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Abstract

Elucidation of new biomarkers and potential drug targets from high-throughput profiling data is a challenging task due to a
limited number of available biological samples and questionable reproducibility of differential changes in cross-dataset
comparisons. In this paper we propose a novel computational approach for drug and biomarkers discovery using
comprehensive analysis of multiple expression profiling datasets. The new method relies on aggregation of individual
profiling experiments combined with leave-one-dataset-out validation approach. Aggregated datasets were studied using
Sub-Network Enrichment Analysis algorithm (SNEA) to find consistent statistically significant key regulators within the
global literature-extracted expression regulation network. These regulators were linked to the consistent differentially
expressed genes. We have applied our approach to several publicly available human muscle gene expression profiling
datasets related to Duchenne muscular dystrophy (DMD). In order to detect both enhanced and repressed processes we
considered up- and down-regulated genes separately. Applying the proposed approach to the regulators search we
discovered the disturbance in the activity of several muscle-related transcription factors (e.g. MYOG and MYOD1), regulators
of inflammation, regeneration, and fibrosis. Almost all SNEA-derived regulators of down-regulated genes (e.g. AMPK, TORC2,
PPARGC1A) correspond to a single common pathway important for fast-to-slow twitch fiber type transition. We hypothesize
that this process can affect the severity of DMD symptoms, making corresponding regulators and downstream genes
valuable candidates for being potential drug targets and exploratory biomarkers.
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Introduction

Microarray-based expression profiling is a widely used, quick and

inexpensive method to obtain information about the specific diseases.

A traditional approach when searching for drug targets or candidate

biomarkers for a specific disease is to look for genes differentially

expressed between the disease and appropriate ‘‘control’’ samples.

Various techniques have been applied to find statistically significant

differentially expressed genes, including classical statistical tests (e.g. t-

test) and those specifically developed for microarray data analysis

(Limma [1], SAM [2], shrinkage T-statistic [3] and other).

To get the deeper understanding of the disease mechanisms, the

functional analysis of differential genes can be performed using a

number of different methods [4]. Typically they rely on Gene

Ontology (GO) – based annotation of genes. Common approach is

to pre-select differentially expressed genes based on differential

fold-change and/or p-value threshold, and find the statistically

enriched GO groups using Fisher’s exact test. More sensitive

approaches are based on gene set enrichment analysis (GSEA

[5,6]) to avoid differential cut-off selection issue.

In addition to Gene Ontology, the protein-protein functional

associations, regulatory or biochemical networks can also be used

as a source of functional protein annotation in enrichment analysis

[6,7,8]. More elaborated classification and functional annotation

methods [9,10] are usually applied to protein-protein networks

only. The potential drawback of this kind of networks for the

analysis of expression data is that they eventually skip the

important transcriptional factors if they are not differentially

expressed themselves. In this paper we used a proprietary

literature-derived gene expression regulation network as a source

of functional protein annotation. This global expression network

consists of direct or indirect effects of a network node (protein) on

expression of other genes [11]. Unlike conventional GSEA [5,6],

which uses predefined collection of gene sets, Sub-Network

Enrichment Analysis (SNEA) algorithm, implemented in Pathway

StudioH software [11], constructs comprehensive collection of gene

sets from ResNet, a global literature-extracted protein-protein

regulation network. The gene sets are constructed for each

individual network node (‘‘seed’’) and consist of all its downstream

expression targets only (star-like subnetworks).

The central idea of SNEA approach is that if the downstream

expression targets of a ‘‘seed’’ are enriched with differentially

expressed genes, then the ‘‘seed’’ is likely to be one of the key

regulators of the differential expression changes, e.g. a transcrip-
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tion factor responsible for the observed changes in expression or

an upstream member of signaling pathway [12]. This literature-

driven approach connects differentially expressed genes to major

implicated pathways and key expression regulators. In contrast to

other methods that utilize the same idea of finding upstream

network regulators using expression data [13,14], SNEA allows

identification of any potentially important protein (not obligatory a

transcriptional factor) leading to the observed expression changes,

even if its own expression doesn’t change. It becomes possible

because of the usage of ResNet database where all relations are

taken from the literature only. Hence, there is no restriction on the

protein type that can be considered as potential ‘‘seed’’, provided

that it is reported to influence each individual downstream gene

expression.

We have applied this approach to study Duchenne muscular

dystrophy (DMD) using publicly available gene expression profile

datasets and identified a set of potential regulators and

downstream biomarkers of DMD progression and severity.

Duchenne muscular dystrophy is an X-linked recessive

muscular disorder, caused by mutations in the dystrophin gene

(DMD) [15–17]. Affecting about 1:3500 newborn males, it is the

most common form of muscular dystrophies and the most

common sex linked disease in males [18]. The underlying genetic

cause of DMD is the presence of a variety of DMD gene mutations

that result in dystrophin reduction/absence in skeletal muscle [17].

Lack of dystrophin has multiple unfavorable consequences to a

muscle fiber (reviewed in [19]), leading to apoptosis or necrosis

with subsequent inflammation and fibrosis at the site of damage.

The process of muscle regeneration is also activated, but, in

humans, with the course of the disease the repair capacity declines

and becomes insufficient [20]. Muscle tissue is replaced with

adipose and fibrous connective tissue [21].

The average life expectancy of DMD patients varies from late

teens to early thirties, and can be improved by respiratory support

[22,23] and drug therapy [24]. Currently, there is no cure for

DMD, but some treatments targeting the secondary consequences

of dystrophin deficiency, such as muscle damage, necrosis,

apoptosis and failure of regeneration, are already available for

patients. Glucocorticoids, such as prednisone and deflazacort, are

widely used to alleviate some of the disease’s symptoms [25].

Several tests are used in diagnostics of DMD, including

measurement of physical parameters, serum level of creatine

kinase, genetic testing for DMD mutations and muscle biopsy to

confirm the reduction in dystrophin content. More accurate,

preferably non-invasive and biologically explainable markers are

needed to predict prognosis, estimate disease’s severity and

progression. Also new biomarkers are required in treatment and

clinical trials for DMD, where they can be used to monitor drug

efficiency and choose optimal drug dose.

In order to identify potential drug targets along with

corresponding biomarkers, we have searched for the consistent

SNEA regulators and their downstream expression targets using

publicly available differential gene expression profiles and

literature-extracted expression regulation network from muscle

biopsies of patients with DMD. Suggested workflow implies

aggregation of the data from multiple datasets and elucidation of

common mechanisms that underlie differential expression. Study-

ing these mechanisms from the prospective of searching for new

drug targets can provide valuable insights in both biological and

medical research.

Results/Discussion

Workflow
The overall analysis workflow is presented in Figure 1. Five

NCBI GEO DMD-related microarray expression profiles from

muscle biopsies were aggregated according to the procedure

described in Methods. To ensure robustness of our analysis we

constructed five leave-one-out datasets each time aggregating four

distinct experiments and omitting one out of total five available

experiments. We also constructed single large dataset (referred to

as ‘‘aggregated dataset’’), where all five available microarray

experiments were aggregated. Additional dataset (referred to as

‘‘reference dataset’’) was constructed on the base of published

meta-analysis [26], see Methods.

We performed SNEA with default parameters for each of the six

datasets (five leave-one-out datasets plus aggregated dataset) and

obtained six lists of 100 significant regulators. Regulators common

for all six datasets were combined with regulators obtained by

SNEA of reference dataset. This resulted in the list of 76 unique

regulators, which can be viewed as potential drug targets. We also

performed permutation test to ensure that this overlap is significant.

Next, we turned to selection of differentially expressed genes.

For each of the 6 datasets (five leave-one-out datasets plus

aggregated dataset) we performed gene ranking using combination

of different methods (see Methods section). Then we identified

genes which were present in top-500 lists for all six datasets. Out of

all these consistently differentially changed genes, we have selected

only those which were expression targets of selected consistent

significant regulators. This produced a list of 140 candidate genes

(105 over- and 35 under-expressed). These genes (potential

biomarkers) have been sorted using the combination of expression

rank in the aggregated dataset and the number of significant

regulators as a score (see Methods section). We also manually

evaluated top-20 up-regulated genes and top-10 down-regulated

genes in respect to the supporting evidences from the available

literature.

All analytical procedures were applied separately to over-

expressed genes and under-expressed genes to look individually at

processes and pathways activated and repressed in DMD.

Significant regulators identified by SNEA
The significant regulators of up- and down- regulated

differentially expressed genes from six datasets were cross-

Author Summary

Comparison of gene expression in diseased and normal
tissue is a powerful tool of studying processes involved in
pathogenesis and searching for potential drug targets and
biomarkers of the disease’s progression and treatment
outcome. We have developed a novel approach for
systematic knowledge-driven analysis of gene expression
profiling data, which can suggest the underlying cause of
the observed differential expression by identifying which
expression regulators might be involved. These regulators
can not only be the promising subjects of further
investigation, but also potential drug targets, as normal-
ization of their activity might alleviate some of the
disease’s symptoms. The targets downstream of suggested
regulators can be proposed as exploratory biomarkers in
disease treatment and prognosis. We used our approach
to analyze public gene expression datasets of Duchenne
muscular dystrophy – a progressive inherited disease in
males. Some of the regulators and biomarkers that we
found were already investigated in the context of DMD,
while some of them were not yet studied and may be of
interest for biological and clinical studies.

Meta-analysis Revealed Key Regulators in DMD
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validated and only those identified in all datasets were selected for

further analysis. They were combined with regulators obtained

from the SNEA of the reference dataset to produce the final list of

76 unique significant regulators shown in Table 1 below. More

information about these regulators can be found in Table S1.

Regulators of up-regulated genes. Overall, regulators of

up-regulated genes correspond to the major processes that take

place in dystrophic muscle, such as inflammation, fibrosis and

muscle regeneration. Among regulators of up-regulated genes we

can separate members of several known signaling cascades:

NFKB, angiotensin signaling (AGT, functional class angiotensin

II receptor, chymase (CMA1)), TGF signaling (functional class

TGF family, TGFB1, TGFB2, BMP2, functional class SMAD,

SMAD7), and interferon gamma signaling (IFNG, STAT1, IRF1),

suggesting that these pathways may be disturbed in dystrophin-

deficient muscle.

An indirect proof of our approach is the fact that some of our

regulators were shown to contribute to the disease progression in

DMD patients and animal models of DMD, such as mice (mdx)

and golden retriever (GRMD). Mdx mouse is the most widely

used model of DMD, although the pathology is much milder in

these animals. GRMD is clinically more similar to an actual

disease, due to the size of animals and severity of symptoms

[27,28]. According to PubMed at least 17 out of 37 SNEA-

derived regulators of up-regulated genes are related to DMD in

human or animal models. Moreover, several regulators were

already tested as potential drug targets in mdx mice with

generally positive outcome, suggesting that the rest of SNEA-

proposed regulators also might be of interest. For example, there

is strong evidence of NFKB pathway involvement in DMD

progression [29,30]. Blocking of NFKB was suggested as a

potential therapy against DMD, as it stimulates regeneration and

decreases necrosis in mdx mice [31,32].

It was also shown, that members of angiotensin system are

overexpressed in dystrophic muscles and that they may play role

in subsequent activation of TGFB signaling cascade [33],

observed in DMD patients [34,35]. TGFB plays role in fibrosis

and also in impaired muscular regeneration through inhibition of

myogenic factors MYOG and MEF2D, and repression of

myotubes formation [36]. Noteworthy, we found that another

member of TGFB family, TGFBR2, was a consistently

differentially expressed gene. Angiotensin II receptor and

angiotensin converting enzyme were widely studied as drug

targets in the context of DMD [37–39].

Role of TGFB1 was shown in humans, mdx mice and GRMD

[40]. Recently TGFB1 was tested as a potential drug target and it

was shown, that its inhibitors protect muscles of mdx mice from

exercise induced damage and decrease fibrosis [41].

Activation of TGFB may by turn cause up-regulation of

connective tissue growth factor (CTGF) [42] and vice versa [43],

promoting fibrotic changes in dystrophin-deficient skeletal and

cardiac muscles [40,42,43].

Figure 1. Overall workflow of the analysis. See corresponding section for detailed description.
doi:10.1371/journal.pcbi.1002365.g001

Meta-analysis Revealed Key Regulators in DMD
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Functioning of histone deacetylases (HDACs) is affected by

dystrophin deficiency, what can be reverted by HDAC inhibitors

(reviewed in [44]

Activation of IFNG pathway may contribute to muscular

regeneration, fibrosis, inflammation and antigen presentation [45–

47]. The involvement of IFNG signaling in DMD was demonstrat-

ed in several publications: IFNG production was shown to be

increased in lymph nodes [48] as well as transcriptional activity of its

downstream target STAT1 in diaphragmmuscles of mdxmice [49].

The level of another SNEA-derived regulator, FGF2, is also

elevated both in mdx mice [50] and in serum of Duchenne

patients [51]. FGF2 is involved in skeletal satellite cells activation

and proliferation [52], and its blood level correlates with muscular

regeneration in DMD patients and thereby it can be used as a

biomarker of this process [53].

The role of transcription factor ZEB1 (zinc finger E-box-

binding homeobox 1) in DMD hasn’t yet been described in

literature. ZEB1 inhibits muscular differentiation by blocking

transcriptional activity of myogenic transcription factors, such as

MEF2C [54]. Interestingly MEF2C is a SNEA-derived regulator

of down-regulated genes. In addition ZEB1 synergize with SMAD

and can regulate TGFB signaling [55]. As both myogenesis and

TGFB signaling are affected in DMD, studying ZEB1 in the

context of DMD may look promising.

Being one of the top up-regulated genes in aggregated dataset

(rank 7, log-ratio 2.11) RUNX1 was also found as a significant

regulator of up-regulated genes from reference dataset. To our

knowledge there are no publications, establishing linkage between

RUNX1 and DMD. RUNX1 may be relevant for the disease, as it

is strongly induced in denervated muscles, where its proposed role

is to protect disused myofibers from disorganization, autophagy

and muscle wasting [56].

Taking into the account the strong literature support of

described regulators significance we can suggest other SNEA-

derived regulators as well as their functional protein partners for

further investigations for the role of potential drug targets.

Regulators of down-regulated genes. Up-regulation of

inflammation-related genes is the most prominent expression

pattern in dystrophin-deficient muscle. Separation of down-

regulated genes allows independent analysis of the processes

potentially repressed under this condition.

Among proteins that regulate expression of negatively regulated

genes there is a group of factors working synergistically in a

number of processes crucial to a muscular physiology, e.g. muscle

remodeling and myogenesis (see Figure 2, representing some of the

relations between regulators of down-regulated genes).

In response to the changing environmental and physiological

demands myofibers can significantly alter the gene expression to

adapt to the current needs. It happens through the switch between

slow and fast fiber types that differ in their size, metabolism and

contractile function, in a process of muscle remodeling. Slow-

twitch fibers are rich in mitochondria content, have oxidative

metabolism and are resistant to fatigue. Fast-twitch fibers are

glycolytic and function in quick contractions (reviewed in [57]).

DMD preferentially affects fast-twitch myofibers, while slow-twitch

fibers show less damage [58]. One of the proposed reasons of

higher slow fibers’ survivability is up-regulation of utrophin, a

dystrophin homolog that can function as a partial replacement for

dystrophin [59].

Several factors that were obtained by SNEA of down-regulated

genes play role in muscle remodeling (e.g. PPARGC1A, PPARD,

AMPK, TORC2, MEF2C, MYOG, MYOD). They coordinate

mitochondria biogenesis, metabolic and transcriptional changes

that are necessary for transition to a slow-twitch muscle type.

Table 1. Consistent regulators of differentially expressed genes plus regulators from SNEA of reference dataset.

Function Regulation Regulators

Transcription factors positive, negative AML1-ETO, CCAAT factors, CIITA, CTCF, ESRRA, FOXI1, ING4,
MEF2C, MYOD1, MYOG, NF-kB, NR1H2, NR1H4, NR4A2,
PPARD, PPARGC1A, RUNX1, RUNX2, SCXA, SMAD, SMAD7,
SREBF1, SREBF2, STAT1, TWIST1, ZEB1, ZFHX3

Cytokines and cytokines receptors positive, negative ADIPOQ, BMP2, CSF1, CSH1, CTGF, GCG, GH1, IFNG, IL13, IL4,
IL6, IL6R, INS, LEP, PTH, TGF family, TGFB1, TGFB2, TNFRSF11B

Growth factors positive AGT, BMP2, CSF1, CTGF, FGF2, GF, IL4, IL6, TGF family, TGFB1,
TGFB2

Hormones positive, negative ADIPOQ, AGT, CSH1, GCG, GH1, INS, LEP, PTH

MAPK positive MAPK, MAPK3

Extracellular matrix positive collagen type I, vitronectin

Inflammation and immune response positive allergen, CAMP, CCL2, CCR7, CIITA, CMA1, CXCL2, IFNG, IL13,
IL4, IL6, IL6R, IRF1, NF-kB, STAT1, TGF family, TGFB1, TGFB2,
TNFRSF11B, ZEB1

Regulation of metabolic processes negative ADIPOQ, ADRB3, AMPK, GCG, INS, LEP, NR1H2, PPARD,
PPARGC1A, PRKAA2, SREBF1, SREBF2, TORC2, UCP2

TGFB-SMAD pathway positive BMP2, SMAD, SMAD7, TGF family, TGFB1, TGFB2

Muscle-specific factors negative MEF2C, muscle fiber, MYOD1, MYOG

Cell cycle positive CDKN1B, CTCF, ING4, SCXA

IFNG signaling positive IFNG, IRF1, STAT1

Renin-angiotensin system positive AGT, angiotensin II receptor

Chromatin modification positive, negative HDAC1, histone deacetylase inhibitor

Other positive alkaline phosphohydrolase, GJA1, LPL, MIRN29C, RHOA

doi:10.1371/journal.pcbi.1002365.t001

Meta-analysis Revealed Key Regulators in DMD
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Some of them, such as PPARGC1A and its activator PPARD [60],

were already studied in the context of DMD. It was known that

activation of PPARGC1A and PPARD by over-expression or

treatment with agonists ameliorates disease’s symptoms in mdx

mice by promoting slow fibers formation, up-regulation of

utrophin and enhancing neuromuscular junction program

[61,62]. The role of PPARGC1A was also demonstrated in

GRMD, where it was shown that PPARGC1A along with its

targets is dramatically reduced [63]. Recently the role of another

regulator predicted by our SNEA analysis AMPK, was also

confirmed in mdx mice. It was shown that activation of AMPK by

its agonist, AICAR, enhanced oxidative capacity, elicited fast-to-

slow fiber type transition, up-regulated utrophin expression and

increased sarcolemmal integrity [64].

AMPK, PPARGC1A, PPARD as well as other factors

important for fast-to-slow twitch fiber transition activate in

response to exercise, therefore a group of compounds, simulating

the effect of physical exercise, called exercise mimetics, can be

suggested as potential drugs to be tested in mdx mice. Some

exercise mimetics were already successfully tried in mdx mice (e.g.

GW1516, AICAR, resveratrol [62,64,65]). Some of the other

compounds known to stimulate the respective regulators can also

be suggested to improve symptoms in dystrophin deficiencies, e.g.

metformin, acadesine, phenormine, berberine (AMPK stimula-

tors), bezafibrate and GW0742 (PPARD stimulator), pioglitazone

and forskolin (PPARGC1A stimulator), SRT1720 (a more effective

stimulator of SIRT1, than resveratrol).

Interestingly, prednisone, a glucocorticoid that is used in the

therapy of DMD has an opposite effect on muscle fiber type,

decreasing the number of slow-twitch fibers [50].

Another group of significant regulators, such as TORC2 and

UCP2, have not yet been linked to Duchenne muscular dystrophy,

but they are known to regulate mitochondrial biogenesis, which

takes place during muscle remodeling (reviewed in [66,67]). We

can hypothesize, that mitochondria biogenesis is repressed in

dystrophic muscle, as 34 out of 191 consistently down regulated

differentially expressed genes are expressed in mitochondria (e.g. 6

NADH dehydrogenase subunits, 4 mitochondrial ribosomal

proteins, components of respiratory chain and tricarboxylic acids

cycle).

All above-mentioned factors work synergistically during forma-

tion of a slow-twitch myofiber. AMPK activates and up-regulates

PPARGC1A [68,69] and attenuates the gluconeogenic program

by blocking TORC2 nuclear accumulation [70,71]. TORC2 is

also able to promote mitochondrial biogenesis and enhance

oxidative capacity in muscle cells by stimulating PPARGC1A

transcription and up-regulation of ESRRA [67], transcription

factor known to be involved in mitochondrial biogenesis and

Figure 2. Regulators of down-regulated genes. Most of SNEA-derived regulators of down-regulated genes regulate the processes related to
myotube formation, fast-to-slow fiber type switch (including changes in myofiber composition, mitochondria content and insulin sensitivity) and
metabolic changes in DMD affected muscles. Relations are described in text. Catalytic subunit of AMPK, PRKAA2, is shown next to AMPK. Functional
class - class of proteins, such as enzyme families. Complex - a group of two or more proteins linked by non-covalent protein-protein interactions.
Expression - protein members of one class regulate expression of proteins in another class. DirectRegulation - protein members of one class bind and
regulate proteins in another class. Regulation - protein members of one class indirectly regulate proteins in another class. ProteinModification -
protein members of the regulator class phosphorylate or otherwise modify proteins in the target class. PromoterBinding - protein members of one
class bind promoters of genes encoding proteins in another class.
doi:10.1371/journal.pcbi.1002365.g002

Meta-analysis Revealed Key Regulators in DMD
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myotube formation [72]. UCP2 is a downstream target of

PPARGC1A [73]. Myogenic factors MYOG, MYOD and

MEF2C were shown to bind PPARGC1A promoter at the late

stages of muscle differentiation [74,75].

The process of muscle remodeling is connected to the change in

insulin sensitivity. It was shown, that fast-twitch myofibers are

more insulin resistant, while slow-twitch myofibers are more

insulin sensitive [76]. Interestingly insulin is one of the significant

regulators of down-regulated genes derived from analysis of

reference dataset, as well as glucagon and adipokines, leptin and

adiponectin. The presence of adipokines among regulators of gene

expression in DMD can be explained by metabolic and

histological changes in dystrophic muscle.

Three myogenic factors: MYOD, MYOG and MEF2C, co-

acting during muscle development ([77], reviewed in [78]) were

shown to be significant regulators of down-regulated genes in

aggregated dataset. Many of the aspects of their involvement in

DMD have been already studied, and our results just confirm their

importance in DMD pathogenesis. For example, lack of a master

regulator of skeletal muscle gene expression program MyoD was

shown to result in a significant increase in myopathy’s severity and

premature death in mdx mice due to the decreased regeneration

ability [79]. MyoD impaired activity in dystrophin-deficient

muscle can be caused by activation of NFkB and IFNG pathways

that result in MyoD destabilization [80]. Deletion of another

myogenic factor, MYOG, on the contrary benefits mdx mice by

improving fatigue resistance [81]. Both MYOG and MEF2C are

regulated by MYOD. Interestingly, one of the regulators of down-

regulated genes is transcription factor CTCF, found recently to be

a modulator of MyoD and MyoG activity during myogenesis [82].

HDAC1 is also involved in regulation of myogenic program by

blocking MYOD-mediated transcription [83].

As the set of described regulators reflects the impairment of the

same group of processes and 6 of 15 regulators were already

mentioned in the context of DMD and even tested as drug targets,

we can suggest, that the others, such as TORC2, can also be

considered from this point of view.

Selection of differentially expressed genes consistent
between 5 datasets
We have selected genes, which were consistently differentially

expressed in six datasets (one aggregated dataset and five leave-

one-out datasets). The fold-change threshold was established by

analyzing fraction of genes present in all six top-k rankings for

varying k, Figure 3. As can be seen, fraction of common genes in

top-k rankings for different types of gene expression reaches a

plateau for k roughly equal to 500. This means, that adding more

genes will not increase percentage of overlap between different

gene rankings. Hence we limited our analysis to top-500

differentially expressed genes for different types of regulation.

The percentage of consistent genes in top-k of all datasets is about

40% (Figure 3). It means that analysis of differentially expressed

Figure 3. Fraction of common genes in top-k rankings for different types of gene expression. For each of six datasets and for each type
of regulation gene ranking procedure was performed and overlap between six top-k lists was calculated. Fraction of common genes in top-k reaches
saturation for k roughly equal to 500, hence adding more genes will not increase overlap between six rankings.
doi:10.1371/journal.pcbi.1002365.g003

Meta-analysis Revealed Key Regulators in DMD
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genes from a single dataset can potentially lead to 60% of false

positives. To increase reproducibility of obtained results we

focused on the genes, presented in all six top-500 rankings.

From the top 500 up-regulated genes in aggregated dataset we

have selected 240 genes also present among top 500 up-regulated in

all 5 leave-one-out datasets. Similarly, from the top 500 down-

regulated genes in aggregated dataset we have selected 191 genes also

present among top 500 down-regulated in all 5 leave-one-out

datasets. These two lists were combined into a single list of 431

consistently up/down regulated differential genes. We performed

Fisher exact test to find significantly enriched categories from Gene

Ontology, corresponding to biological processes. Results, presented in

Table 2, in general reflect known changes that take place in affected

muscles: up-regulated genes are commonly associated with inflam-

mation and immune response, apoptosis and wound healing; down-

regulated genes – with metabolic processes and muscle contraction.

Genes were further analyzed in order to evaluate their quality as

biomarkers. A promising biomarker should be easily detected and

correspond to a DMD-related process (e.g. muscle biology,

fibrosis, inflammation) or DMD-related condition (e.g. dilated

cardiomyopathy). We used a proprietary Ariadne DiseasesFX

Database, which contains literature-extracted information about

various types of relations between genes and diseases as well as

data on presence of gene products in biofluids and among secreted

proteins. We also made use of Ariadne ResNet 7 and Muscle

Biology Gene Ontology, see Methods. Associations between 431

consistently up/down regulated genes and DMD-related processes

and conditions are depicted in Table S2.

Consistent differentially expressed genes downstream
from significant regulators
Out of 431 consistently changed genes, we have selected only those

which are expression targets of significant regulators, selected using

the above procedure. This produced a list of 140 candidate genes (35

down-regulated, 105 up-regulated) that have been finally sorted using

combination of rank in aggregated dataset and number of significant

regulators (see Methods). Most of them correspond to the processes of

development and regeneration, immune response, response to

glucocorticoids, hypoxia and extracellular matrix organization.

Top-ranked 20 positive and 10 negative genes have been

individually analyzed using biological information available from

scientific literature (PubMed). Mainly they are connected to

fibrosis, inflammation, energy metabolism and other processes

known to be affected in DMD. It was found that 12 out of these 30

were previously reported as related to muscle processes/disorders,

the fact that can be considered as a proof of concept, providing the

possibility to suggest new possible biomarker candidates on the

base of suggested procedure.

In summary, this study demonstrates the possibility to decipher

regulatory mechanisms of the specific disease (Duchenne dystro-

phy here) along with corresponding exploratory biomarkers on the

base of multiple microarray data meta-analysis only. A lot of

predicted expressional regulators are known to be involved in

DMD, suggesting that others will also be verified hereafter. This

means that all of the proposed regulators can be considered for

further drug discovery, whereas their consistently differentially

expressed downstream genes can serve as exploratory biomarkers

with implicated mechanistic models.

Methods

Source data
All available microarray datasets of human DMD with more

than 10 samples (total 5 datasets, see Table 3) were downloaded

from NCBI GEO database [http://www.ncbi.nlm.nih.gov/geo/].

For each probeset intensity values were log-transformed and

normalized to zero mean and unit variance. Missing data were

imputed using K-nearest neighbor method with k = 10.

Reference dataset
We have also utilized data presented in [26], where the lists of up-

and down-regulated genes were extracted from research papers,

related to skeletal muscle development and pathologies. We limited

this dataset to studies of DMD or mdx mice resulting in total 2227

genes which were reported to be differentially expressed in at least in

one paper prior to December 2005. For these genes we generated a

pseudo-expression dataset for further analysis similar to the

standard microarray experiment. If gene was reported to be up-

regulated, the gene was assigned a positive value equal to

corresponding number of supporting studies; if gene was reported

to be down-regulated, the assigned value was negative.

Dataset aggregation (gene ranking)
To combine the data from different datasets, we performed the

following aggregation procedure. For each probeset we calculated

Table 2. Gene Ontology groups enriched by consistent
differentially expressed genes.

GO Process

Number of

genes p-value

Up-regulated genes

cell adhesion 23 1.92E-09

immune response 20 6.8E-08

proteolysis 13 0.00193

apoptosis 12 0.001376

negative regulation of cell proliferation 10 0.00025

inflammatory response 10 0.000111

cell motion 10 3.76E-08

heart development 9 1.08E-05

skeletal system development 9 2.48E-06

wound healing 9 3.45E-09

Down-regulated genes

carbohydrate metabolic process 16 2.94E-11

metabolic process 14 0.000619

oxidation reduction 12 0.00102

modification-dependent protein catabolic
process

11 0.000211

glycogen metabolic process 9 2.16E-12

muscle contraction 8 1.01E-07

response to hypoxia 7 0.000119

electron transport chain 7 6.87E-06

nervous system development 6 0.040331

response to drug 6 0.00847

Biological processes from Gene Ontology associated with consistently
differentially expressed genes were found by applying ‘‘Find groups enriched
with selected entities’’ tool embedded in Ariadne Pathway Studio to the list of
431 genes. Resulting significant (p-value,0.05) biological processes were
sorted by number of genes involved in a process. Top 10 processes are shown.
doi:10.1371/journal.pcbi.1002365.t002
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within-dataset log-ratio, two-sample Welch’s t-test, Wilcoxon rank

sum test and area under ROC curve. If gene on a chip was

represented by two or more probesets, we selected the probeset

with the least p-value for Wilcoxon rank sum test. We also

calculated several other statistics, using popular methods designed

specifically for microarray data: limma, SAM and shrinkage T-

statistic. Limma, Linear Models for Microarrays [1,84], is based

on a Bayesian hierarchical model for posterior odds of differential

expression. SAM, Significance Analysis of Microarrays, was

proposed in [2]. Shrinkage T-statistic stabilizes the variances in

the denominator via a James-Stein approach [3].

Finally, we have combined the results from different experi-

ments to generate the single ‘‘differential’’ rank for each gene.

Separate gene rankings were obtained for nine measures: log-ratio,

Welch’s t-statistic and corresponding p-value, Wilcoxon’s W-

statistic and corresponding p-value, AUC, limma, SAM and

shrinkage T-statistic. We used Fisher’s method to combine p-

values of the same type [85]; values of other statistics were

averaged for each gene. The final gene rank R was calculated as

mean of the ranks from all methods. Each gene was also assigned a

single differential log ratio value calculated as an average

differential log-ratio from 5 original gene expression datasets.

In order to ensure reproducibility of obtained results, we

performed a procedure, analogous to leave-one-out cross-valida-

tion: we constructed additional datasets each time aggregating 4

distinct microarray experiments out of total 5 available experi-

ments. Thus we obtained 5 leave-one-out datasets where each

microarray experiment was omitted. We also built one large

dataset, where all 5 available microarray experiments were

aggregated. All subsequent analyses were performed for resultant

6 datasets and the results were cross-validated as further described.

Sub-Network Enrichment Analysis
For functional analysis of high-throughput data on the level of

potential regulators we used Sub-Network Enrichment Analysis

(SNEA) algorithm, implemented in Pathway Studio software [11].

SNEA is a variation of gene set enrichment analysis algorithm,

but unlike GSEA [5,6] that uses predefined gene sets, SNEA

utilized sub-networks to construct gene sets on the go. Here, each

subnetwork consists of a node (mainly protein or class of proteins –

‘‘functional class’’) in ResNet and all its expression downstream

targets which are automatically derived from the literature. Global

expression network includes direct (i.e. transcriptional factor A1 is

reported in the literature to regulate specific gene B1) and indirect

(i.e. growth factor A2, that can activate specific signaling pathway

results to the change of downstream gene B2 expression) relations

Ai-.Bi. For each subnetwork seed SNEA considers all its

expression targets as a gene set that is used for the classical GSEA

(Mann-Whitney or Kolmogorov-Smirnov statistical tests).

Thus, SNEA determines the activity of expression regulators

based on the differential expression of its targets and favors (assigns

lower p-value) those of them which have more significant

expression changes downstream.

We performed the SNEA in Pathway Studio with the default

parameters: Sub-Network type: gene expression, Mann-Whitney

test, p-value,0.05, number of regulators ,100 for all log-ratio

values (DMD vs. control) from the 6 aggregated datasets. The

consistency of default parameters has been tested using 10

permutation tests. It has been shown, that the rate of significant

SNEA seeds accidentally found in SNEA results applied to

randomized experiment is less than 5%, which is in agreement

with default p-value cutoff 0.05. For the reference dataset we ran

SNEA with the same parameters using number of studies which

reported gene to be differentially expressed. All enrichment

algorithms were applied separately to over-expressed and under-

expressed genes.

Final gene sorting
The final sorting of the differentially expressed genes have been

done using the following score

Score geneið Þ~N � abs logratio for geneið Þ=R

where N – number of significant regulators upstream of the i-th

gene and R –gene rank in aggregated dataset resulted from

expression data analysis only.

Software and databases
Most computations were done using R [http://www.r-project.

org/] and BioConductor [http://www.bioconductor.org/]. Val-

ues of limma, SAM and shrinkage T-statistic were computed using

GeneSelector package [86].

Sub-Network Enrichment Analysis was performed using

Pathway Studio 7.1 from Ariadne Genomics along with ResNet

7, database storing literature-derived network of biological

relations [http://www.ariadnegenomics.com/]. Proprietary Ari-

adne DiseasesFX database was used for evaluation of gene quality

as disease biomarker [Table S2], and ChemEffect [12] was used

for studying drugs, related to the regulators of interest.

Muscle Biology Gene Ontology [http://wiki.geneontology.org/

index.php/Genes_Involved_in_Muscle_Biology] was used to se-

lect genes associated with muscle-related processes.

Supporting Information

Table S1 Consistent regulators of differentially ex-

pressed genes. Table contains description of SNEA-derived

regulators (name, description, Entrez Gene ID); information

whether regulator affects expression of up- or down-regulated

genes, number and names of datasets, where regulator was found as

a significant one; number of downstream consistently differentially

Table 3. GEO datasets used for the meta-analysis.

GEO ID Platform Description Source Reference

GDS 214 custom Affymetrix 4 healthy, 26 DMD Muscle [87]

GDS 563 Affymmetrix U95A 11 healthy, 12 DMD Quadriceps Muscle [88]

GDS 1956 Affymetrix U133A 18 healthy, 10 DMD Muscle [84]

GDS 2855 Affymetrix U133B 20 healthy, 10 DMD Muscle [84]

GDS 3027 Affymetrix U133A 14 healthy, 23 DMD Quadriceps Muscle [89]

doi:10.1371/journal.pcbi.1002365.t003
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expressed genes (see Table S2); rank in aggregated and reference

datasets; information whether regulator was already mentioned in

PubMed publications related to DMD.

(XLSX)

Table S2 Consistently differentially expressed genes.

Table contains a list and description of consistently differentially

expressed genes from aggregated dataset (description, Entrez Gene

ID), their rank and log ratio, number of consistent regulators (see

Table S1), regulating gene expression, association with DMD-

related processes and conditions (from Ariadne DiseaseFX and

ResNet7, Gene Ontology, Muscle Biology Gene Ontology).

(XLSX)
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