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Real-time respiratory measurement with Doppler Radar has an important advantage in the monitoring of certain conditions such
as sleep apnoea, sudden infant death syndrome (SIDS), and many other general clinical uses requiring fast nonwearable and non-
contact measurement of the respiratory function. In this paper, we demonstrate the feasibility of using Doppler Radar inmeasuring
the basic respiratory frequencies (via fast Fourier transform) for four di
erent types of breathing scenarios: normal breathing,
rapid breathing, slow inhalation-fast exhalation, and fast inhalation-slow exhalation conducted in a laboratory environment. A
high correlation factor was achieved between the Doppler Radar-basedmeasurements and the conventional measurement device, a
respiration strap.We also extended this work from basic signal acquisition to extracting detailed features of breathing function (I :E
ratio). 	is facilitated additional insights into breathing activity and is likely to trigger a number of new applications in respiratory
medicine.

1. Introduction

Respiration monitoring is essential in the diagnosis and
treatment of conditions such as chronic obstructive pul-
monary disease, heart disease, and a number of sleep
related conditions [1]. Furthermore, dysfunctional respira-
tory patterns such as rapid or shallow breathing [2] or high
frequency breathing rates have also been associated with
certain psychosomatic conditions [3] all of which, at present,
are typically measured via respiration rates alone. However,
a more detailed analysis of breathing patterns [4–9] will pro-
vide physicians with new insights into diagnostic medicine
particularly if this can be performed noninvasively. Non-
contact Doppler Radar has already been considered in a
variety of patient monitoring and measurement scenarios in
healthcare including heartbeat and respiration monitoring in
place of conventional methods such as the chest strap, photo-
plethysmograph [10], and ECG [11]. Research reported using
Doppler Radar in measuring human physiological activity
[12–18] has predominantly demonstrated the feasibility of
Doppler Radar in obtaining breathing frequency or heart

rate using FFT, wavelet analysis, or time-frequency analysis
[14, 19, 20].

A complete respiration cycle is typically de�ned by
inhalation (inspiration) and exhalation (expiration) states
accompanied by a pause as described in [21]. Breathing rates
are predominantly calculated independent of the inhalation
to exhalation ratio (I : E) for each breathing cycle. For normal
and spontaneous breathing, there is an abundance of time for
the exhalation process from the inspired tidal volume, but in
certain pathological states, for instance, asthma and COPD
(chronic obstructive pulmonary disease), reduced expiratory
ow would need longer time to empty the inspired lung
volume [22]. Typically, for adults, a normal I : E ratio is in the
range of 1 : 2 but this varies between individuals depending on
the health and the physiological state of the individual
[23]. Consequently more information of each component is
extremely important as it can be useful in early detection of
several respiratory disorders.

Another important parameter associated with breathing
is respiratory tidal volume [24, 25] which can also be derived
from microwave radar due to the relationship between

Hindawi Publishing Corporation
Journal of Sensors
Volume 2015, Article ID 548136, 13 pages
http://dx.doi.org/10.1155/2015/548136



2 Journal of Sensors

the chest wall displacement and the tidal volume. Di
erent
types of breathing can potentially be deduced from such chest
wall or abdomendisplacement information during inhalation
and exhalation. 	is information can be used to identify
di
erent types of breathing signatures such as shallow breath-
ing, deep breathing, slow breathing, fast breathing, and other
types of breathing patterns. Indeed, the displacement of the
chest wall or abdomen in shallow breathing is expected to
be small and the complete breathing cycle would occur in a
shorter time period compared to normal breathing.

Doppler Radar operates by transmitting a radio wave
signal and receiving the modulated version of the signal
due to the motion triggered by the target [24, 26]. 	e
reected wave is in the modulated form where it undergoes a
frequency shi� proportional to the radial velocity that can be
described using theDoppler e
ect.When a target has a quasi-
periodic motion, the time varying position of the target can
be represented as a phase modulated signal and the phase
shi� is directly proportional to the object’s movement. 	us,
the movement of the chest wall/abdomen for respiration due
to the inhalation, exhalation, and the pause states can be
detected and modelled using the reected Doppler shi�ed
signal, the main focus of this paper. We provide a com-
prehensive description of the noncontact respiratory mea-
surement via Doppler Radar which was then validated with
independent measurements using a respiration belt and
breathing cycle counts. We also demonstrate the di
erent
types of inhaling and exhaling states from data collected
using our Doppler Radar system.	e purpose of this paper is
summarized as follows:

(i) investigation of Doppler Radar’s feasibility in captur-
ing di
erent types of breathing patterns under various
breathing scenarios;

(ii) correction of �/� signal imbalance and cross-
validation of Doppler breathing signal with stan-
dard respiration measurement, the respiration belt
(MLT1132 iezo-respiratory belt transducer);

(iii) decomposition of the breathing signal (from Doppler
Radar) into its respective inhalation and exhalation
components, representing each component model
using 4th polynomial �tting (see Table 2(a)) and
classifying decomposed breathing components into
its respective breathing scenarios.

2. Methods

2.1. Respiration Monitoring via Microwave Doppler Radar.
	e Doppler e
ect occurs when there is a shi� in the
frequency of the wave either reected or radiated, received by
an object in motion [27]. Consider a transmitted sine wave
signal with an angular frequency �0,

�� = sin (�0� + �0) , (1)

where �� is the transmitted signal, � is the time, and �0 is the
arbitrary phase shi�. Assume that the target is stationary at a
distance of 
0 from the radar and the transmission time from
radar to target is 
0/�where � is thewave propagation velocity.

	e target range at time � is given by equation below 
(�) =
0 + ̇
(� − �0), where 
 is the range of the target from the radar
and ̇
 (velocity) is the rate of change of 
 and �0 is the time at
 = 
0. 	e received signal at the stationary target is the same
as the transmitted signal at the time 
0/� which can be given
as

target = sin(�0� − �0
0� + �0) . (2)

	e received signal from the target at time � would have
been sent Δ� seconds prior to time �. 	is can be represented
as Δ� = 2
0/�. Referring to (1), signal can be depicted in the
same formulation given as

� = sin (�0 (� − Δ�) + �0) . (3)

Substituting Δ� = 2
0/� into (3), the received signal is further
represented as

� = sin(�0� − 2�0
0� + �0) . (4)

For a target moving (radially) with respect to the radar, the
distance will vary and by using 
(�) = 
0 + ̇
(� − �0) and �� =2�0 ̇
/�, the received signal can be further derived as

� = sin(�0 (� − 2
 (�)� ) + �0)
= sin(�0 (� − 2
0� − 2 ̇
 (� − �0)� ) + �0)
= sin(�0 (1 − 2 ̇
� ) � − 2�0� (
0 − ̇
�0) + �0)
= sin((�0 − ��) � − 2�0
0� + ���0 + �0) ,

(5)

where the frequency of the reected signal is shi�ed by ��
and the phase angle by ���0. 	erefore, the Doppler shi� ��
can also be denoted by �� = 2���, where �� = 2 ̇
�0/� is the
Doppler shi� in Hertz and �0 is the transmitted frequency.
Using � = �/�0, �� can be written as �� = −2 ̇
/� where
the negative sign accounts for the fact that if ̇
 is negative
(when the target is approaching), the Doppler frequency will
be positive or vice versa [27]. From (5), the phase angle Φ of
the received signal is given as���0.	erefore, the transmitted
wave from the radar to the target will be reected to the
receiver with some phase shi�ing and can be represented as
phase modulation given as

Φ = 2�0 ̇
� �0 = 4� (
)� . (6)

	e measurement model for human respiration using
Doppler Radar can be derived as follows. Generally, the
Doppler shi� in frequency is given by

�� (�) = 2�V (�)� = 2V (�)� , (7)

where V(�) is the velocity of the target, � is the wavelength
of the transmitted signal, and � is velocity of the propagating



Journal of Sensors 3

wave. Assuming the target to be stationary or undergoing a
periodic movement of �(�) with no net velocity, the Doppler
frequency shi� can be represented in the form of nonlinear
phase modulation as the phase signal Φ�(�) given by Φ�(�) =4��(�)/� where �(�) is the displacement of the chest wall
or abdomen. Using a continuous wave (CW) radar, the
transmitted signal is represented by

� (�) = cos (�0� + �0 (�)) , (8)

where �(�) is the transmitted signal and �0 is the arbitrary
phase shi� or the phase noise of the signal source if the
transmitted wave �(�) is reected by the target/subject at a
nominal distance �0 with a time varying displacement of �(�)
which is caused by the movement of the torso (abdomen).
	us, the distance [28] between the transmitter and the target
is given as �(�) = �0 + �(�). 	e measurement of the time
delay between the transmitter and the target is denoted as
the distance travelled over the signal’s propagation velocity
given as �(�)/�. 	us, due to the movement of the abdomen
during the process of respiration, the distance between the
antenna and the abdomen at the time of reection is denoted
by �(�−�(�)/�) and the round trip time can be further derived
as �� = 2(�0 + �(� − �(�)/�))/�.

Using the similar formulation shown in (3) along with�0 = 2�� and � = ��, the received signal (�) can be
represented as

 (�) = cos [�0 (� − ��) + � (� − ��)]
= cos [�0 (� − 2�0 + 2� (� − � (�) /�)� )

+ �(� − 2�0 + 2� (� − � (�) /�)� )]
(9)

and further approximated as

 (�) ≈ cos(2��� − 4��0� − 4�� (�)� + �(� − 2�0� )) . (10)
Demodulation of the phase is used to determine the motion
signature which can be detected at the receiver. In the direct
conversion system, the received signal will be mixed with
local oscillator to obtain the baseband output given as

! (�) = cos(" + 4�� (�)� + Δ� (�)) . (11)

In a quadrature receiver system, the received signal will be
split into two forms which are an in-phase (��(�)) and a
quadrature phase (��(�)) signal where the phase di
erence
will be �/2. 	erefore, general two orthogonal baseband
outputs of the quadrature receiver system can be denoted by

�� (�) = cos(" + 4�� (�)� + Δ� (�)) ,
�� (�) = sin(" + 4�� (�)� + Δ� (�)) .

(12)

Here, " = 4��0/� is the constant phase shi� dependent on
the nominal distance to the target and Δ�(�) is the residual

phase noise. 	e bene�t of using a quadrature receiver is to
overcome the null problem [11] where at least one output
(either �/�) is not null when the other is null.

2.2. Signal Processing, Decomposition, and Identi�cation. A
complete breathing cycle is comprised of inhalation (�),
exhalation (#), and pause components where the ratio of I : E
can certainly be asymmetric [23]. 	erefore, computation of
breathing rates purely based on simple single frequency
signatures computed via fast Fourier transforms (FFT) is not
su�cient to provide detailed breathing pattern features, par-
ticularly for the identi�cation and analysis of respiratory con-
ditions. Firstly, the basic received signal is sent to the �/� (in-
phase and quadrature phase) demodulator for direct conver-
sion into its baseband di
erential �/� signal and then sam-
pled at 1000Hz using NI-DAQ (National Instrument Data
Acquisition System). 	e di
erential signals were then con-
verted to a single ended baseband signal, removing any DC
components of the raw signals, and then processed in two
di
erent approaches. In the �rst approach, the preprocessed
raw data was modelled using a piecewise linear least squares
approach [29]. In the second approach, the raw data was pro-
cessed using a SG (Savitzky-Golay polynomial least square)
[30] smoothing �lter and further analysed using Fourier �l-
tering [31].	e �rst approach o
ers a simplemethod applica-
ble for real-time processing while the second approach o
ers
more accurate identi�cation of the respiration cycle compo-
nents and their properties, the main focus in this paper.

2.3. Correction of �/� Amplitude and Phase Imbalance. Two
orthogonal outputs (� and�) are obtained from a quadrature
receiver system but in practice (due to the imperfection of
components in the hardware design), it su
ers from ampli-
tude and phase imbalance which a
ects the accuracy of the
recovered data at the output [32]. Consequently, phase and
amplitude corrections are necessary to increase accuracy.
	ere are a number of approaches to correct the amplitude
and phase imbalance [33, 34]. In [34], a �nal form of two
orthonormal vectors using a method similar to the Gram
Schmidt orthogonalization (GSO) [32] has been proposed as
shown in (17). 	e derivation of this is as follows. 	e ideally
received signal �(�) is de�ned by

� (�) = $� cos (�0�) + $� sin (�0�) , (13)

where $� and $� are the in-phase and quadrature phase of
the information signal respectively. In our approach, with
the presence of amplitude imbalance and phase o
set, the
received signal at the mixer can be represented as

�� (�) = � (�) ∗ cos (�0�) + � (�) ∗ &	 ∗ sin (�0� + �) ,
(14)

where &	 and � are the amplitude and phase imbalance.
Demodulation of received signal is as follows:

�� = � (�) ∗ cos (�0�) ,
�� = � (�) ∗ &	 ∗ sin (�0� + �) . (15)



4 Journal of Sensors

Expanding the derivation

�� = $� cos (�0�) cos (�0�) + $� sin (�0�) cos (�0�) ,
�� = $� cos (�0�)

∗ &	 (sin (�0�) cos (�) + cos (�0�) sin (�))
+ $� sin (�0�)
∗ &	 (sin (�0�) cos (�) + cos (�0�) sin (�)) .

(16)

A�er the low pass �ltering and ignoring the term 1/2,
representation of orthogonal$� and$� in matrix form

[$�$�] =
[[
[

1 0
− tan (�) 1&	 cos (�)

]]
]
[����] . (17)

Using (17), correction on amplitude and phase imbalance can
be performed. Simulation results of using this approach will
be discussed in Section 3.

2.4. 	e Piecewise Linear Fitting Method. 	is method �ts
nonlinear, typically noisy waveforms by choosing an optimal
segmentation of the waveform and then �tting each segment
with a linear function [29]. Here the segmentation process is
critical and, in this case, appropriate lengths of nonoverlap-
ping segments were used. Also, we used �xed nonoverlapping
segments of 200ms to accommodate the Doppler Radar
signal.

2.5. 	e Savitzky-Golay Method and Fourier Filtering. 	e
Savitzky-Golay �lter is a least square polynomial �lter [30].
By applying the �lter to the noisy data obtained from the
chemical spectrum analysers, Savitzky and Golay demon-
strated how it reduces noise while preserving the shape and
height of waveform peaks. Here, the SG �lter was used to
smooth the input raw data a�er the DC components were
removed. 	e output from the SG �lter improved the shape
of the signal signi�cantly where noise and redundancy were
�ltered extensively as shown in Figure 3 (data set 1) ((a) and
(c)).

	e signals were smoothed by SG �lter and then recon-
structed using Fourier �ltering. 	is was to extract absolute
maxima and minima points of the breathing curve that
denotes each of the inhalation and exhalation components.
Fourier �ltering from [31] has already been used as one
of the processing algorithms to further eliminate noise and
to reconstruct the signals. It is a �ltering function that
manipulates speci�c frequency components of a signal by
taking the Fourier transform of the corresponding signals
which later either attenuate or amplify frequencies of interest.
In this paper, the Fourier �lter was used to eliminate noise
employing a band pass �lter depending on the desired
breathing frequency range while not distorting the signal
signi�cantly. 	e shape of the Fourier �ltered signal was
quite similar to the resulting signal from piecewise linear
�tting but was smoother and local minima and maxima were
prominent.

2.6. Breathing Signal Decomposition. For the breathing cycles
obtained fromDoppler Radar we assumed that the transition
from local minima to local maxima on the curve represents
the inhalation component and vice versa for exhalation com-
ponent, respectively. A peak detection algorithm was then
used to determine the maximum and minimum points of
each transition de�ning the inhalation and exhalation com-
ponents, respectively. 	ese components were extracted sep-
arately and represented by a fourth-order polynomial. We
then computed the average representation for normal and
fast breathing components (inhalation and exhalation) to be
used as a model for component identi�cation as discussed in
Section 5.3.2.

2.7. Identi�cation-Dynamic Time Warping. Dynamic time
warping (DTW) is used to optimally align two time series
where one time series is transformed to best �t the other
[35]. 	is technique has been extensively used in speech
recognition to identify the similarity of spoken phases from
twowaveforms as the duration of each spoken sound can vary
with similar overall waveform shapes. DTW has also been
used in other areas such as data mining and gait recognition
[36]. Typically, similarity between two time series for the
purpose of classi�cation o�en requires distancemeasurement
between the two.Computation of Euclidean distance between
the two time series may not yield accurate results if one
of the two time series is slightly shi�ed along the time
axis. To overcome this limitation, DTW was introduced as
described in [35]. Here, we use DTW for registering and
comparing breathing components to determine temporal
features (extracted breathing component model).

3. Experiment Mechanism

Measurement of humans respiration was approved by the
Faculty of Science and Technology Ethics Subcommittee
HEAG (Faculty Human Ethics Advisory Groups), Deakin
University, and all participants provided their written
informed consent to participate in this study.

A Doppler Radar system (Figure 1(a)) has a continuous
wave (CW) that operates at 2.7 GHz with 2.14 dBm, two
panel antennae where one is (Tx) and the other (Rx), �/�
demodulator (Analog Device AD8347), and a data acquisi-
tion module (NI-DAQ) were used. 	e received signals were
directly converted into �/� decomposition using AD8347
where the demodulated signal was then sent to a DAQ for
further processing using MATLAB.

For this experiment the subjectwas positioned 0.5maway
from the antenna (transmitter, Tx, and receiver, Rx). 	e
panel antennae were aligned to focus on the abdomen to
capture a better Doppler e
ect due to respiration.	e subject,
with normal clothing (see Figure 1(a)) and was asked to stand
in front of the antenna and breathe in speci�c ways for a
determined period of time as follows: “normal breathing
(maintaining consistency in inhalation and exhalation rate),”
“fast breathing (fast inhalation and fast exhalation),” “fast
inhalation and slow exhalation,” and “slow inhalation and fast
exhalation.”
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Figure 1: Doppler Radar system and signal processing ow.

For each breathing pattern, the number of breathing
cycles was manually counted and recorded independently to
be compared with those computed using the proposed signal
processing techniques as shown in Figure 1(b).

For validation purposes, a respiband (MLT1132, piezo-
respiratory belt transducer) attached to PowerLab (ADIn-
struments) was used as a reference signal to compare with the
Doppler measurements. Results in Figure 2(b) show the nor-
malized raw respiration signal obtained from the respiration
belt and normalized �ltered Doppler Radar signals.

From (17), the imbalance factors of &	 and � need to be
estimated for �/� correction.	is procedure is similar to the
GSO procedure as the quadrature phase signal is orthogonal
to the in-phase signal. 	e simulation was performed by
assuming that the breathing frequency is in the vicinity of

0.2Hz in the � and � representation. In the simulation
results shown in Figure 2(a)(C), the phase o
set of 25∘ with
amplitude imbalance in quadrature signal was simulated in
the noisy signal. We have estimated the amplitude imbalance
ratio and phase o
set between � and� signal is corrected the
signal using (17) as shown in Figure 2(a). Amplitude imbal-
ance was obtained by taking the average ratio of�/�while the
phase o
set was estimated by computing the phase di
erence
between the � and � signals.

Estimated parameters would be slightly di
erent from
the real value due to the noise in the signal but it will be
adequate to correct the � signal based on the � signal. From
the results shown in Figure 2(a)(E), the corrected � signal is
similar to the simulated noiseless signal (Figure 2(a)(A)) of
the amplitude and the phase o
set. 	e same approach was
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Figure 2: �/� imbalance simulation and results evaluation.

used with the real data and subsequently compared with the
respiration belt signal.	e corrected� signal is slightly better
than the uncorrected� signal as the mean squared errors are
“0.041651” and “0.050928,” respectively (see Figure 2(b)). For
further evaluation on the Doppler Radar signals compared
to the reference respiration belt, �ve data sets (a minute of
recording for each data set) were collected from the subject
(random breathing) where the mean square error (MSE) and
correlation coe�cient were computed. Results are shown in
Table 1 and we notice good correlations obtained between the
Doppler signals and the respiratory belt signals.

Table 1: Quantitative evaluation of Doppler Radar signal with
reference respiration belt.

Data set Mean square error Correlation coe�cient

1 0.017 0.968

2 0.094 0.938

3 0.009 0.965

4 0.005 0.942

5 0.015 0.975

Table 2: Polynomial modelling and DTW performance evaluation.

(a) Polynomial order evaluation

Order
Inhalation Exhalation

RMSE Corr RMSE Corr

1 2.14# − 03 0.9912 2.04# − 03 0.9918

2 2.02# − 03 0.9921 2.03# − 03 0.9919

3 3.15# − 04 0.9998 5.39# − 05 0.9999

4 1.97# − 17 1 1.02# − 17 1

5 3.26# − 17 1 1.36# − 17 1

(b) Performance evaluation of random breathing component with selected
model

Breathing
component

Polynomial
model

MSE Corr Class

Fast
inhalation

Normal 1.11A − 04 0.933
Fast

Fast 4.28A − 06 0.989

Normal
inhalation

Normal 2.23A − 06 0.999
Normal

Fast 8.37A − 05 0.954

Fast
exhalation

Normal 4.58A − 05 0.972
Fast

Fast 4.47A − 07 0.999

Normal
exhalation

Normal 2.50A − 06 0.999
Normal

Fast 7.76A − 05 0.958

For the decomposition of the breathing signal into
inhalation and exhalation components, it is necessary to
calculate the transition time of each breathing component
independent of the breathing amplitude. In addition to this,
preliminary measurements were obtained from a voluntary
subject (asthmatic) to understand if there were any detectable
breathing pattern di
erences in his breathing compared to
normal patterns; see Figures 3 and 6. In the future, as an
extension to this current work, more trials will be performed
with more subjects, particularly with di
erent breathing
conditions for further analysis. 	is paper is a preliminary
exercise to convey the correlation of Doppler Radar with
clinically used chest strap devices.

4. Results

	e results were based on choosing the �/� baseband signal
closest to the optimum point [37] and best matched with
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Figure 3: Breathing pattern from voluntary asthmatic subject (data set 1 and data set 2).

the independent breathing measurement. Only a portion of
observations were displayed in this paper where the output
consisted ofDoppler Radar-basedmeasurements for di
erent
types of inhalation and exhalation patterns collected over a
speci�c period of time.

4.1. Normal Breathing. Normal adult breathing rates range
from 12 to 20 cycles (inhalation, exhalation, and pause) in a
minute [4]. Figure 6(a) represents the normal breathing
pattern. It can be seen that for a period of 20 seconds there
were 5 breaths which corresponded to 0.25Hz (≈15 breaths
per minute) and the FFT of the signal shows a constant peak
at 0.2441Hz or 14.646 breaths per minute. 	e patterns and
extracted rate correlated with the independent breathing
counts.

4.2. Fast Breathing. Rapid breathing is typically de�ned as
above 20 breaths per minute for resting adults and this
is called Tachypnea [38]. In this experiment, our aim was
to establish if breathing at di
erent rates can be detected
robustly and the feasibility of subsequent classi�cation.

Figure 6(b) represents the fast breathing pattern with di
er-
ent dynamics. Here, the subject was inhaling and exhaling
at a faster rate resulting in a shorter breathing cycle. Results
show the occurrence of 12 breathing cycles in a period of
20 seconds (36 per minute). 	e FFT also shows a peak at
0.6104Hz corresponding to 36.6 breaths per minute, similar
to the independent breathing cycle counts.

4.3. Slow Inhalation-Fast Exhalation. Wemimic another type
of breathing scenario where the inhalation is slower than the
exhalation rate. Data was collected for a period of 10 seconds
and from Figure 6(c), a longer inhalation time (marked in
green box) and a shorter exhalation time (marked in red
box) are evident. 	is is as expected as the subject inhales
slowly and exhales at a faster pace. Results show that there
were two clear breathing cycles in a period of 10 seconds.
Observed results show an average of 2.5 : 1 for the I : E ratio
where the FFT computation approximated the breathing rate
to be 14.65 (0.2441Hz) breaths per minute and the expected
breathing rate was 12 breaths per minute from independent
measurements. For these particular experiments, an average



8 Journal of Sensors

of 2.5 seconds was required for inhalation compared to the
one second needed for exhalation.

4.4. Fast Inhalation-Slow Exhalation. Figure 6(d) shows the
signal representation for fast inhalation and slow exhalation.
Measurements clearly show that two breathing cycles with an
average of 1 : 2.5 I : E ratio occurred. 	e breathing rate was
expected to be 12 breaths per minute and from the FFT,
the breathing rate was estimated as 14.65 (0.2441Hz) breaths
per minute. Results from both observations clearly show
that the exhalation is longer than inhalation. Both the cases
discussed in Sections 4.3 and 4.4 further prove that the
respiration rate alone is not adequate in describing the
respiratory activities of the subjects. A more descriptive
information could be obtained through the breathing cycle
decomposition approach from the noncontactDoppler Radar
measurement.

5. Discussions

Results in Section 4 have demonstrated the feasibility of
Doppler Radar in capturing various types of breathing
dynamics and this section further discusses the importance of
breathing cycle analysis, decomposition, and identi�cation.

5.1. Possible Abnormal Breathing Patterns. It is clear that sim-
ply recording breathing frequencies, measured as a angular
frequency using spectralmethods, is inadequate for analysing
asymmetric breathing patterns [23], albeit useful for extract-
ing the fundamental cycle for breathing periods.	e evidence
so far is that decomposing the breathing cycle into its inhala-
tion and exhalation components o
ers a more accurate and
insightful approach to detecting and interpreting breathing
and can be performed reliably using Doppler Radar. In this
particular experiment, the breathing pattern of a voluntary
subject (age: 23, height: 180 cm, and weight: 95 kg) who has
asthma was collected within the duration of 30 seconds but
not during an asthma attack. Results are shown in Figure 3.
Notice the inhalation component (marked in the green
colour box) is of a shorter duration compared to the exha-
lation component (marked in the red color box) where the
approximated I : E ratio for that subject is 1 : 2.5. Both the
results showed a longer duration recorded for exhalation
compared to inhalation where the implications are such that
the subject could be having di�culties in exhaling [39] and
this enforces the value in the analysis by decomposition.

In future work, experiments from Sections 4.1–5.1 will be
extended with an increased number of subjects (normal and
abnormal) in a clinical trial to further support the qualitative
and quantitative evaluations. 	is can facilitate �nding a
more accurate and insightful way to describe the respiratory
functions using a noncontact form of measurements. Fur-
thermore, additional analysis could be performed, including
the amplitude variation and the shape of each decomposed
breathing component pertaining to di
erent types of subjects.
For instance, amplitude variation in the voluntary subject
with asthma was observed to be lesser than that of the subject
with normal breathing. Consideration on respiratory e
ort,

breathing patterns, and other related factors (e.g., respiratory
function such as tidal volume) would be an essential study in
the future in evaluating the potential use of Doppler Radar in
respiratory researchwhich includes sensing, detections, anal-
ysis, and qualitative assertions.

5.2. Breathing Component Decomposition. Although a com-
plete breathing cycle comprises of inhalation and exhalation,
short and even long pauses can also exist between these states
depending on the regularity of breathing and other factors
such as the need for oxygen, surrounding environment,
and so forth. A long pause, for instance, of more than 10
seconds [40] is de�ned as an abnormal event and is known as
apnoea relevant for detecting sleep apnoea and even SIDS.
Breathing patterns can also potentially be used together with
the analysis of tidal volume [24] to diagnose other aspects of
breathing problems such as shallow breathing and the capa-
bility in detecting apnoea. 	ese have been reported in [15]
using microwave Doppler Radar.

	e main purpose of decomposing the breathing cycles
is to gain useful information of the breathing activity. For
instance, an abnormal breathing rate of 8 breaths/min could
be analysed with more information such as inhalation and
exhalation rates, and so forth. 	is can be particularly useful
when it could be used in the early diagnosis of speci�c
breathing conditions or in a pulmonary rehabilitation [41–
43], especially if it could be performed in a noncontact form.

Each of the inhalation and the exhalation components
was extracted to obtain the polynomial coe�cients from
normal and fast breathing data, respectively, and results
indicate that a fourth-order RMSE (root mean square error)
and Corr (correlation coe�cient) polynomial were su�cient
to �t these components (e.g., randomly chosen inhalation and
exhalation component) as shown in the Table 2(a). Subse-
quently, using the same approach, the computed fourth-order
polynomial model was used to characterise two di
erent
types of inhalation and exhalation breathing components
(normal and fast). 	is model was then used to identify the
experimental breathing scenario as discussed in Section 5.3.2.

5.3. Analysis of the Breathing Component

5.3.1. I : E Ratio Analysis. 	e ratio between the inhalation
or exhalation components was computed from the average
time duration in considerations of the entire set. Using the
collected data, there were 15 fast and 7 normal components
extracted from the data sets and the ratios of each of
the components (in comparison with the average time of
respective inhalation/exhalation components) are shown in
Figure 4. It was seen that there were two distinct groups
corresponding to two di
erent breathing dynamics in two
di
erent events where this could not be estimated from the
respiration rate estimation (spectral analysis).

5.3.2. Dynamic Time Warping and Evaluation by Correlation.
	e time duration for complete inhalation and exhala-
tion components varies between individuals and situations.
	erefore, in order to summarise, characterise, compare, and
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interpret breathing patterns, a number of alternatives can be
considered. In our experiments, these include

(i) extraction of inhalation and exhalation components
based on normal and fast breathing criteria;

(ii) computation of fourth-order polynomials model for
each breathing condition (normal and fast) from the
extracted components, respectively;

(iii) using dynamic time warping to �nd the optimal
alignment between the prede�ned model from (ii)
and the randomly picked breathing component;

(iv) using the correlationmethod to identify the similarity
of the aligned results from (iii) for identi�cation and
computing the MSE between the curves.

Two di
erent polynomials for inhalation and exhalation
in normal and fast breathingweremodelled from the data sets
(procedure: (i)-(ii)). For validation, dynamic time warping
was performed between randomly chosen components (any
data set) with the model based on polynomial representation
(procedure: (iii)-(iv)).

	e purpose of performing this experiment was to use
the derivedmodel as a reference and to classify each breathing
component based on two di
erent classes. In brief, by deriv-
ing a model based on the rate of breathing, we can, in fact,
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identify and correlate the extracted breathing components
with the derived model to distinguish di
erent respiratory
classes. For validation purposes, the experiments were per-
formed as follows:

(a) fast inhalation component with normal and fast
inhalation model;

(b) normal inhalation component with normal and fast
inhalation model;

(c) fast exhalation component with normal and fast
exhalation model;

(d) normal exhalation component with normal and fast
exhalation model.

Each of the breathing components was randomly picked
from the data sets. It was then evaluated and represented in
terms of mean square error (MSE) and correlation coe�cient
(Corr) as shown in Table 2(b). For graphical representation,
as an example, we associate “normal inhalation component
with normal and fast inhalation model” and “fast exhalation
component with normal and fast exhalation model” and the
results were shown in “Figures 5(a) and 5(b),” respectively.

6. Conclusions

In this paper, we have demonstrated the feasibility of breath-
ing detection under varying conditions using Doppler Radar.
We have shown that noninvasive breathing detection using
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Figure 6: Doppler Radar signals from various type of breathing scenarios.
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Doppler Radar could potentially be used to detect di
erent
types of breathing patterns such as rapid breathing and slow
breathing. We have also demonstrated that by decomposing
the respiratory cycle into inhalation, pause, and exhalation, it
is possible to extract additional information on the breathing
activities. For this purpose, we proposed a fourth-order
polynomial to represent each atomic component of breathing
and demonstrated the use of DTW in classifying breathing
component independently into the corresponding class. In
the derived model, each component is associated to a speci�c
breathing scenario, which in particular is fast and normal
breathing. Regarding future work, experimental trials will
be extended with more subjects as well as improved signal
processing techniques (e.g., isolation of motion artefacts and
more robust model based �ltering techniques), breathing
component modelling, and classi�cation techniques.
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