1/2
n any Hermitian square root of Tn, Bn =

�1/N�X∗
nTnXn, where X = Xn = �Xij�, i = 1�2� � � � � n, j = 1�2� � � � �N.

(f) The interval �a� b� with a > 0 lies outside the support of Fc�H and Fcn�Hn

for all large n.

Then P�no eigenvalue of Bn appears in �a� b� for all large n � = 1�

Using the results on the extreme eigenvalues of �1/N�XX∗, we see that the
interval can also be unbounded. In particular, we have

Corollary. If �Tn� converges to the largest number in the support of H�
then �Bn� converges a.s. to the largest number in the support of F. If the
smallest eigenvalue of Tn converges to the smallest number in the support of
H� then c < 1 �c > 1� implies the smallest eigenvalue of Bn �Bn� converges to
the smallest number in the support of F �F�.

Theorem 1�1 is proven by showing the convergence of Stieltjes transforms
at an appropriate rate, uniform with respect to the real part of z over certain
intervals, while the imaginary part of z converges to 0. Besides relying on stan-
dard results on matrices, the proof requires well-known bounds on moments
of martingale difference sequences, as well as an extension of Rosenthal’s in-
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equality to random quadratic forms. The proof of the latter will be given in
the Appendix. Statements of most of the mathematical tools needed will be
given in the next section. Section 3 establishes a rate of convergence of FBn�
needed in proving the convergence of the Stieltjes transforms. The latter will
be broken down into two parts (Sections 4 and 5), while Section 6 completes
the proof.

It is mentioned here that Theorem 1�1 is actually only part of the important
phenomena observed in simulations. It can be shown that on any interval JH
with endpoints outside the support of H� there corresponds, for c sufficiently
small, an interval JF�c with endpoints being boundary points of the support of
F satisfying F�JF�c� = H�JH�. This should be viewed in the finite but large
dimensional case as the eigenvalues of Bn being a “smoothed” deformation
of the eigenvalues of Tn� continuous in the ratio of dimension to sample size.
Simulations reveal that the number of eigenvalues of Bn appearing in JFn� cn is
exactly the same as the number of eigenvalues of Tn in JHn

. The formulation
of the conjecture naturally arising from this is simply

n�Fn�JF�c� −Fcn�Hn�JF�c�� → 0 a.s.

Its truth is currently being investigated.

2. Mathematical tools. We list in this section results needed to prove
Theorem 1.1. Throughout the rest of the paper constants appearing in in-
equalities are represented by K and occasionally subscripted with the vari-
ables they depend on. They are nonrandom and may take on different values
from one appearance to the next.

The referenced results below concerning moments of sums of complex ran-
dom variables were originally proven for real variables. Extension to the com-
plex case is straightforward.

Lemma 2.1 [Burkholder (1973)]. Let Xk� be a complex martingale differ-
ence sequence with respect to the increasing σ-field �k�. Then, for p ≥ 2�

E
∣∣∣∑Xk

∣∣∣p ≤ Kp

(
E
(∑

E��Xk�2��k−1�
)p/2

+E∑ �Xk�p
)
�

Lemma 2.2 [Burkholder (1973)]. With Xk� as above, we have, for p > 1�

E
∣∣∣∑Xk

∣∣∣p ≤ KpE
(∑ �Xk�2

)p/2
�

Lemma 2.3 [Rosenthal (1970)]. If Xk� are independent nonnegative, then,
for p ≥ 1�

E
(∑

Xk

)p
≤ Kp

((∑
EXk

)p
+ ∑

EX
p
k

)
�

Lemma 2.4 [Dilworth (1993)]. With �k� as above, Xk�k≥1 a sequence of
integrable random variables and 1 ≤ q ≤ p < ∞� we have

E

( ∞∑
k=1

∣∣E�Xk��k�
∣∣q)p/q ≤

(
p

q

)p/q
E

( ∞∑
k=1

�Xk�q
)p/q

�
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The following lemma is found in most probability textbooks.

Lemma 2.5 (Kolmogorov’s inequality for submartingales). IfX1� � � � �Xm is
a submartingale, then, for any α > 0,

P
(

max
k≤m

Xk ≥ α
)

≤ 1
α
E��Xm���

The next one has a straightforward proof.

Lemma 2.6. If, for all t > 0, P��X� > t�tp ≤ K for some positive p, then,
for any positive q < p,

E�X�q ≤ Kq/p

(
p

p− q
)
�

Lemma 2.7. For X = �X1� � � � �Xn�T i.i.d. standardized (complex) entries,
C n× n matrix (complex), we have, for any p ≥ 2,

E�X∗CX− trC�p ≤ Kp

(�E�X1�4 trCC∗�p/2 +E�X1�2p tr�CC∗�p/2)�
The proof is given in the Appendix.

Lemma 2.8 [Corollary 7.3.8 of Horn and Johnson (1985)]. For r× s matri-
ces A and B with respective singular values σ1 ≥ σ2 ≥ · · · ≥ σq, τ1 ≥ τ2 ≥ · · · ≥
τq, where q = min�r� s�, we have

�σk − τk� ≤ �B−A� for all k = 1�2� � � � � q�

Lemma 2.9 [(3.3.41) of Horn and Johnson (1991)]. For n × n Hermitian
A = �aij� with eigenvalues λ1� � � � � λn� and convex f� we have

n∑
i=1

f�ai i� ≤
n∑
i=1

f�λi��

Lemma 2.10 [Lemma 2.6 of Silverstein and Bai (1995)]. Let z ∈ C
+ with

v = Im z, A and B n× n with B Hermitian and r ∈ C
n. Then

∣∣tr(�B− zI�−1 − �B+ rr∗ − zI�−1)A∣∣ =
∣∣∣∣r

∗�B− zI�−1A�B− zI�−1r

1 + r∗�B− zI�−1r

∣∣∣∣ ≤ �A�
v
�

Lemma 2.11 [Lemma 2.3 of Silverstein (1995)]. For z = x + iv ∈ C
+ let

m1�z�, m2�z� be Stieltjes transforms of any two p.d.f.’s, A and B n×n with A
Hermitian nonnegative definite and r ∈ C

n. Then:

�a� ∥∥�m1�z�A+ I�−1
∥∥ ≤ max�4�A�/v�2��

�b�
∣∣trB��m1�z�A+ I�−1 − �m2�z�A+ I�−1�∣∣

≤ �m2�z� −m1�z��n�B� �A��max�4�A�/v�2��2�
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�c�
∣∣r∗B�m1�z�A+ I�−1r− r∗B�m2�z�A+ I�−1r

∣∣
≤ �m2�z� −m1�z�� �r�2�B� �A��max�4�A�/v�2��2

(�r� denoting the Euclidean norm on r).

Lemma 2.12 [Lemma 2.4 of Silverstein and Bai (1995)]. For n× n Hermi-
tian A and B,

�FA −FB� ≤ 1
n

rank�A−B��

� · � here denoting the sup norm on functions.

Basic properties on matrices will be used throughout the paper, the two
most common being: trAB ≤ �A� trB for Hermitian nonnegative definite A
and B, and forA n×n and r ∈ C

n, for which bothA andA+rr∗ are invertible,

r∗�A+ rr∗�−1 = 1
�1 + r∗A−1r�r

∗A−1�

At one point in Section 3 the two-dimensional Stieltjes transform is needed.
Its definition and relevant properties are given here. For a p.d.f. F�x�y� de-
fined on R

2, it is defined as

m�z1� z2� =
∫ 1

�x− z1��y− z2�
dF�x�y�

for all z1 = x1 + iv1, z2 = x2 + iv2, v1 �= 0, v2 �= 0. Due to the inversion formula

F��a� b� × �c� d�� = − 1
π2

lim
v↓0

∫
�a� b�×�c� d�

m�z1� z2� −m�z̄1� z2�

−m�z1� z̄2� +m�z̄1� z̄2�dx1 dx2�

v1 = v2 = v, whenever F�∂��a� b� × �c� d��� = 0, weak convergence of p.d.f.’s
on R

2 is assured once convergence of their Stieltjes transforms is verified on
a countable collection of points �z1� z2� dense in some open set in C

2.

3. A rate on FBn . We begin by simplifying our assumptions.
Because of assumption (d) in Theorem 1.1, we can assume �Tn� = 1.
For C > 0 let Yij = XijI��Xij�≤C� − EXijI��Xij�≤C�, Y = �Yij� and B̃n=

�1/N�T1/2
n YnY

∗
nT

1/2
n . Denote the eigenvalues of Bn and B̃n by λk and λ̃k (in

decreasing order). Since these are the squares of the kth largest singular
values of �1/√N�T1/2

n Xn and �1/√N�T1/2
n Yn (respectively), we find, using

Lemma 2.8,

max
k≤n

∣∣λ1/2
k − λ̃1/2

k

∣∣ ≤ �1/
√
N�∥∥Xn −Yn

∥∥�
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Since Xij −Yij = XijI��Xij�>C� −EXijI��Xij�>C�, from Yin, Bai and Krishnaiah
(1988) we have, with probability 1,

lim sup
n→∞

max
k≤n

∣∣λ1/2
k − λ̃1/2

k

∣∣ ≤ �1 + √
c�E1/2

∣∣X11

∣∣2I��X11�>C��

Because of assumption (a) we can make the above bound arbitrarily small by
choosing C sufficiently large. Thus, in proving Theorem 1.1 it is enough to
consider the case where the underlying variables are uniformly bounded.

In this case it is proven in Yin, Bai and Krishnaiah (1988) that there exists
a sequence kn� satisfying kn/ log n → ∞ such that, for any η > �1 + √

c�2,

E
∥∥�1/N�XnX

∗
n

∥∥kn ≤ ηkn
for all n sufficiently large. It follows then that λmax, the largest eigenvalue of
Bn, satisfies

�3�1� P
(
λmax ≥ K) = o�N−1�

for any K > �1 + √
c�2 and any positive 1.

Also, since tr�CC∗�p/2 ≤ �trCC∗�p/2, we get from Lemma 2.7 when X1 is
bounded

�3�2� E�X∗
•1CX•1 − trC�p ≤ Kp�trCC∗�p/2�

where Kp also depends on the distribution of X•1. From (3.2) we easily get

�3�3� E�X∗
•1CX•1�p ≤ Kp��trCC∗�p/2 + � trC�p��

Throughout the paper, the variable z = x+ iv will be the argument of any
Stieltjes transform. Let mn = mFBn and mn = mFBn . For j = 1�2� � � � �N, let
qj = �1/√n�X•j (X•j denoting the jth column of X), rj = �1/√N�T1/2

n X•j
and B�j� = Bn�j� = Bn − rjr∗

j.
In Silverstein (1995) the formula

mn�z� = − 1
N

N∑
j=1

1
z�1 + r∗

j�B�j� − zI�−1rj�
is derived. It is easy to verify

Im r∗
j��1/z�B�j� − I�−1rj ≥ 0�

Therefore, for each j,

�3�4� 1
�z�1 + r∗

j�B�j� − zI�−1rj��
≤ 1
v
�

It is also shown in Silverstein (1995) that

�3�5�

1
n

tr�−zmn�z�Tn − zI�−1 −mn�z�
≡ wn�z�

= 1
N

N∑
j=1

−1
z�1 + r∗

j�B�j�− zI�−1rj�
dj�
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where

dj = q∗
jT

1/2
n �B�j� − zI�−1�mn�z�Tn + I�−1T1/2

n qj

− 1
n

tr�mn�z�Tn + I�−1Tn�Bn − zI�−1�

The next task is to prove for v = vn ≥ N−1/17 and for any subsets Sn ⊂
�0�∞� containing at most n elements the almost sure convergence of

max
x∈Sn

�wn�z��
v5
n

to 0. Let

m�j��z� = −�1 − cn�
z

+ cnmF
B�j� �z��

From Lemma 2.10 we have

�3�6� max
j≤N

∣∣mn�z� −m�j��z�
∣∣ ≤ 1

Nv
�

Moreover, it is easy to verify that m�j��z� is the Stieltjes transform of a p.d.f.,
so that �m�j��z�� ≤ v−1.

Write for each j ≤ N, dj = d1
j + d2

j + d3
j + d4

j, where

d1
j = q∗

jT
1/2
n �B�j� − zI�−1�mn�z�Tn + I�−1T1/2

n qj

− q∗
jT

1/2
n �B�j� − zI�−1�m�j��z�Tn + I�−1T1/2

n qj�

d2
j = q∗

jT
1/2
n �B�j� − zI�−1�m�j��z�Tn + I�−1T1/2

n qj

− 1
n

tr�m�j��z�Tn + I�−1Tn�B�j� − zI�−1�

d3
j = 1

n
tr�m�j��z�Tn + I�−1Tn�B�j� − zI�−1

− 1
n

tr�m�j��z�Tn + I�−1Tn�Bn − zI�−1

and

d4
j = 1

n
tr�m�j��z�Tn + I�−1Tn�Bn − zI�−1

− 1
n

tr�mn�z�Tn + I�−1Tn�Bn − zI�−1�

In view of (3.4), it is sufficient to show the a.s. convergence of

�3�7� max
j≤N�x∈Sn

�dij�
v6

to 0 for i = 1�2�3�4.
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Using ��A−zI�−1� ≤ 1/v for any Hermitian matrix A, we get from Lemma
2.11(c) and (3.6)

�d1
j� ≤ 16

�X•j�2

n

1
Nv4

�

Using (3.2), it follows that, for any ε > 0, p ≥ 2 and all n sufficiently large,

P

(
max

j≤N�x∈Sn

�d1
j�
v6

> ε

)
≤ nP

(
max
j≤N

∣∣∣∣�X•j�2

n
− 1

∣∣∣∣ 16
Nv10

>
ε

2

)

≤ Kp

nN

�Nv10�p ε
−pn−p/2�

so (3.7) → 0 a.s. when i = 1 and for any vn ∈ �N−1/10�1�.
Using Lemma 2.10 and Lemma 2.11(a), we find

v−6�d3
j� ≤ 1

nv8
�

so that (3.7) → 0 a.s. for i = 3 and for any vn = N−δ with δ ∈ �0�1/8�.
We get from Lemma 2.11(b) and (3.6)

v−6�d4
j� ≤ 16

1
Nv10

�

so that (3.7) → 0 a.s. for i = 4, and for any δ ∈ �0�1/10�.
Using (3.2), we find, for any p ≥ 2,

E�v−6d2
j�p ≤ Kp

1
v6pnp

(
trT1/2

n �B�j� − zI�−1�m�j��z�Tn + I�−1

×Tn�m�j��z�Tn + I�−1�B�j� − zI�−1T1/2
n

)p/2

= Kp

1
v6pnp

(
tr�m�j��z�Tn + I�−1Tn�m�j��z�Tn + I�−1

× �B�j� − zI�−1Tn�B�j� − zI�−1
)p/2

[using Lemma 2.11(a)]

≤ Kp

1
v6pnp

1
v2·p/2

(
tr�B�j� − zI�−1Tn�B�j� − zI�−1)p/2

= Kp

1
�nv7�p

(
trTn�B�j� − zI�−1�B�j� − zI�−1)p/2

≤ Kp

1
�nv7�p

(
n

v2

)p/2

= Kp

1
�n1/2v8�p �
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We then have, for any ε > 0 and p ≥ 2,

P
(

max
j≤N�x∈Sn

�v−6d2
j� > ε

)
≤ Kp

1
εp

nN

�n1/2v8�p �

Thus, maxx∈Sn �wn�z��v−5 → 0 a.s. for any nonnegative δ ≤ 1/17 since we
have shown for any positive 1, we have, for all p sufficiently large and for all
ε > 0,

P
(

max
x∈Sn

�wn�z��v−5
n > ε

)
≤ Kpε

−pn−1�

Moreover, for the sequence µn� with µn = N1/68, we have, for vn = N−δ with
any δ ≤ 1/17,

�3�8� P
(
µn max

x∈Sn
�wn�z��v−5

n > ε
)

≤ Kpε
−pn−1�

We now rewrite wn totally in terms of mn. With Hn ≡ FT and using the
identity

mn�z� = −�1 − c�
z

+ cmn�z��
we have

wn = 1
c

(
− c
z

∫ dHn�t�
1 + tmn

−mn − �1 − c�
z

)

= mn

cz

(
− c

mn

∫ dHn�t�
1 + tmn

− z− �1 − c�
mn

)

= mn

cz

(
−z− 1

mn

+ c
∫ t dHn�t�

1 + tmn

)
�

Let

ω = −z− 1
mn

+ cn
∫ t dHn�t�

1 + tmn

�

Then ω = wnzcn/mn.
Returning now to Fcn�Hn and Fc�H, let m0

n = mFcn�Hn and m0 = mFc�H . Then
m0 solves (1.1), its inverse is given by (1.2),

�3�9� m0
n = 1

−z+ cn
∫ t dHn�t�

1 + tm0
n

�

and the inverse of m0
n, denoted z0

n, is given by

�3�10� z0
n�m� = − 1

m
+ cn

∫ t dHn�t�
1 + tm �

From (3.10) and the inversion formula for Stieltjes transforms, it is obvious
that Fcn�Hn →� Fc�H as n → ∞. Therefore, from assumption (f ), an ε >
0 exists for which �a − 2ε� b + 2ε� also satisfies (f ). This interval will stay
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uniformly bounded away from the boundary of the support of Fcn�Hn for all
large n, so that for these n both supx∈�a−2ε� b+2ε��d/dx�m0

n�x� is bounded and
−1/m0

n�x� for x ∈ �a − 2ε� b + 2ε� stays uniformly away from the support of
Hn. Therefore, for all n sufficiently large,

�3�11� sup
x∈�a−2ε� b+2ε�

(
d

dx
m0
n�x�

) ∫ t2 dHn�t�
�1 + tm0

n�x��2
≤ K�

Let a′ = a − ε, b′ = b + ε. On either �−∞� a′� or �b′�∞�, each collection of
functions in λ, �λ− x�−1� x ∈ �a� b��, �λ− x�−2� x ∈ �a� b��, form a uniformly
bounded, equicontinuous family. It is straightforward then to show

�3�12� lim
n→∞ sup

x∈�a� b�
�m0

n�x� −m0�x�� = 0

and

�3�13� lim
n→∞ sup

x∈�a�b�

∣∣∣∣ ddxm0
n�x� − d

dx
m0�x�

∣∣∣∣ = 0

[see, e.g., Billingsley (1968), Problem 8, page 17]. Since, for all x ∈ �a� b�,
λ ∈ �a′� b′�c and positive v,∣∣∣∣ 1

λ− �x+ iv� − 1
λ− x

∣∣∣∣ < v

ε2
�

we have, for any sequence of positive vn converging to 0,

�3�14� lim
n→∞ sup

x∈�a� b�

∣∣m0
n�x+ ivn� −m0

n�x�∣∣ = 0�

Similarly,

�3�15� lim
n→∞ sup

x∈�a� b�

∣∣∣∣Imm0
n�x+ ivn�
vn

− d

dx
m0
n�x�

∣∣∣∣ = 0�

Expressions (3.11), (3.12), (3.14) and (3.15) will be needed in the latter part
of Section 5.

Let m0
2 = Imm0

n. We then have from (3.9)

�3�16� m0
2 =

vn +m0
2cn

∫ t2 dHn�t�
�1 + tm0

n�2∣∣∣∣−z+ cn
∫ t dHn�t�

1 + tm0
n

∣∣∣∣
2
�

For any real x, by Lemma 2.11(a),

m0
2cn

∫ t2 dHn�t�
�1 + tm0

n�2
= cnIm

(∫ t dHn�t�
1 + tm0

n

)

≤ cn��T�I+Tm0
n�−1�� ≤ 4cn

vn
�
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It follows that

�3�17�




m0
2cn

∫ t2 dHn�t�
�1 + tm0

n�2

vn +m0
2cn

∫ t2 dHn�t�
�1 + tm0

n�2




1/2

< 1 −Kv2
n

for some positive constant K.
Letmn = m1+im2, wherem1 = Remn,m2 = Immn. We havemn satisfying

�3�18� mn = 1

−z+ cn
∫ t dHn�t�

1 + tmn

−ω

and

�3�19� m2 =
vn +m2cn

∫ t2 dHn�t�
�1 + tmn�2

+ Imω

∣∣∣∣−z+ cn
∫ t dHn�t�

1 + tmn

−ω
∣∣∣∣
2

�

From (3.9) and (3.18), we get

�3�20� mn−m0
n=

�mn−m0
n�cn

∫ t2 dHn�t�
�1 + tmn��1 + tm0

n�(
−z+ cn

∫ t dHn�t�
1 + tmn

−ω
)(

−z+ cn
∫ t dHn�t�

1 + tm0
n

) +mnm
0
nω�

From Cauchy-Schwarz, (3.16), (3.17) and (3.19), we get, when �Imω/vn�<1,
∣∣∣∣∣∣∣∣∣
cn

∫ t2 dHn�t�
�1 + tmn��1 + tm0

n�(
−z+ cn

∫ t dHn�t�
1 + tmn

−ω
)(

−z+ cn
∫ t dHn�t�

1 + tm0
n

)

∣∣∣∣∣∣∣∣∣

≤


cn

∫ t2 dHn�t�
�1 + tmn�2∣∣∣∣−z+ cn
∫ t dHn�t�

1 + tmn

−ω
∣∣∣∣
2




1/2 
cn

∫ t2 dHn�t�
�1 + tm0

n�2∣∣∣∣−z+ cn
∫ t dHn�t�

1 + tm0
n

∣∣∣∣
2




1/2

=




m2cn

∫ t2 dHn�t�
�1 + tmn�2

vn +m2cn

∫ t2 dHn�t�
�1 + tmn�2

+ Imω




1/2 


m0
2cn

∫ t2 dHn�t�
�1 + tm0

n�2

vn +m0
2cn

∫ t2 dHn�t�
�1 + tm0

n�2




1/2

(3.21)
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≤




m0
2cn

∫ t2 dHn�t�
�1 + tm0

n�2

vn +m0
2cn

∫ t2 dHn�t�
�1 + tm0

n�2




1/2

≤ 1 −Kv2
n�

We claim that on the set λmax ≤ K1�, where K1 > �1 + √
c�2, for all n

sufficiently large, �mn� ≥ 1
2µ

−1
n vn whenever �x� ≤ µnv−1

n . Indeed, when x ≤ −vn
or x ≥ λmax + vn,

�mn� ≥ �Remn� ≥ K1 + µnv−1
n

�K1 + µnv−1
n �2 + v2

n

≥ 1
2µnv−1

n

for n large. When −vn < x < λmax + vn,

�mn� ≥ �Immn� ≥ vn
�K1 + vn�2 + v2

n

≥ µ−1
n v

−1
n

for n large. Thus, the claim is proven.
Therefore, when �x� ≤ µnv−1

n , on the set �wn� ≤ v4
n� ∩ λmax ≤ K1� we have

for n large �z� ≤ 2µnv−1
n and

�Im�ω�� ≤ �cnzwn/mn� ≤ Kµ2
nv

−2
n �wn� < vn�

Therefore, by (3.20) and (3.21), we have

�mn −m0
n� ≤ K−1v−2

n �mnm
0
nω�

= K−1v−2
n �cnzm0

nwn� ≤ K′v−4
n µn�wn��

It is easy to verify that for n large, when either �x� > µnv
−1
n , �wn� > v4

n or
λmax > K1,

�mn −m0
n� ≤ 3µ−1

n vn + 2v−1
n �I��wn�>v4

n� + I�λmax>K1���
Therefore, for n large, we have

max
x∈Sn

v−1
n �mn�z� −m0

n�

≤ K′µn max
x∈Sn

�wn�v−5
n + 3µ−1

n + 2v−2
n max

x∈Sn

(
I��wn�>v4

n� + I�λmax>K1�
)
�

Therefore, from (3.1) and (3.8) we find, for any positive ε and 1,

�3�22� P
(
v−1
n max

x∈Sn
�mn�z� −m0

n� > ε
)

≤ Kpε
−pn−1

for all p sufficiently large, whenever δ ≤ 1/17.
We now assume the n elements of Sn to be equally spaced between −√

n
and

√
n. Since, for �x1 − x2� ≤ 2n−1/2,

�mn�x1 + ivn� −mn�x2 + ivn�� ≤ 2n−1/2v−2
n �

�m0
n�x1 + ivn� −m0

n�x2 + ivn�� ≤ 2n−1/2v−2
n �
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and when �x� ≥ √
n, for n large,

�mn�x+ ivn�� ≤ 2n−1/2 + v−1
n I�λmax>K1��

�m0
n�x+ ivn�� ≤ 2n−1/2�

we conclude from (3.22) and (3.1), that, for any positive ε and 1,

�3�23� P
(
v−1
n sup

x∈R

�mn�x+ ivn� −m0
n�x+ ivn�� > ε

)
≤ Kpε

−pn−1

for all sufficiently large p, whenever δ ≤ 1/17.
Let E0�·� denote expectation and Ek�·� denote conditional expectation

with respect to the σ-field generated by r1� � � � � rk. Let 1� 1′ > 0 be arbitrary.
Choose 1 > 1, let p be suitably large so that (3.23) holds with 1 replaced by
1 and set r = 1p/�11′�. Since Ek�v−1′

n supx∈R
�mn�x+ ivn� −m0

n�x+ ivn��1′ �,
k = 0� � � � �N, forms a martingale, it follows from Jensen’s inequality, Lemmas
2.5 and 2.6 and (3.23) that, for any positive ε,

P
(

max
k≤N

Ek

(
v−1′
n sup

x∈R

∣∣mn�x+ ivn� −m0
n�x+ ivn�

∣∣1′) > ε)

≤ ε−rE
(
v−r1′
n sup

x∈R

∣∣mn�x+ ivn� −m0
n�x+ ivn�

∣∣r1′)

≤ ε−rK1/1
p

1

1− 1n
−1�

whenever δ ≤ 1/17. In particular, we have, for δ ≤ 1/17,

�3�24� lim
n→∞ max

k≤N
Ek�supx∈R

�mn�x+ ivn� −m0
n�x+ ivn��2�

v2
n

= 0

with probability 1.

Let λ1 ≤ λ2 ≤ · · · ≤ λN be the eigenvalues of Bn and write

mj = mout
j +min

j � j = 1�2�

where

mout
2 �x+ iv� = 1

N

∑
λj∈�a′� b′ �

v

�x− λj�2 + v2
�

mout
1 �x+ iv� = 1

N

∑
λj∈�a′� b′ �

x− λj
�x− λj�2 + v2

�

Define the sequence Gm�∞
m=1 of functions on R

2 by

G∑n−1
j=1�N�j�+1�+k�x1� x2� = EkF

Bn�x1�FBn�x2�
for k = 0�1� � � � �N�n�. Clearly each Gm is a probability distribution func-
tion on R

2, and when m = ∑n−1
j=1�N�j� + 1� + k, the two-dimensional Stieltjes

transform, m�G�
m �x1 + iv1� x2 + iv2� of Gm is Ekmn�x1 + iv1�mn�x2 + iv2�. Obvi-

ously, when δ = 0, (3.22) implies that, with probability 1, supx1� x2∈R
�m�G�

m �x1 +
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iv1� x2 + iv2� −m0
n�x1 + iv1�m0

n�x2 + iv2�� → 0 as m → ∞ for countably many
�v1� v2� forming a dense subset of an open set in the first quadrant (bounded
uniformly away from the two axes). We conclude that, with probability 1,
Gm�x1� x2� converges weakly to Fc�H�x1�Fc�H�x2�.

Since the integrands of
∫
�a′� b′ �c×�a′� b′ �c

dEkF
Bn�x1�FBn�x2�

��x− x1�2 + v2���x− x2�2 + v2�
and ∫

�a′� b′ �c
dEkF

Bn�x1�
�x− x1�2 + v2

on their respective domains are uniformly bounded and equicontinuous for
x ∈ �a� b�, it follows as in (3.13) that

�3�25� max
k

sup
x∈�a� b�

Ek

∣∣∣∣m
in
2 �x+ ivn�

v
− d

dx
m0�x�

∣∣∣∣
2

→ 0 a.s.

for any v = vn → 0.
Therefore, from (3.24) and (3.25) we have

�3�26� max
k≤N� x∈�a� b�

v−2
n Ek

(
mout

2 �x+ iv�)2 → 0 a.s.

From (3.26) we can infer a bound on the number of eigenvalues in �a� b�.
NoticeNFBn�A� is the number of eigenvalues of Bn in the setA. Let en denote
the left-hand side of (3.26). For any x ∈ �a� b�,

en ≥ 1
N2

max
k≤N

Ek

( ∑
λj∈�a� b�∩�x−vn� x+vn�

1
�x− λj�2 + v2

n

)2

≥ max
k≤N

N2Ek�FBn�a� b� ∩ �x− vn� x+ vn���2

4v4
nN

2
�

and since the number of intervals of length 2vn needed to cover �a� b� is ��b−
a�/2vn�, we find Ek�FBn�a� b���2 ≤ �b− a�2v2

nen. Therefore,

max
k≤N

Ek
(
FBn�a� b��)2 = oa�s��v2

n� = oa�s��N−2/17��

which implies

max
k≤N

Ek
(
FBn�a� b��) = oa�s��vn� = oa�s��N−1/17��

The above arguments apply to �a′� b′� as well, so we also have

�3�27� max
k≤N

Ek
(
FBn�a′� b′��)2 = oa�s��v2

n� = oa�s��N−2/17�

and

�3�28� max
k≤N

Ek
(
FBn�a′� b′��) = oa�s��vn� = oa�s��N−1/17��
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4. Convergence of mn � Emn. We now restrict δ = 1/68, that is, v =
vn = N−1/68.

Our goal is to show that

�4�1� sup
x∈�a� b�

Nvn�mn −Emn� → 0 a.s. as n → ∞�

Write D = Bn − zI, Dj = D − rjr∗
j and Djj = D − �rjr∗

j + rjr∗
j�, j �= j.

Then mn = �1/n� tr�D−1�. Let us also denote

αj = r∗
jD

−2
j rj −N−1 tr�D−2

j Tn�� aj = N−1 tr�D−2
j Tn��

βj = 1

1 + r∗
jD

−1
j rj

� bn = 1

1 +N−1E tr�TnD−1
1 � �

γj = r∗
jD

−1
j rj −N−1E�tr�D−1

j Tn��� γ̂j = r∗
jD

−1
j rj −N−1 tr�D−1

j Tn��
We first derive bounds on moments of γj and γ̂j. Using (3.2), we find, for

all p ≥ 2,

�4�2� E�γ̂j�p ≤ KpN
−pE�trT1/2

n D−1
j TnD̄

−1
j T

1/2
n �p/2 ≤ KpN

−p/2v−p
n �

Using Lemmas 2.2 and 2.10, we have, for p ≥ 2,

E�γj − γ̂j�p = E�γ1 − γ̂1�p

= E

∣∣∣∣ 1
N

N∑
j=2

Ej trTnD
−1
1 −Ej−1 trTnD

−1
1

∣∣∣∣
p

= E

∣∣∣∣ 1
N

N∑
j=2

Ej trTn�D−1
1 −D−1

1j � −Ej−1 trTn�D−1
1 −D−1

1j �
∣∣∣∣
p

= E

∣∣∣∣ 1
N

N∑
j=2

�Ej −Ej−1�
r∗
jD

−1
1jTnD

−1
1j rj

1 + r∗
jD

−1
1j rj

∣∣∣∣
p

≤ Kp

1
Np

E

( N∑
j=2

∣∣∣∣�Ej −Ej−1�
r∗
jD

−1
1jTnD

−1
1j rj

1 + r∗
jD

−1
1j rj

∣∣∣∣
2)p/2

≤ KpN
−p/2v−p

n �

Therefore,

�4�3� E�γj�p ≤ KpN
−p/2v−p

n �

We next prove that bn is bounded for all n. We have bn and β1 both bounded
in absolute value by �z�/vn [see (3.4)]. From the equation relating mn to the
βj’s [above (3.4)], we have Eβ1 = −zEmn. Using (3.24), we get

sup
x∈�a� b�

∣∣E�mn�z�� −m0
n�z�

∣∣ = o�vn��

Since m0
n is bounded for all n, x ∈ �a� b� and v, we have supx∈�a� b� �Eβ1� ≤ K.
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Since bn = β1 + β1bnγ1, we get

sup
x∈�a� b�

�bn� = sup
x∈�a� b�

�Eβ1 +Eβ1bnγ1� ≤ K+K1/2
2 v−3

n N
−1/2 ≤ K�

Since �mn�x1 + ivn� −mn�x2 + ivn�� ≤ �x1 − x2�v−2
n , we see that (4.1) will

follow from

max
x∈Sn

Nvn�mn −Emn� → 0 a.s.�

where Sn now contains n2 elements, equally spaced in �a� b�.
We write

mn −Emn = 1
n

N∑
j=1

Ej trD−1 −Ej−1 trD−1

= 1
n

N∑
j=1

�Ej −Ej−1�
(

r∗
jD

−2
j rj

1 + r∗
jD

−1
j rj

)

= 1
n

N∑
j=1

�Ej −Ej−1�
r∗
jD

−2
j rj

1 +N−1E trTnD
−1
j

+ 1
n

N∑
j=1

�Ej −Ej−1�
r∗
jD

−2
j rj�N−1E trTnD

−1
j − r∗

jD
−1
j rj�

�1 +N−1E trTnD
−1
j �2

+ 1
n

N∑
j=1

�Ej −Ej−1�
r∗
jD

−2
j rj�N−1E trTnD

−1
j − r∗

jD
−1
j rj�2

�1 +N−1E trTnD
−1
j �2�1 + r∗

jD
−1
j rj�

= bn
n

N∑
j=1

Ejαj − b2
n

n

N∑
j=1

Ejajγ̂j

− b2
n

n

N∑
j=1

�Ej −Ej−1��αjγj − r∗
jD

−2
j rjβjγ

2
j�

≡ W1 −W2 −W3�

Let Fnj be the spectral distribution of the matrix
∑
k �=j rkr

∗
k. From Lemma

2.12 and (3.27), we get

�4�4� max
j
Ej�Fnj��a′� b′���2 = o�N−2/17� = o�v8

n� a.s.

Define

�j = I�Ej−1Fnj��a′� b′ ��≤v4
n�∩�Ej−1�Fnj��a′� b′ ���2≤v8

n��

Then �j = I�EjFnj��a′� b′ ��≤v4
n�∩�Ej�Fnj��a′� b′ ���2≤v8

n� a.s. and we have

P

( N⋃
j=1

��j = 0� i.o.
)

= 0�
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Therefore, we have, for any ε > 0,

P
(

max
x∈Sn

�NvnW1� > ε i.o.
)

≤ P
(([

max
x∈Sn

∣∣∣∣vn
N∑
j=1

Ej�αj�
∣∣∣∣ > ε

] N⋂
j=1

��j = 1�
)

∪
( N⋃
j=1

��j = 0�
)

i.o.
)

≤ P
(

max
x∈Sn

∣∣∣∣vn
N∑
j=1

Ej�αj��j

∣∣∣∣ > ε i.o.
)
�

where ε = infn nε/�Nbn� > 0 since bn is bounded. Note that, for each x ∈ R,
Ej�αj��j� forms a martingale difference sequence.

By Lemma 2.1 and (3.2), we have, for each x ∈ �a� b� and p ≥ 2,

E

∣∣∣∣vn
N∑
j=1

Ej�αj��j

∣∣∣∣
p

≤ Kp

(
E

( N∑
j=1

Ej−1�vnEj�αj��j�2
)p/2

+
N∑
j=1

E�vnEj�αj��j�p
)

≤ Kp

(
E

( N∑
j=1

Ej−1v
2
nN

−2�j tr
(
T1/2
n D−2

j TnD
−2
j T

1/2
n

))p/2
+NvpnE�α1�p

)

≤ Kp

(
vpnN

−pE
( N∑
j=1

�jEj−1 tr
(
D−2
j D

−2
j

))p/2

+NvpnN−pE
(
tr
(
T1/2
n D−2

1 TnD
−2
1 T1/2

n

))p/2)

≤ Kp

(
vpnN

−pE
( N∑
j=1

�jEj−1 tr
(
D−2
j D

−2
j

))p/2
+ v−p

n N
1−p/2

)
�

Let λkj denote the kth smallest eigenvalue of
∑
k �=j rkr

∗
k. We have

N∑
j=1

�jEj−1 trD−2
j D

−2
j =

N∑
j=1

�jEj−1

[ ∑
λkj /∈�a′b′ �

1
��λkj − x�2 + v2

n�2

+ ∑
λkj∈�a′b′ �

1
��λkj − x�2 + v2

n�2

]

≤
N∑
j=1

�nε−4 + �jv
−4
n Ej−1nFnj��a′� b′��� ≤ KN2�

Therefore,

P

(
max
x∈Sn

∣∣∣∣vn
N∑
j=1

Ej�αj��j

∣∣∣∣ > ε
)

≤ n2Kp�εN
−p/68�

which is summable when p > 204. Therefore, maxx∈Sn �W1� = o�1/Nvn� a.s.
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Proving

�4�5� max
x∈Sn

�W2� = o�1/Nvn� a.s.

is handled the same way. We get, using Lemma 2.10, (3.2) and the fact that
�aj� ≤ �n/N�v−2

n ,

E

∣∣∣∣vn
N∑
j=1

Ej�ajγ̂j��j

∣∣∣∣
p

≤ Kp

(
E

( N∑
j=1

Ej−1�vnEj�ajγ̂j��j�2
)p/2

+
N∑
j=1

E�vnEj�ajγ̂j��j�p
)

≤ Kp

(
vpnN

−pE
( N∑
j=1

�jEj−1

(
�aj�2 trD−1

j D
−1
j

))p/2

+N1−pv−p
n

(
trD−1

j D
−1
j

)p/2)

≤ Kp

(
vpnN

−pE
( N∑
j=1

�jEj−1

(
�aj�2 trD−1

j D
−1
j

))p/2
+ v−2p

n N1−p/2
)
�

This time

N∑
j=1

�jEj−1

(
�aj�2 trD−1

j D
−1
j

)

≤
N∑
j=1

�jEj−1N
−2n

∑
k

1
��λkj − x�2 + v2

n�2

∑
k

1
�λkj − x�2 + v2

n

≤
N∑
j=1

�jN
−2nEj−1�nε−4 + v−4

n nFnj��a� b���

× �nε−2 + v−2
n nFnj��a� b��� ≤ KN2�

so that (4.5) also holds.
Using Lemmas 2.2 and 2.10 and (3.2) and (4.3), we get

E

∣∣∣∣vn
N∑
j=1

�Ej −Ej−1��αjγj − rjD−2
j rjβjγ

2
j�
∣∣∣∣
p

≤ Kpv
p
nN

p/2�E�α1γ1�p + v−p
n E�γ1�2p�

≤ Kpv
p
nN

p/2
(
N−p

(
E
(
trD−2

j D
−2
j

)p)1/2
N−p/2v−p

n + v−3p
n N−p

)

≤ Kpv
p
nN

p/2�N−pNp/2v−2p
n N−p/2v−p

n + v−3p
n N−p� = 2KpN

−p/2v−2p
n �

Thus, we get maxx∈Sn �W3� = o�1/Nvn� a.s. and, consequently, (4.1).
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5. Convergence of expected value. Our next goal is to show that, for
v = N−1/68,

�5�1� sup
x∈�a� b�

∣∣Emn −m0
n

∣∣ = O�1/N��

We begin by deriving an identity similar to (3.5). Write Bn − zI −
�−zEmn�z�Tn − zI� = ∑N

j=1 rjr
∗
j − �−zEmn�z��Tn. Taking first inverses

and then expected value, we get

(−zEmnTn − zI)−1 −E�Bn − zI�−1

= (−zEmnTn − zI)−1
E

[ N∑
j=1

rjr
∗
j − �−zEmn�z��Tn�Bn − zI�−1

]

= −z−1
N∑
j=1

Eβj

[
�Emn�z�Tn + I�−1rjr

∗
j�B�j� − zI�−1

− 1
N

�Emn�z�Tn + I�−1TnE�Bn − zI�−1
]

= −z−1NEβ1

[
�Emn�z�Tn + I�−1r1r

∗
1D

−1
1

− 1
N

�Emn�z�Tn + I�−1TnED
−1
]
�

Taking the trace on both sides and dividing by −N/z, we get

�5�2�
cn

∫ dHn�t�
1 + tEmn

+ zcnE�mn�z��

=Eβ1

[
r∗

1D
−1
1 �EmnTn+I�−1r1 − 1

N
E tr�EmnTn+I�−1TnD

−1
]
�

We first show

�5�3�
sup
x∈�a� b�

N−1
∣∣∣E tr�EmnTn + I�−1TnD

−1

−E tr�EmnTn + I�−1TnD
−1
1

∣∣∣ = O�N−1��

From (4.4) we get

�5�4� sup
x∈�a� b�

E
(
trD−1

1 D
−1
1

)2
≤ E�nε−2 + v−2

n nFn1��a′� b′���2 ≤ KN2

and

�5�5� sup
x∈�a� b�

E trD−2
1 D

−2
1 ≤ E�nε−4 + v−4

n nFn1��a′� b′��� ≤ KN�
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Also, because of (3.24) and the fact that −1/m0
n�z� stays uniformly away from

the eigenvalues of Tn for all x ∈ �a� b�, we must have

�5�6� sup
x∈�a� b�

��Emn�z�Tn + I�−1� ≤ K�

Therefore, from (3.3), (4.3), (5.4)–(5.6) and the fact that supx∈�a� b��bn� is
bounded, we get

Left-hand side of (5.3)

= N−1 sup
x∈�a� b�

∣∣Eβ1r
∗
1D

−1
1

(
EmnTn + I)−1

TnD
−1
1 r1�

∣∣

≤ N−1 sup
x∈�a� b�

(�bn� · ∣∣Er∗
1D

−1
1

(
EmnTn + I)−1

TnD
−1
1 r1

∣∣

+E∣∣β1bnγ1r
∗
1D

−1
1

(
EmnTn + I)−1

TnD
−1
1 r1

∣∣)
≤ KN−1 sup

x∈�a� b�

(
N−1

∣∣E trT1/2
n D−1

1

(
EmnTn + I)−1

TnD
−1
1 T

1/2
n

∣∣

+ v−1
n �E�γ1�2�1/2(E∣∣r∗

1D
−1
1

(
EmnTn + I)−1

TnD
−1
1 r1

∣∣2)1/2)
≤ KN−1 sup

x∈�a� b�

(
N−1E trD−1

1 D
−1
1

+ v−1
n N

−1/2v−1
n N

−1
(
E trD−2

1 D
−2
1 +E

(
trD−1

1 D
−1
1

)2)1/2)

≤ KN−1�

Thus, (5.3) holds.
From (3.2), (5.4) and (5.6), we get

�5�7�

sup
x∈�a� b�

E
∣∣r∗

1D
−1
1

(
EmnTn + I)−1

r1 −N−1 trD−1
1

(
EmnTn + I)−1

Tn
∣∣2

≤ KN−2 sup
x∈�a� b�

ED−1
1 D

−1
1

≤ KN−1�

Next we show

�5�8�
sup
x∈�a� b�

N−1E
∣∣∣tr(EmnTn + I)−1

TnD
−1
1

−E tr
(
EmnTn + I)−1

TnD
−1
1

∣∣∣2 ≤ KN−1�

Let

β1j = 1

1 + r∗
jD

−1
1j rj

� b1n = 1

1 +N−1E tr�TnD−1
12 �

and

γ1j = r∗
jD

−1
1j rj −N−1E

(
tr
(
D−1

1jTn
))
�
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As in the previous section, both β1j and b1n are bounded in absolute value by
�z�/vn and γ1j satisfies the same bound as in (4.3). Moreover, if we let X�1�
denote X without its first column, then one can easily derive

1
N− 1

tr
(

1
N− 1

X∗
�1�TnX�1� −

(
N

N− 1
z

)
I

)−1

= 1
N

tr
(

1
N
X∗

�1�TnX�1� − zI
)−1

= − 1
z�N− 1�

N∑
j=2

β1j�

and conclude that supx∈�a� b��Eβ1j� and, consequently, supx∈�a� b��b1n� are
bounded.

It is also clear that the bounds in (4.4), (5.4) and (5.5) hold when two
columns of X are removed. Moreover, with Fn12 denoting the e.d.f. of∑
j �=1�2 rjr

∗
j, we get

sup
x∈�a� b�

E
(
trD−1

12D
−1
12

)4
≤ E�nε−2 + v−2

n nFn12��a′� b′���4

≤ KN4�ε−8 + v−8
n E�Fn12��a′� b′���2� ≤ KN4

and

sup
x∈�a� b�

E
(
trD−2

1 D
−2
1

)2
≤ E�nε−4 + v−4

n nFn1��a′� b′���2 ≤ KN2�

With these facts and (3.3) and (5.6), we have

Left-hand side of (5.8)

= sup
x∈�a� b�

N−2
N∑
j=2

E
∣∣(Ej −Ej−1

)
tr
(
EmnTn + I)−1

TnD
−1
1

∣∣2

≤ 2N−2 sup
x∈�a� b�

N∑
j=2

E
∣∣β1jr

∗
jD

−1
1j

(
EmnTn + I)−1

TnD
−1
1j rj

∣∣2

≤ 2N−1 sup
x∈�a� b�

E
∣∣�b1n + β12b1nγ12�r∗

2D
−1
12

(
EmnTn + I)−1

TnD
−1
12 r2

∣∣2

≤ KN−1
(

sup
x∈�a� b�

E
∣∣r∗

2D
−1
12

(
EmnTn + I)−1

TnD
−1
12 r2

∣∣2

+ v−2
n

(
E�γ12�4E

∣∣r∗
2D

−1
12

(
EmnTn + I)−1

TnD
−1
12 r2

∣∣4)1/2
)

≤ KN−3 sup
x∈�a� b�

(
E
(
trD−2

12D
−2
12

)
+E

(
trD−1

12D
−1
12

)2

+ v−2
n N

−1v−2
n

(
E tr

(
D−2

12D
−2
12

)2
+E

(
trD−1

12D
−1
12

)4)1/2)

≤ KN−3(N2 +Nv−4
n

) ≤ KN−1�

Thus, we get (5.8).



NO EIGENVALUES OUTSIDE SUPPORT 339

Notice we get the same result if �EmnTn + I�−1 is removed from all the
expressions; that is, we have just shown

sup
x∈�a� b�

E�γ1 − γ̂1�2 ≤ KN−1�

Moreover, from (4.2) and (5.4), when p = 2,

sup
x∈�a� b�

E�γ̂1�2 ≤ sup
x∈�a� b�

KN−2E trD−1
1 D

−1
1 ≤ KN−1�

Therefore,

�5�9� sup
x∈�a� b�

E�γ1�2 ≤ KN−1�

From (4.3), (5.2), (5.3) and (5.7)–(5.9), we get

sup
x∈�a� b�

∣∣∣∣cn
∫ dHn�t�

1 + tEmn

+ zcnE�mn�z��
∣∣∣∣

≤ KN−1 + sup
x∈�a� b�

∣∣∣∣Eβ1

[
r∗

1D
−1
1 �EmnTn + I�−1r1

− 1
N
E tr

(
EmnTn + I)−1

TnD
−1
1

]∣∣∣∣
= KN−1 + sup

x∈�a� b�
�bn�2

∣∣∣∣E�γ1 − β1γ
2
1�
[
r∗

1D
−1
1

(
EmnTn + I)−1

r1

− 1
N
E tr

(
EmnTn + I)−1

TnD
−1
1

]∣∣∣∣
≤ K

(
N−1 + sup

x∈�a� b�

(
E�γ1�2 + v−2

n E�γ1�4
)1/2

N−1/2
)

≤ K(
N−1 + �N−1 + v−2

n N
−2v−4

n �1/2N−1/2)
≤ KN−1�

As in Section 3 we let

wn = −1
z

∫ dHn�t�
1 + tEmn�z�

−E�mn�z��

and

ωn = −z− 1
Emn

+ cn
∫ t dHn�t�

1 + tEmn

�

Then

sup
x∈�a� b�

�wn� ≤ KN−1�

ωn = wnzcn/Emn and (3.20), together with the steps leading to (3.21), holds
with mn replaced with its expected value. From (3.10) it is clear that m0

n must
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be uniformly bounded away from 0 for all x ∈ �a� b� and all n. From (3.24) we
see that Emn must also satisfy this same property. Therefore,

sup
x∈�a� b�

�ωn� ≤ KN−1�

Using (3.11), (3.12), (3.14) and (3.15), it follows that supx∈�a� b��m0
n� is

bounded in n and

sup
x∈�a� b�

m0
2cn

∫ t2 dHn�t�
�1 + tm0

n�2

vn +m0
2cn

∫ t2 dHn�t�
�1 + tm0

n�2
is bounded away from 1 for all n. Therefore, we get, for all n sufficiently large,

sup
x∈�a� b�

�Emn −m0
n� ≤ Kcnzm0

nwn ≤ KN−1�

which is (5.1).

6. Completing the proof. From the last two sections, we get

�6�1� sup
x∈�a� b�

∣∣mn�z� −m0
n�z�

∣∣ = o�1/Nvn� a.s.,

when vn = N−1/68. It is clear from the arguments used in Sections 3–5 that
(6.1) is true when the imaginary part of z is replaced by a constant multiple
of vn. In fact, we have

max
k∈1�2�����34�

sup
x∈�a� b�

∣∣mn�x+ i
√
kvn� −m0

n�x+ i
√
kvn�

∣∣ = o�1/Nvn� = o�v67
n � a.s.

We take the imaginary part and get

max
k∈1�2�����34�

sup
x∈�a� b�

∣∣∣∣
∫ d�FBn�λ� −Fcn�Hn�λ��

�x− λ�2 + kv2
n

∣∣∣∣ = o�v66
n � a.s.

Upon taking differences, we find

max
k1 �=k2

sup
x∈�a� b�

∣∣∣∣
∫ v2

n d�FBn�λ� −Fcn�Hn�λ��
��x− λ�2 + k1v

2
n���x− λ�2 + k2v

2
n�

∣∣∣∣
= o�v66

n � a.s.�

max
k1� k2� k3
distinct

sup
x∈�a� b�

∣∣∣∣
∫ �v2

n�2 d�FBn�λ� −Fcn�Hn�λ��
��x− λ�2 + k1v

2
n���x− λ�2 + k2v

2
n���x− λ�2 + k3v

2
n�

∣∣∣∣
= o�v66

n � a.s.�

���
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sup
x∈�a� b�

∣∣∣∣
∫ �v2

n�33 d�FBn�λ� −Fcn�Hn�λ��
��x− λ�2 + v2

n���x− λ�2 + 2v2
n� · · · ��x− λ�2 + 34v2

n�

∣∣∣∣
= o�v66

n � a.s.

Thus,

sup
x∈�a� b�

∣∣∣∣
∫ d�FBn�λ� −Fcn�Hn�λ��

��x− λ�2 + v2
n���x− λ�2 + 2v2

n� · · · ��x− λ�2 + 34v2
n�

∣∣∣∣ = o�1� a.s.

We split up the integral and get

sup
x∈�a� b�

∣∣∣∣
∫ I�a′� b′ �c d�FBn�λ� −Fcn�Hn�λ��

��x− λ�2 + v2
n���x− λ�2 + 2v2

n� · · · ��x− λ�2 + 34v2
n�

+ ∑
λj∈�a′� b′ �

v68
n

��x− λj�2 + v2
n���x− λj�2 + 2v2

n� · · · ��x− λj�2 + 34v2
n�

∣∣∣∣
= o�1� a.s.

(6.2)

Now if, for each term in a subsequence satisfying (6.2), there is at least
one eigenvalue contained in �a� b�, then the sum in (6.2), with x evaluated
at these eigenvalues, will be uniformly bounded away from 0. Thus, at these
same x values, the integral in (6.2) must also stay uniformly bounded away
from 0. But the integral converges to 0 a.s. since the integrand is bounded
and, with probability 1, both FBn and Fcn�Hn converge weakly to the same
limit having no mass on a′� b′�. Thus, with probability one, no eigenvalues of
Bn will appear in �a� b� for all n sufficiently large. This completes the proof of
Theorem 1.1. ✷

APPENDIX

We give here a proof of Lemma 2.7. We first prove the following.

Lemma A.1. For X = �X1� � � � �Xn�T i.i.d. standardized (complex) entries,
B n× n Hermitian nonnegative definite matrix, we have, for any p ≥ 1,

�A�1� E�X∗BX�p ≤ Kp

(�trB�p +E�X1�2p trBp
)
�

Proof. Notice the result is trivially true for p = 1. For p > 1 we have

�A�2�

E�X∗BX�p ≤ Kp

(
E

∣∣∣∣
n∑
i=1

�Xi�2Bii
∣∣∣∣
p

+E
∣∣∣∣
n∑
i=2

Xi

∑
j<i

XjBij

∣∣∣∣
p

+E
∣∣∣∣
n∑
j=2

Xj

∑
i<j

XiBij

∣∣∣∣
p)

= Kp

(
E

∣∣∣∣
n∑
i=1

�Xi�2Bii
∣∣∣∣
p

+ 2E
∣∣∣∣
n∑
i=2

Xi

∑
j<i

XjBij

∣∣∣∣
p)
�
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Using Lemmas 2.3 and 2.9,

E

∣∣∣∣
n∑
i=1

�Xi�2Bii
∣∣∣∣
p

≤ Kp

(
�trB�p +

n∑
i=1

E�X1�2p�Bii�p
)

≤ Kp

(�trB�p +E�X1�2p trBp
)
�

For 1 < p ≤ 2 we have, using Lemma 2.2,

E

∣∣∣∣
n∑
i=2

Xi

∑
j<i

XjBij

∣∣∣∣
p

≤ KpE

( n∑
i=2

∣∣∣∣Xi

∑
j<i

XjBij

∣∣∣∣
2)p/2

≤ Kp

( n∑
i=2

E

∣∣∣∣Xi

∑
j<i

XjBij

∣∣∣∣
2)p/2

= Kp

(∑
j<i

�Bij�2
)p/2

≤ Kp�trB2�p/2 ≤ Kp�trB�p�

Therefore, (A.1) is true for p ∈ �1�2�. We proceed by induction on k, where p ∈
�2k�2k+1�. Assume (A.1) is true for p ∈ �2k−1�2k� and suppose p ∈ �2k�2k+1�.
Since the first term in (A.2) is bounded by the right-hand side of (A.1), we
need only consider the second term. Let �i = σ�X1� � � � �Xi�. We have, by
Lemma 2.1,

E

∣∣∣∣
n∑
i=2

Xi

∑
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XjBij

∣∣∣∣
p
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(
E
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∣∣∣∣
2)p/2

+E�X1�p
n∑
i=2

E

∣∣∣∣
∑
j<i

XjBij

∣∣∣∣
p)
�

Using Lemma 2.4 (with q = 2), we have

E

( n∑
i=2

∣∣∣∣
∑
j<i

XjBij

∣∣∣∣
2)p/2

= E

( n∑
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∣∣∣∣E
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XjBij

∣∣∣∣�i−1
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≤ KpE
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XjBij
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≤ KpE�X∗B2X�p/2

≤ Kp

(�trB2�p/2 +E�X1�2�p/2� trB2�p/2�)
(by the inductive hypothesis)

≤ Kp

(�trB�p +E�X1�2p trBp
)

(using 1 ≤ E�X1�s ≤ �E�X1�2s�1/2 ≤ E�X1�2s for s ≥ 2).
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Using Lemma 2.1, we have

E�X1�p
n∑
i=2

E

∣∣∣∣
∑
j<i

XjBij

∣∣∣∣
p

≤ KpE�X1�p
n∑
i=2

((∑
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∑
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n∑
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��B2�i i�p/2

≤ KpE�X1�p�1 +E�X1�p� trBp (by Lemma 2.9)

≤ KpE�X1�2p trBp�

Therefore, (A.1) is true for p ∈ �2k�2k+1� and the proof of the lemma is com-
plete.

We can now prove Lemma 2.7. We have

E�X∗CX− trC�p

≤ Kp

(
E

∣∣∣∣
n∑
i=1

��Xi�2 − 1�Cii
∣∣∣∣
p

+E
∣∣∣∣
n∑
i=2

Xi

∑
j<i

XjCij

∣∣∣∣
p

+E
∣∣∣∣
n∑
j=2

Xj

∑
i<j

XiCij

∣∣∣∣
p)
�

Using Lemma 2.1,

E

∣∣∣∣
n∑
i=1

��Xi�2 − 1�Cii
∣∣∣∣
p

≤ Kp

(( n∑
i=1

E��Xi�2 − 1�2�Cii�2
)p/2

+
n∑
i=1

E��X1�2 − 1�p�Cii�p
)

≤ Kp

(
�E�X1�4 trCC∗�p/2 +E�X1�2p

n∑
i=1

�Cii�p
)

(using �E��X1�2 − 1�p�1/p ≤ �E�X1�2p�1/p + 1 ≤ 2�E�X1�2p�1/p). From Lemma
2.9 we have

n∑
i=1

�Cii�p ≤
n∑
i=1

�CC∗�p/2i i ≤
n∑
i=1

λi�CC∗�p/2�

Therefore,

E

∣∣∣∣
n∑
i=1

��Xi�2 − 1�Cii
∣∣∣∣
p

≤ Kp

((
E�X1�4 trCC∗)p/2 +E�X1�2p tr�CC∗�p/2)�
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Using Lemma 2.1,

E

∣∣∣∣
n∑
i=2

Xi

∑
j<i

XjCij

∣∣∣∣
p

≤ Kp

(
E

( n∑
i=2

∣∣∣∣
∑
j<i

XjCij

∣∣∣∣
2)p/2

+E�X1�p
n∑
i=2

E

∣∣∣∣
∑
j<i

XjCij

∣∣∣∣
p)
�

Using Lemma 2.4 (with q = 2),

E

( n∑
i=2

∣∣∣∣
∑
j<i

XjCij

∣∣∣∣
2)p/2

= E

( n∑
i=2

∣∣∣∣E
( n∑
j=1

XjCij

∣∣∣�i−1

)∣∣∣∣
2)p/2

≤ KpE

( n∑
i=2

∣∣∣∣
n∑
j=1

XjCij

∣∣∣∣
2)p/2

≤ KpE�X∗C∗CX�p/2

≤ Kp

(�trC∗C�p/2 +E�X1�2p tr�C∗C�p/2) (by Lemma A.1)

= Kp

(�trCC∗�p/2 +E�X1�2p tr�CC∗�p/2)�
Using Lemma 2.1, we have

E�X1�p
n∑
i=2

E

∣∣∣∣
∑
j<i

XjCij

∣∣∣∣
p

≤ KpE�X1�p
n∑
i=2

((∑
j<i

�Cij�2
)p/2

+E�X1�p
∑
j<i

�Cij�p
)

≤ KpE�X1�p�1 +E�X1�p�
n∑
i=2

(∑
j<i

�Cij�2
)p/2

≤ KpE�X1�p�1 +E�X1�p�
n∑
i=1

��CC∗�i i�p/2

≤ KpE�X1�p�1 +E�X1�p� tr�CC∗�p/2 (by Lemma 2.9)

≤ KpE�X1�2p tr�CC∗�p/2�
Therefore, E�∑n

i=2Xi

∑
j<i XjCij�p is bounded by the right-hand side of the

inequality in Lemma 2.7. Similarly, E�∑n
j=2Xj

∑
i<j XiCij�p is also bounded

by the right-hand side of the inequality, and the proof of the lemma is com-
plete. ✷

Acknowledgments. The authors would like to thank Pawel Hitczenko
for pointing out some of the moment bounds in Section 2, and to an anony-
mous referee for some helpful suggestions. Part of this work was done while



NO EIGENVALUES OUTSIDE SUPPORT 345

J. W. Silverstein visited the Department of Applied Mathematics at National
Sun Yat-sen University. He thanks the members of the department for their
hospitality, and the National Science Council of Taiwan for their financial
support.

REFERENCES

Bai, Z. D., Silverstein, J. W. and Yin, Y. Q. (1988). A note on the largest eigenvalue of a large
dimensional sample covariance matrix. J. Multivariate Anal. 26 166–168.

Bai, Z. D. and Yin, Y. Q. (1993). Limit of the smallest eigenvalue of a large dimensional sample
covariance matrix. Ann. Probab. 21 1275–1294.

Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.
Burkholder, D. L. (1973). Distribution function inequalities for martingales. Ann. Probab. 1

19–42.
Dilworth, S. J. (1993). Some probabilistic inequalities with applications to functional analysis.

Banach Spaces. Contemp. Math. 144 53–67.
Horn, R. A. and Johnson, C. R. (1985). Matrix Analysis. Cambridge Univ. Press.
Horn, R. A. and Johnson, C. R. (1991). Topics in Matrix Analysis. Cambridge Univ. Press.
Rosenthal, H. P. (1970). On the subspaces of Lp �p > 2� spanned by sequences of independent

random variables. Israel J. Math. 273–303.
Silverstein, J. W. (1995). Strong convergence of the empirical distribution of eigenvalues of large

dimensional random matrices. J. Multivariate Anal. 5 331–339.
Silverstein, J. W. and Bai, Z. D. (1995). On the empirical distribution of eigenvalues of a class

of large dimensional random matrices. J. Multivariate Anal. 54 175–192.
Silverstein, J. W. and Choi S. I. (1995). Analysis of the limiting spectral distribution of large

dimensional random matrices, J. Multivariate Anal. 54 295–309.
Silverstein, J. W. and Combettes, P. L. (1992). Signal detection via spectral theory of large

dimensional random matrices. IEEE Trans. Signal Process. 40 2100–2105.
Yin, Y. Q., Bai, Z. D. and Krishnaiah, P. R. (1988). On limit of the largest eigenvalue of the large

dimensional sample covariance matrix. Probab. Theory Related Fields 78 509–521.

Department of Mathematics
National University of Singapore
10 Kent Ridge Crescent
Singapore 119260
E-mail: matbaizd@leonis.nus.sg

Department of Mathematics
Box 8205
North Carolina State University
Raleigh, North Carolina 27695-8205
E-mail: jack@jack.math.ncsu.edu


