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We derive and analyze second-order accurate implicit numerical methods for the Riesz space distributed-order advection-
dispersion equations (RSDO-ADE) in one-dimensional (1D) and two-dimensional (2D) cases, respectively. Firstly, we discretize the
Riesz space distributed-order advection-dispersion equations intomultitermRiesz space fractional advection-dispersion equations
(MT-RSDO-ADE) by using themidpoint quadrature rule. Secondly, we propose a second-order accurate implicit numericalmethod
for the MT-RSDO-ADE.�irdly, stability and convergence are discussed. We investigate the numerical solution and analysis of the
RSDO-ADE in 1D case.�en we discuss the RSDO-ADE in 2D case. For 2D case, we propose a new second-order accurate implicit
alternating direction method, and the stability and convergence of this method are proved. Finally, numerical results are presented
to support our theoretical analysis.

1. Introduction

Fractional di�erential equations play a signi	cant role in
modeling the so-called anomalous transport phenomena
and in the theory of complex systems. In recent years
there has been a growing interest in the 	eld of fractional
calculus. �e books [1–4] are completely devoted to di�erent
applications of fractional di�erential equations inmany areas,
such as engineering, physics, chemistry, astrophysics, and
other sciences and historical summaries of the develop-
ment of fractional calculus. Fractional kinetics systems are
widely applied to describe anomalous di�usion or advection-
dispersion processes [5, 6]. For processes lacking such scaling
the corresponding description may be given by distributed-
order fractional partial di�erential equations [7]. It has been
reported that the dynamical systems describing and solving
the real world properties have been undergoing two stages.
One is from integer-order dynamic systems to fractional-
order dynamic systems, and the other is from fractional-order
dynamic systems to distributed-order dynamic systems [8].

Furthermore, distributed-order di�erential equations
have recently been investigated for complex dynamical sys-
tems, namely, distributed-order dynamic systems, which
have been explored to describe some important physical
phenomena. Distributed-order di�erential models are more
powerful tools to describe complex dynamical systems than
classical and fractional-order models because of their non-
local properties. Chechkin et al. proposed a distributed-
order fractional di�usion equation as a generalization of
fractional kinetic equations to describe the random pro-
cess possessing nonunique di�usion exponent and, hence,
nonunique Hurst exponent [9]. An important application of
distributed-order equations is to model ultraslow di�usion
where a plume of particles spreads at a logarithmic rate
(see [10, 11]). Kochubei [12] considered the time distributed-
order equation and developed a mathematical theory of this
equation and studied the derivatives and integrals of dis-
tributed order. �is equation is applied in physical literature
for modeling di�usion with a logarithmic growth of the
mean square displacement. As the order of the fractional
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derivative is distributed over the unit interval, it is useful for
modeling a mixture of delay sources (see [13]). Moreover,
distributed-order equations may be viewed as consisting of
viscoelastic and viscoinertial elements when the order of the
fractional derivative varies from zero to two (see [14, 15]).
With the motivation of these applications, some attentions
have been paid to the fractional partial di�erential equations
(FPDEs) with distributed order [7, 16, 17]. In [18], a series of
distributed-order PI controller design methods are derived
and applied to the robust control of wheeled service robots,
which can tolerate more structural and parametric uncertain
ties than the corresponding fractional-order PI control. In
the book [8], two initial applications including distributed-
order signal processing and optimal distributed damping are
provided as motivating examples to further the investigation
in the distributed-order dynamic systems.

Caputo [19] pointed out that it is very important to
investigate the di�usion in porous media for science and
engineering 	eld and for social needs especially in the
case of water and pollutants. Nowadays the studies of the
dissipative and dispersive properties in di�usion equation
with fractional order in time and/or space domain in
anelastic and dielectric media have been spread to many
phenomena from nonlinearity to statistical mechanics and
memory formalisms, to represent the diversi	ed forms of
deviations from the classic constitutive laws and several
complex mathematical methods. Distributed-order equa-
tions were 	rst introduced in time domain [20, 21]. Caputo
solved the classic problems of anelastic and dielectric media
and of di�usion with distributed order in time domain
[22]. �en in [19], Caputo considered an extension of the
constitutive relation of di�usion to the case when a space
memorymechanism operating the medium is represented by
a fractional-order di�erential equations whose order covers
a continuum in a given range and introduced distributed
order in the constitutive equation in space domain. During
the study, Caputo pointed out that the major di�erence when
using space distributed order in the constitutive equation
with the case using the single space fractional derivative is
that the solutions found in the distributed-order case are
potentially more �exible to represent more complex media
and more nonlocal phenomena. �e di�erence between the
space memory medium and that in time memory, that is,
distributed-order equation in space domain and distributed-
order equation in time domain, is that the former is more
�exible to represent local phenomena while the latter is more
re�exible to represent variations in space.

�ere are some numerical methods for distributed-order
partial di�erential equations which have been proposed.
Diethelm and Ford [23] introduced and analyzed a numerical
method for the solution of a distributed-order di�erential
equations. Meerschaert et al. [13] provided explicit strong
solutions and stochastic analogues for distributed-order
time-fractional di�usion equations on bounded domains
with Dirichlet boundary conditions. Atanackovic et al. [24]
studied waves in a viscoelastic rod of 	nite length. Vis-
coelastic material is described by a constitutive equation
of fractional distributed-order type with the special choice
of weight functions. Prescribing boundary conditions on

displacement, they obtained displacement and stress in a
stress relaxation test. Morgado and Rebelo [25] took into
account an implicit scheme for the numerical approximation
of the distributed-order time-fractional reaction-di�usion
equation with a nonlinear source term.

Ye et al. [26] proposed numerical methods for the time
distributed-order and Riesz space fractional di�usions and
a distributed-order time-fractional di�usion-wave equation,
respectively. Hu et al. [27] also considered a new time
distributed-order and two-side space-fractional advection-
dispersion equation and a time distributed-order di�usion
model, respectively. �ey discretized the distributed-order
equation into a multiterm fractional partial di�erential equa-
tion. Some numerical methods for the multiterm fractional
partial di�erential equation have been investigated. Liu
et al. [28] considered the multiterm time-fractional wave-
di�usion equations and proposed some computationally
e�ective numerical methods for simulating the multiterm
time-fractional wave-di�usion equations. Jiang et al. [29]
considered themultitermmodi	ed power lawwave equations
in a 	nite domain and derived the fundamental solutions
of the multiterm modi	ed power law wave equations with
the methods and techniques based on Luchko’s �eorem, a
spectral representation of the Laplacian operator, a method
of separating variables and fractional derivative techniques.
Taking the use of the similar methods they derived the
analytical solutions of the three types of the space Caputo-
Riesz fractional advection-di�usion equations with Dirichlet
nonhomogeneous boundary conditions in [30]. Ye et al. [31]
derived series expansion based on a spectral representation
of the Laplacian operator in a bounded region and gave
some applications for the two- and three-dimensional tele-
graph equation, power law wave equation, and Szabo wave
equation. However, published papers on numerical meth-
ods of the fractional partial di�erential equations (FPDEs)
with distributed-order especially the space distributed-order
FPDES are sparse. �is motivates us to consider e�ective
numerical methods for space distributed-order advection-
di�usion equations.

In this paper, we consider the Riesz space distributed-
order advection-di�usion equation (RSDO-ADE) in one-
dimensional (1D) and two-dimensional (2D) cases, respec-
tively.�e rest of the paper is organized as follows.We discuss
numerical method and analysis in 1D case in Sections 2 and
3, respectively. We investigate RSDO-ADE in 2D case and
propose a new second-order accurate implicit alternating
direction method; the stability and convergence of this
method are proved in Section 4. Finally, we give two examples
to illustrate the behavior of our numerical methods and
demonstrate the e�ectiveness of our theoretical analysis.

2. A Second-Order Accurate
Implicit Numerical Method for
RSDO-ADE in 1D Case

2.1. Discretization of the Integral Term. Consider the follow-
ing Riesz space distributed-order advection-di�usion equa-
tion (RSDO-ADE):



Advances in Mathematical Physics 3

�� (�, �)�� = ∫1
0
� (�) ��� (�, �)� |�|� 	�

+ ∫2
1

 (�) ��� (�, �)� |�|� 	� + � (�, �) , (1)

where�(�) and
(�) are nonnegativeweight functionswhich
satisfy the conditions

0 ≤ � (�) ,� (�) ̸≡ 0, � ∈ [0, 1] ,
0 < ∫1
0
� (�) 	� < ∞,

0 ≤ 
 (�) ,
 (�) ̸≡ 0, � ∈ [1, 2] ,
0 < ∫2
1

 (�) 	� < ∞,

(2)

and the Riesz space fractional derivative operators ���(�,�)/�|�|� and ���(�, �)/�|�|� on a 	nite domain [0, �] are
de	ned as follows:

��� |�|� � (�, �) = −�� [ 0��� � (�, �) + ���� � (�, �)] ,
��� |�|� � (�, �) = −�� [ 0��� � (�, �) + ���� � (�, �)] , (3)

where

�� = 12 cos (��/2) , 0 < � < 1,
�� = 12 cos (��/2) , 1 < � < 2,

0��� � (�, �) = 1Γ (1 − �) ��� ∫�0 (� − �)−� � (�, �) 	�,
���� � (�, �) = −1Γ (1 − �) ��� ∫�� (� − �)−� � (�, �) 	�,
0��� � (�, �) = 1Γ (2 − �) �2��2 ∫�0 (� − �)1−� � (�, �) 	�,
���� � (�, �) = 1Γ (2 − �) �2��2 ∫�� (� − �)1−� � (�, �) 	�,

(4)

where Γ(⋅) represents the Euler gamma function.

Now we consider (1) in the 	nite domain [0, �] with the
following initial and boundary conditions:

� (0, �) = 0,� (�, �) = 0, � ∈ [0, �] , (5)

� (�, 0) =  0 (�) , � ∈ [0, �] . (6)

Firstly, we discretize the integral intervals [0, 1] of � and[1, 2] of � by the grid 0 = �0 < �1 < ⋅ ⋅ ⋅ < �� = 1, 1 = !0 <!1 < ⋅ ⋅ ⋅ < !� = 2, and denote Δ�� = �� − ��−1 = 1/# = $
and �� = (�� + ��−1)/2 = (2% − 1)/2#, % = 1, 2, . . . , #, # ∈ N.

Consider Δ!� = !� − !�−1 = 1/# = & and �� = (!� + !�−1)/2 =1 + (2% − 1)/2#, % = 1, 2, . . . , #, # ∈ N.
�en by using the midpoint quadrature rule, we obtain

∫1
0
� (�) ��� (�, �)� |�|� 	�
= �∑
�=1
� (��) ���� (�, �)� |�|�� Δ�� + 3 ($2) ,

∫2
1

 (�) ��� (�, �)� |�|� 	�
= �∑
�=1

(��) ���� (�, �)� |�|�� Δ!� + 3 (&2) .

(7)

�us, Riesz space distributed-order advection-di�usion
equation (1) in 1D case is now transformed into the following
multiterm Riesz space fractional advection-di�usion
equation:

�� (�, �)�� = �∑
�=1
� (��) ���� (�, �)� |�|�� 1#

+ �∑
�=1

(��) ���� (�, �)� |�|�� 1# + � (�, �)

+ 3 ($2 + &2) .
(8)

2.2. A Second-Order Accurate Implicit Numerical Method
for RSDO-ADE. �en, we discretize the computing domain[0, �] × [0, �] by �� = 4ℎ, 4 = 0, 1, . . . ,6, and �	 = 78, 7 =0, 1, . . . , 9, where ℎ = �/6 and 8 = �/9 are the space
and time steps, respectively, and 6 and 9 are two positive
integers. Assume that �(�, �) ∈ :5([;, >] × [0, �]) and denote

�� (��, �
+1/2)�� = � (��, �
+1) − � (��, �
)8 + 3 (82) . (9)
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�e Riesz space fractional derivative operators are dis-
cretized as follows [32, 33]:

���� (��, �
)� |�|�� = − 1ℎ�� �−1∑	=1 ?���−	� (�	, �
) + 3 (ℎ2) ,
0 < �� < 1, % = 1, 2, . . . , #,

���� (��, �
)� |�|�� = − 1ℎ�� �−1∑	=1 ?���−	� (�	, �
) + 3 (ℎ2) ,
1 < �� ≤ 2, % = 1, 2, . . . , #,

(10)

where

?��	 = (−1)	 Γ (1 + ��)Γ (��/2 − 7 + 1) Γ (��/2 + 7 + 1)
= (1 − 1 + ����/2 + 7)?��	−1, % = 1, 2, . . . , #, (11)

?��	 = (−1)	 Γ (1 + ��)Γ (��/2 − 7 + 1) Γ (��/2 + 7 + 1)
= (1 − 1 + ����/2 + 7)?��	−1, % = 1, 2, . . . , #. (12)

Lemma 1. 	e coe
cients ?��	 (0 < �� < 1) of (11) and?��	 (1 < �� ≤ 2) of (12) satisfy
(1) ?��0 ≥ 0 and ?��0 ≥ 0;
(2) ?��−	 = ?��	 ≤ 0, ?��−	 = ?��	 ≤ 0, for 7 = ±1, ±2, . . .;
(3) ∑∞	=−∞ ?��	 = 0 and ∑∞	=−∞ ?��	 = 0;
(4) ?��0 = ∑∞	=−∞, 	 ̸=0 |?��	 | and ?��0 = ∑∞	=−∞, 	 ̸=0 |?��	 |.

Proof. (1) According to the property of Γ function, we have
?��0 = Γ (1 + ��)[Γ (��/2) + 1]2 > 0, for �� > 0;
?��0 = Γ (1 + ��)[Γ (��/2) + 1]2 > 0, for �� > 0. (13)

(2) From (11) and (12), we have

?��−	 = (−1)−	 Γ (1 + ��)Γ (��/2 − 7 + 1) Γ (��/2 + 7 + 1)
= (−1)	 Γ (1 + ��)Γ (��/2 − 7 + 1) Γ (��/2 + 7 + 1) = ?��	 ,

?��−	 = (−1)−	 Γ (1 + ��)Γ (��/2 − 7 + 1) Γ (��/2 + 7 + 1)
= (−1)	 Γ (1 + ��)Γ (��/2 − 7 + 1) Γ (��/2 + 7 + 1) = ?��	 .

(14)

For 7 = 1, we have
?��1 = (1 − 1 + ����/2 + 1)?��0 ≤ 0,
?��1 = (1 − 1 + ����/2 + 1)?��0 ≤ 0. (15)

Assuming that ?��	 ≤ 0, ?��	 ≤ 0. Since 0 < �� < 1 and 1 <�� ≤ 2, we have
1 − 1 + ����/2 + 7 + 1 > 0,
1 − 1 + ����/2 + 7 + 1 > 0. (16)

�erefore,

?��	+1 = (1 − 1 + ����/2 + 7 + 1)?��	 ≤ 0, % = 1, 2, . . . , F,
?��	+1 = (1 − 1 + ����/2 + 7 + 1)?��	 ≤ 0, % = 1, 2, . . . , F. (17)

By mathematical induction method, conclusion (2) is
proved.(3) From the following formula [32],HHHHHHH2 sin(J2)HHHHHHH��

= +∞∑
	=−∞

(−1)	 Γ (�� + 1)Γ (��/2 − 7 + 1) Γ (��/2 + 7 + 1)L�	�,
(18)

we have∑+∞	=−∞((−1)	Γ(��+1)/Γ(��/2−7+1)Γ(��/2+7+1)) =0; namely, ∑∞	=−∞ ?��	 = 0.
�e conclusion that∑∞	=−∞ ?��	 = 0 is also obtained by the

same method.(4)According to (3), we have?��0 +∑+∞	=−∞, 	 ̸=0 ?��	 = 0, and
using the conclusion ?��	 = ?��−	 ≤ 0, we get ∑+∞	=−∞, 	 ̸=0 |?��	 | =?��0 .
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�e conclusion that∑+∞	=−∞, 	 ̸=0 |?��	 | = ?��0 is also obtained
by the same method.

Using Crank-Nicholson method and second-order accu-
rate implicit 	nite di�erence scheme, we obtain the following
discrete form for RSDO-ADE in 1D case:� (��, �
+1) − � (��, �
)8

= −12 �∑�=1� (��)# 1ℎ�� �−1∑	=1 ?���−	� (�	, �
)
− 12 �∑�=1� (��)# 1ℎ�� �−1∑	=1 ?���−	� (��, �
+1)
− 12 �∑�=1
(��)# 1ℎ�� �−1∑	=1?���−	� (�	, �
)
− 12 �∑�=1
(��)# 1ℎ�� �−1∑	=1?���−	� (��, �
+1)
+ � (��, �
+1/2) + N
+1/2� ,

(19)

where the local truncation error N
+1/2� = 3($2 +&2 +82 +ℎ2)
and �(��, �
+1/2) = (1/2)(�(�	, �
+1) + �(�	, �
)).

By omitting the local truncation error term N
+1/2� in
(19). We obtain the following second-order accurate implicit
numerical method for RSDO-ADE in 1D case:

�
+1� − �
�8 = −12 �∑�=1� (��)# 1ℎ�� �−1∑	=1 ?���−	�
	
− 12 �∑�=1� (��)# 1ℎ�� �−1∑	=1 ?���−	�
+1	
− 12 �∑�=1
(��)# 1ℎ�� �−1∑	=1?���−	�
	
− 12 �∑�=1
(��)# 1ℎ�� �−1∑	=1?���−	�
+1	
+ �
+1/2� ,
4 = 1, 2, . . . ,6 − 1; O = 0, 1, . . . , 9 − 1;

(20)

�	0 = 0,
�	� = 0,

7 = 1, 2, . . . , 9,
(21)

�0� =  0 (��) , 4 = 0, 1, . . . ,6. (22)

We de	ne the function space as follows: Λ(Ω) ={�(�, �) | �5�(�, �)/��5, �4�(�, �)/��2��2 ∈ :(Ω)}, whereΩ = [0, �]×[0, �]. In this paper, we suppose that the problem:
(1) satis	es conditions (5) and (6) has a smooth solution�(�, �) ∈ Λ(Ω), and �(�, �),  0(�) are su�ciently smooth
functions.

3. Numerical Analysis of
the Second-Order Accurate Implicit
Numerical Method in 1D Case

In this subsection, we discuss the stability and convergence of
the second-order accurate implicit numerical method (20)–
(22).

Equation (20) can be rewritten as

�
+1� + 82 �∑�=1� (��)# 1ℎ�� �−1∑	=1?���−	�
+1	
+ 82 �∑�=1
(��)# 1ℎ�� �−1∑	=1?���−	�
+1	

= �
� − 82 �∑�=1� (��)# 1ℎ�� �−1∑	=1?���−	�
	
− 82 �∑�=1
(��)# 1ℎ�� �−1∑	=1?���−	�
	 + 8�
+1/2� ,

4 = 1, 2, . . . ,6 − 1; O = 0, 1, . . . , 9 − 1.

(23)

Further, (23) can be written into the following matrix
form:

(R + S)T
+1 = (R − S)T
 + 8U
+1/2, (24)

where S = S1 + S2 = [;�,�](�−1)×(�−1). Consider
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S1 =
((((((((((
(

82# �∑�=1� (��)ℎ�� ?��0 82# �∑�=1� (��)ℎ�� ?��−1 82# �∑�=1� (��)ℎ�� ?��−2 ⋅ ⋅ ⋅ 82# �∑�=1� (��)ℎ�� ?��−�+2
82# �∑�=1� (��)ℎ�� ?��1 82# �∑�=1� (��)ℎ�� ?��0 82# �∑�=1� (��)ℎ�� ?��−1 ⋅ ⋅ ⋅ 82# �∑�=1� (��)ℎ�� ?��−�+3... ...82# �∑�=1� (��)ℎ�� ?���−2 82# �∑�=1� (��)ℎ�� ?���−3 82# �∑�=1� (��)ℎ�� ?���−4 ⋅ ⋅ ⋅ 82# �∑�=1� (��)ℎ�� ?��0

))))))))))
)

,

S2 =
((((((((((
(

82# �∑�=1
(��)ℎ�� ?��0 82# �∑�=1
(��)ℎ�� ?��−1 82# �∑�=1
(��)ℎ�� ?��−2 ⋅ ⋅ ⋅ 82# �∑�=1
(��)ℎ�� ?��−�+2
82# �∑�=1
(��)ℎ�� ?��1 82# �∑�=1
(��)ℎ�� ?��0 82# �∑�=1
(��)ℎ�� ?��−1 ⋅ ⋅ ⋅ 82# �∑�=1
(��)ℎ�� ?��−�+3... ...82# �∑�=1
(��)ℎ�� ?���−2 82# �∑�=1
(��)ℎ�� ?���−3 82# �∑�=1
(��)ℎ�� ?���−4 ⋅ ⋅ ⋅ 82# �∑�=1
(��)ℎ�� ?��0

))))))))))
)

.

(25)

Consider T
 = (�
1 , �
2 , . . . , �
�−1)� and U
+1/2 = (�
+1/21 ,�
+1/22 , . . . , �
+1/2�−1 )� and R is a (6−1)×(6−1) identitymatrix.
According to Lemma 1, we have the following Lemma.

Lemma 2. Matrix S is symmetric and strictly diagonally
dominant.

3.1. Stability of the Second-Order Accurate

Implicit Numerical Method

Lemma 3 (see [33]). If matrix R+S is invertible, thenmatrices(R + S)−1 and R − S commute.

Lemma4 (see [33]). If bothS and^ are symmetricmatrices of
order O and matricesS and ^ commute, thenS^ is symmetric.

Lemma 5 (see [33]). If matrix S is real and symmetric, then‖S‖2 = [&(S2)]1/2 = [&2(S)]1/2 = &(S) = max |`�|.
�eorem 6. 	e second-order accurate implicit numerical
method (20)–(22) for RSDO-ADE (1), (5), and (6) is uncon-
ditionally stable.

Proof. Assuming that �
� and �̃
� are numerical solution and
approximation solution of the second-order accurate implicit

numerical method (20)–(22), let b	� = �̃	� − �	� and Y

 =[b
1 , b
2 , . . . , b
�−1]�. �en the error Y
 satis	es the following

equation:

Y

+1 = (R + S)−1 (R − S)Y
. (26)

According to the Gershgorin theorem the eigenvalues at
each diagonal entry are

;�� = 82# �∑�=1� (��)ℎ�� ?��0 + 82# �∑�=1� (��)ℎ�� ?��0 , (27)

with radius c� = ∑�−1	=1,	 ̸=� |(8/2#)∑��=1(�(��)/ℎ��)?���−	 + (8/2#)∑��=1(�(��)/ℎ��)?���−	|. Using Lemma 1, we obtainHHHHHHHHHHH`� − 82# �∑�=1� (��)ℎ�� ?��0 − 82# �∑�=1
(��)ℎ�� ?��0 HHHHHHHHHHH
≤ �−1∑
	=1,	 ̸=�

HHHHHHHHHHH 82#
�∑
�=1

� (��)ℎ�� ?���−	 + 82# �∑�=1
(��)ℎ�� ?���−	HHHHHHHHHHH
≤ �−1∑
	=1,	 ̸=�

HHHHHHHHHHH 82#
�∑
�=1

� (��)ℎ�� ?���−	HHHHHHHHHHH
+ �−1∑
	=1,	 ̸=�

HHHHHHHHHHH 82#
�∑
�=1


(��)ℎ�� ?���−	HHHHHHHHHHH
≤ 82# �∑�=1� (��)ℎ�� ?��0 + 82# �∑�=1
(��)ℎ�� ?��0 .

(28)

Further, according to (28), we have

0 < ` < 2[[ 82# �∑�=1� (��)ℎ�� ?��0 + 82# �∑�=1
(��)ℎ�� ?��0 ]] . (29)
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Next, ` is an eigenvalue of S, then 1 + ` is an eigenvalue of
matrix R + S, and (1 − `)/(1 + `) is an eigenvalue of matrix(R + S)−1(R + S). According to (29), we have ` > 0, and it is
easy to check that HHHHHHHH 1 − `1 + `HHHHHHHH < 1. (30)

�us, we obtain the following conclusion:& [(R + S)−1 (R − S)] < 1. (31)

It is obviously that R andS are both symmetric.�erefore

matrices R −S, R +S, and (R +S)−1 are also symmetric. SinceR +S is invertible, according to Lemma 3, (R +S)−1 and R −S
commute.Using Lemma 4,h = (R+S)−1(R−S) is symmetric.
Based on Lemma 5, we have ‖h‖2 = &(h) < 1.

�erefore, we obtainiiiiiY
+1iiiii2 ≤ ‖h‖2 iiiiY
iiii2 ≤ ⋅ ⋅ ⋅ ≤ iiiiiY0iiiii2 . (32)

�is completes the proof.

3.2. Convergence of the Second-Order Accurate Implicit
Numerical Method. Now let us consider the convergence of
second-order accurate implicit numerical method (20)–(22).

�eorem 7. Assuming that RSDO-ADE (1), (5), and (6) have
smooth solution�(��, �
) ∈ Λ(Ω), {�
� } is the solution of second-
order accurate implicit numerical method (20)–(22). Let errorL
� = �(��, �
) − �
� and E


 = (L
1 , L
2 , . . . , L
�−1)�. 	en there
exists a constant : such thatiiiiE
iiii2 ≤ : ($2 + &2 + 82 + ℎ2) , 1 ≤ O ≤ 9. (33)

Proof. From (19) and (23), we obtain the following error
equations:L
+1� − L
�8 = −12 �∑�=1� (��)# 1ℎ�� �−1∑	=1?���−	L
	

− 12 �∑�=1� (��)# 1ℎ�� �−1∑	=1?���−	L
+1	
− 12 �∑�=1
(��)# 1ℎ�� �−1∑	=1 ?���−	L
	
− 12 �∑�=1
(��)# 1ℎ�� �−1∑	=1 ?���−	L
+1	+ N
+1/2� ,

(34)

L	0 = 0,L	� = 0, 7 = 1, 2, . . . , 9, (35)

L0� = 0, 4 = 0, 1, . . . ,6. (36)

We rewrite (34) into the following matrix form:

(R + S)E
+1 = (R − S)E
+ 8:1 (&2 + $2 + 82 + ℎ2) R, (37)

where R = R(�−1)×(�−1) is unix matrix.
�en we have

E

+1 = (R + S)−1 (R − S)E
+ :18 (R + S)−1 (&2 + $2 + 82 + ℎ2) . (38)

Further, we obtainiiiiiE
+1iiiii2 = iiiii(R + S)−1 (R − S)E
+ :18 (R + S)−1 ($2 + &2 + 82 + ℎ2)iiiii2≤ iiiii(R + S)−1 (R − S)E
iiiii2 + :18 iiiii(R + S)−1iiiii2 ($2+ &2 + 82 + ℎ2) ≤ iiiiE
iiii2 + :18 ($2 + &2 + 82+ ℎ2) ≤ iiiiiE0iiiii2 + :1O8 ($2 + &2 + 82 + ℎ2) ≤ : ($2
+ &2 + 82 + ℎ2) .

(39)

�is completes the proof.

4. The Second-Order Accurate
Implicit Numerical Method for
RSDO-ADE in 2D Case

In this section, a spatially second-order accurate alternating
direction di�erence method for the SRDO-ADE in 2D case is
proposed. �e stability and convergence of this method are
discussed.

4.1. 	e Second-Order Accurate Implicit Alternating Direction
Method for the RSDO-ADE in 2D Case. We consider the
following RSDO-ADE in 2D case:

�� (�, j, �)�� = ∫1
0
� (�) ��� (�, j, �)� |�|� 	�

+ ∫1
0
� (�) ��� (�, j, �)� HHHHjHHHH� 	�

+ ∫2
1

 (�) ��� (�, j, �)� |�|� 	�

+ ∫2
1

 (�) ��� (�, j, �)� HHHHjHHHH� 	�

+ � (�, j, �) ,

(40)
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where�(�) and
(�) are nonnegativeweight functionswhich
satisfy conditions0 ≤ � (�) ,� (�) ̸≡ 0, � ∈ [0, 1] ,

0 < ∫1
0
� (�) 	� < ∞,

0 ≤ 
 (�) ,
 (�) ̸≡ 0, � ∈ [1, 2] ,
0 < ∫2
1

 (�) 	� < ∞,

(41)

and ���(�, j, �)/�|�|�, ���(�, j, �)/�|�|�, ���(�, j, �)/�|j|�,
and ���(�, j, �)/�|j|� are the Riesz space fractional derivative
operators de	ned the same as Section 2.

Now we consider (40) in a square domain Ω = [0, �] ×[0, �] with the following initial and boundary conditions:� (0, j, �) = � (�, j, �) = 0,� (�, 0, �) = � (�, �, �) = 0,� ∈ [0, �] , (42)

� (�, j, 0) = k (�, j) , (�, j) ∈ Ω. (43)

Firstly, we discretize the integral intervals [0, 1] of � and[1, 2] of � by the grid 0 = �0 < �1 < ⋅ ⋅ ⋅ < �� = 1 and 1 =!0 < !1 < ⋅ ⋅ ⋅ < !� = 2 and denote Δ�� = �� − ��−1 = 1/# = $
and �� = (�� + ��−1)/2 = (2l − 1)/2#, l = 1, 2, . . . , #, # ∈ N.

Consider Δ!� = !� − !�−1 = 1/# = & and �� = (!� + !�−1)/2 =1 + (2l − 1)/2#, l = 1, 2, . . . , #, # ∈ N.
�en by using the similar method in Section 2, we can

obtain

∫1
0
� (�) ��� (�, j, �)� |�|� 	�
= �∑
�=1
� (��) ���� (�, j, �)� |�|�� Δ�� + 3 ($2) ,

∫1
0
� (�) ��� (�, j, �)� HHHHjHHHH� 	�
= �∑
�=1
� (��) ���� (�, j, �)� HHHHjHHHH�� Δ�� + 3 ($2) ,

∫2
1

 (�) ��� (�, j, �)� |�|� 	�
= �∑
�=1

 (��) ���� (�, j, �)� |�|�� Δ!� + 3 (&2) ,

∫2
1

 (�) ��� (�, j, �)� HHHHjHHHH� 	�
= �∑
�=1

 (��) ���� (�, j, �)� HHHHjHHHH�� Δ!� + 3 (&2) .

(44)

�us RSDO-ADE in 2D case is now transformed into the
following multiterm fractional equation:�� (�, j, �)�� = �∑

�=1
� (��) ���� (�, j, �)� |�|�� 1#

+ �∑
�=1
� (��) ���� (�, j, �)� HHHHjHHHH�� 1#

+ �∑
�=1

 (��) ���� (�, j, �)� |�|�� 1#

+ �∑
�=1

 (��) ���� (�, j, �)� HHHHjHHHH�� 1#

+ � (�, j, �) + 3 ($2 + &2) .

(45)

For the numerical simulation of (45), Let ℎ = �/6 be the
spatial grid size in the �-direction and in the j-direction; let8 = �/9 be the time step; let �� = 4ℎ, 4 = 0, 1, . . . ,6; letj� = %ℎ, % = 0, 1, . . . ,6; let �
 = O8, O = 0, 1, . . . , 9. De	ne�
�,� as the numerical solution to �(��, j�, �
).

�e Riesz space fractional derivative operator is dis-
cretized as follows [32, 33]:���� (��, j�, �
)� |�|�� = − 1ℎ�� �−1∑�=1?���−�� (��, j�, �
)+ 3 (ℎ2) ,0 < �� < 1, 4 = 1, 2, . . . ,6 − 1,���� (��, j�, �
)� HHHHjHHHH�� = − 1ℎ�� �−1∑�=1 ?���−�� (��, j�, �
)+ 3 (ℎ2) ,0 < �� < 1, % = 1, 2, . . . ,6 − 1,���� (��, j�, �
)� |�|�� = − 1ℎ�� �−1∑�=1?���−�� (��, j�, �
)+ 3 (ℎ2) ,1 < �� ≤ 2, 4 = 1, 2, . . . ,6 − 1,���� (��, j�, �
)� HHHHjHHHH�� = − 1ℎ�� �−1∑�=1 ?���−�� (��, j�, �
)
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+ 3 (ℎ2) ,1 < �� ≤ 2, % = 1, 2, . . . ,6 − 1,
(46)

where ?��� and ?��� are de	ned in Section 2.2.
Using Crank-Nicholson method and second-order accu-

rate implicit 	nite di�erence scheme, we obtain the following
discrete form for RSDO-ADE in 2D case:

� (��, j�, �
+1) − � (��, j�, �
)8
= −12 �∑�=1� (��)# 1ℎ�l �−1∑�=1?���−�� (��, j�, �
)
− 12 �∑�=1� (��)# 1ℎ�� �−1∑�=1?���−�� (��, j�, �
+1)
− 12 �∑�=1� (��)# 1ℎ�� �−1∑�=1 ?���−�� (��, j�, �
)
− 12 �∑�=1� (��)# 1ℎ�� �−1∑�=1 ?���−�� (��, j�, �
+1)
− 12 �∑�=1
 (��)# 1ℎ�� �−1∑�=1?���−�� (��, j�, �
)
− 12 �∑�=1
 (��)# 1ℎ�� �−1∑�=1?���−�� (��, j�, �
+1)
− 12 �∑�=1
 (��)# 1ℎ�� �−1∑�=1 ?���−�� (��, j�, �
)
− 12 �∑�=1
 (��)# 1ℎ�� �−1∑�=1 ?���−�� (��, j�, �
+1)+ � (��, j�, �
+1/2) + N
+1/2�,� ,4, % = 1, 2, . . . ,6 − 1; O = 0, 1, . . . , 9 − 1,

(47)

where N
+1/2�,� = 3($2 + &2 + ℎ2 + 82) and �(��, j�, �
+1/2) =(1/2)(�(��, j�, �
+1) + �(��, j�, �
)).
By omitting the local truncation error term N
+1/2�,� in

(47), we obtain the following second-order accurate implicit
numerical method for RSDO-ADE in 2D case:

�
+1�,� − �
�,�8 = −12 �∑�=1� (��)# 1ℎ�� �−1∑�=1?���−��
�,�
− 12 �∑�=1� (��)# 1ℎ�� �−1∑�=1?���−��
+1�,�

− 12 �∑�=1� (��)# 1ℎ�� �−1∑�=1 ?���−��
�,�
− 12 �∑�=1� (��)# 1ℎ�� �−1∑�=1 ?���−��
+1�,�
− 12 �∑�=1
 (��)# 1ℎ�� �−1∑�=1?���−��
�,�
− 12 �∑�=1
 (��)# 1ℎ�� �−1∑�=1?���−��
+1�,�
− 12 �∑�=1
 (��)# 1ℎ�� �−1∑�=1 ?���−��
�,�
− 12 �∑�=1
 (��)# 1ℎ�� �−1∑�=1 ?���−��
+1�,�+ � (��, j�, �
+1/2) ,4, % = 1, 2, . . . ,6 − 1; O = 0, 1, . . . , 9 − 1,�
0,� = �
�,� = 0,�
�,0 = �
0,� = 0, O = 1, 2, . . . , 9,�0�,� = k (��, j�) , 4, % = 0, 1, . . . ,6.

(48)

De	ne the following fractional partial di�erence opera-
tors:

m��
�,� = −12 �∑�=1� (��)# 1ℎ�� �−1∑�=1?���−��
�,�
− 12 �∑�=1
 (��)# 1ℎ�� �−1∑�=1?���−��
�,�,

m��
�,� = −12 �∑�=1� (��)# 1ℎ�� �−1∑�=1 ?���−��
�,�
− 12 �∑�=1
 (��)# 1ℎ�� �−1∑�=1 ?���−��
�,�.

(49)

�e second-order accurate implicit numerical method
for RSDO-ADE in 2D case may be written in the following
operator form:

(1 − 8m� − 8m�) �
+1�,� = (1 + 8m� + 8m�) �
�,�+ 8� (��, j�, �
+1/2) . (50)
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We introduce two additional perturbation errors equal to82m�m��
+1�,� and 82m�m��
�,�. Equation (50) is then written in

the following directional separation product form:

(1 − 8m�) (1 − 8m�) �
+1�,�= (1 + 8m�) (1 + 8m�) �
�,� + 8� (��, j�, �
+1/2) . (51)

�e additional perturbation errors are not large compared
to the approximation errors for the other terms in (50), and
hence (51), which is called the implicit alternation direction
method, is consistent with order 3($2 + &2 + ℎ2 + 82).

Computationally, the implicit alternation direction
method de	ned by (51) can now be solved by the following
iterative scheme, at time � = �
+1.
Step 1. Solve the problem in the �-direction for each 	xed j�
to obtain an intermediate solution �∗�,� in the form

(1 − 8m�) �∗�,� = (1 + 8m�) (1 + 8m�) �
�,�+ 8� (��, j�, �
+1/2) , 1 ≤ 4 ≤ 6 − 1.
(52)

Step 2. �en solve it in the j-direction for each 	xed ��:(1 − 8m�) �
+1�,� = �∗�,�, 1 ≤ % ≤ 6 − 1. (53)

�e initial and boundary conditions for the numerical solu-

tion �
+1�,� and �
�,� are de	ned from the given initial and

boundary conditions (see [34]).

�e initial and boundary conditions for numerical solu-

tions �
+1�,� and �
�,� are de	ned from the given initial and

boundary conditions. Prior to carrying out step one of solving
(52), the boundary conditions for the intermediate solution�∗�,� should be set from (53) (which incorporates the values

of �
+1�,� at the boundary); otherwise the order of convergence

will be adversely a�ected. Speci	cally, for homogeneous
Dirichlet boundary conditions (42), we have

�
+10,� = � (0, j�, �
+1) = 0;
�
+1�,� = � (�, j�, �
+1) = 0;
�
+1�,0 = � (��, 0, �
+1) = 0;�
+1�,� = � (��, �, �
+1) = 0.

(54)

�us, we compute the boundary values for �∗ from
�∗0,� = (1 − 8m�) �
+10,� ,�∗�,� = (1 − 8m�) �
+1�,�. (55)

4.2. Numerical Analysis of the Implicit Alternating Direction
Method for the RSDO-ADE in 2D Case. In this section, we

discuss the stability and convergence of alternating direction
method (51) for the SRDO-ADE in 2D case. We need to
rewrite (51), (52), and (53) in matrix form [34].

�en (51) may be written as

NnT
+1 = NnT
 + U
+1/2, (56)

where matrices N, N,n, andn represent operators (1 − 8m�),(1 + 8m�), (1 − 8m�), and (1 + 8m�), respectively, where
T
 = (�
1,1, . . . , �
�−1,1, �
1,2, . . . , �
�−1,2, . . . , �
1,�−1, . . . ,

�	�−1,�−1)� ,
U
+1/2 = (�
+1/21,1 , �
+1/21,2 , . . . , �
+1/2�−1,�−1)� .

(57)

Matrix N is a block diagonal matrix of (6 − 1) × (6 − 1)
blocks of (6−1)×(6−1) square matricesS� resulting from
(52). We may write N = diag(S1, S2, . . . , S�−1). Similarly,
matrix n is a block matrix of (6 − 1) × (6 − 1) blocks of(6 − 1) × (6 − 1) square diagonal matrices resulting from
(52). �at is, we may write n = [n�,�], where each n�,� is(6 − 1) × (6 − 1)matrix, such thatn�,� is a diagonal matrixn�,� = diag(>�,�, >�,�, . . . , >�,�), and where the notation >�,� refers
to the (4, %)th entry ofmatrix^� de	ned.Wenote thatmatricesS� (% = 1, 2, . . . ,6−1) and^� (4 = 1, 2, . . . ,6−1) are strictly
diagonally dominant. Because their diagonal elements are all
positive, these matrices are symmetric and positive de	nite.

Here S� = [;(�)�,	 ](�−1)×(�−1),
;(�)�,	

=
{{{{{{{{{{{{{{{{{{{{{{{

12 �∑�=1� (��)# 1ℎ�� ?���−	 + 12 �∑�=1
 (��)# 1ℎ�� ?���−	, for 7 < 4;
1 + 12 �∑�=1� (��)# 1ℎ�� ?��0 + 12 �∑�=1
 (��)# 1ℎ�� ?��0 , for 7 = 4;
12 �∑�=1� (��)# 1ℎ�� ?��	−� + 12 �∑�=1
 (��)# 1ℎ�� ?��	−�, for 7 > 4.

(58)

Consider ^� = [>(�)	,�](�−1)×(�−1),
>(�)	,�

=
{{{{{{{{{{{{{{{{{{{{{{{

12 �∑�=1� (��)# 1ℎ�� ?��	−� + 12 �∑�=1
 (��)# 1ℎ�� ?��	−�, for % < 7;
1 + 12 �∑�=1� (��)# 1ℎ�� ?��0 + 12 �∑�=1
 (��)# 1ℎ�� ?��0 , for % = 7;
12 �∑�=1� (��)# 1ℎ�� ?���−	 + 12 �∑�=1
 (��)# 1ℎ�� ?���−	, for % > 7.

(59)

Similarly, we can de	ne matrices N andn.
To prove the stability and convergence of the implicit

alternating direction method, we need the following lemma
in [34].
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Lemma 8. Let s = [�1, �2, . . . , ��]�, ‖s‖∞ = max1≤�≤�|��|.
If matrix� = (	�,�)�×� satis�es conditions

�∑
�=1,� ̸=�

HHHHH	�,�HHHHH ≤ HHHH	�,�HHHH − 1, (4 = 1, 2, . . . , t) , (60)

then ‖s‖∞ ≤ ‖�s‖∞ . (61)

Let �
�,� and �̃
�,� be the numerical and approximate solu-

tions of implicit alternating direction method (51), respec-
tively, and set

Y

 = (b
1,1, . . . , b
�−1,1, . . . , b
�−1,�−1)� , (62)

where b
�,� = �̃
�,� − �
�,�.
�eorem 9. 	e second-order accurate implicit alternating
direction method (51) for the RSDO-ADE in 2D case is
unconditionally stable and there is a positive constant :∗1 such
that iiiiiY
+1iiiii∞ ≤ :∗1 iiiiiY0iiiii∞ , O = 0, 1, 2, . . . . (63)

Proof. �e error Y
 satis	es the following equation:NnY

+1 = NnY


. (64)

Since N, N, n, and n satisfy conditions of Lemma 8, we
obtainiiiiiY
+1iiiii∞ ≤ iiiiinY


+1iiiii∞ ≤ iiiiiNnY

+1iiiii∞ = iiiiiNnY


iiiii∞≤ iiiiiNiiiii∞ iiiiiniiiii∞ iiiiY
iiii∞ ≤ :∗1 iiiiiY0iiiii∞ . (65)

Now let us consider the convergence of second-order
accurate implicit alternating direction method (51). Let�(��, j�, �
) be the exact solution of the RSDO-ADE in 2D

case, let �
�,� be the numerical solution of second-order

accurate implicit alternating direction method (51). Let L
�,� =�(��, j�, �
) − �
�,� and
E

 = [L
1,1, . . . , L
�−1,1, . . . , L
�−1,�−1]� . (66)

�eorem 10. Second-order accurate implicit alternating direc-
tion method (51) is convergent and there is a positive constant:∗2 such thatiiiiiE
+1iiiii∞ ≤ :∗2 ($2 + &2 + 82 + ℎ2) , O = 0, 1, 2, . . . , (67)

that is, when �
�,� tends to �(��, j�, �
) at any �xed point at 8
and ℎ both tend to zero.
Proof. �e error E
 satis	es the following equation:NnE


+1 = E

 + 8R
+1/2, (68)

where R
+1/2 = (N
+1/21,1 , N
+1/21,2 , . . . , N
+1/2�−1,�−1)�.

Since N, N, n, and n satisfy conditions of Lemma 8, we
obtain

iiiiiE
+1iiiii∞ ≤ iiiiinE

+1iiiii∞ ≤ iiiiiNnE


+1iiiii∞= iiiiiNnE

 + 8R
+1/2iiiii∞≤ iiiiiNiiiii∞ iiiiiniiiii∞ iiiiE
iiii∞ + 8 iiiiiR
+1/2iiiii∞≤ (O + 1) 8:2 ($2 + &2 + 82 + ℎ2)≤ :∗2 ($2 + &2 + 82 + ℎ2) .

(69)

�erefore second-order accurate implicit alternating direc-
tion method (51) is convergent.

�is completes the proof.

5. Numerical Results

In order to illustrate the behaviour of our numerical method
and demonstrate the e�ectiveness of our theoretical analysis,
some examples are given.

Example 1. Consider the following Riesz space distributed-
order advection-dispersion equation in 1D case:

�� (�, �)�� = ∫1
0
� (�) ��� (�, �)� |�|� 	�

+ ∫2
1

 (�) ��� (�, �)� |�|� 	� + � (�, �) , (70)

where

� (�) = −2Γ (5 − �) cos(��2 ) ,

 (�) = −2Γ (5 − �) cos(��2 ) . (71)

Now we consider (70) in the 	nite domain [0, 1] with the
following initial and boundary conditions:

� (0, �) = 0,� (1, �) = 0, � ∈ [0, 1] ,� (�, 0) = �2 (1 − �)2 , � ∈ [0, 1] ,
(72)
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Table 1: �e maximum errors for the numerical method and the
convergence orders with $ = & = 1/1000 and 8 = ℎ at time � = 1.ℎ = 8 Max. error Error rate

1/20 5.154L − 2 —

1/40 1.247L − 2 2.047

1/80 3.021L − 3 2.045

1/160 7.307L − 4 2.048

where� (�, �) = L��2 (1 − �)2− 2L� [(2�2 − 2�) [ln (1 − �)]−3
+ (6�3 − 5�2 + � − 2) [ln (1 − �)]−2
+ 6� (2�3 − 2�2 − � + 1) [ln (1 − �)]−1
+ 2� (� − 1) ln−3� + � (6�2 − 13� + 5) ln−2�
+ 6� (� − 1) (2�2 − 4� + 1) ln−1�]
− 2L� [−2� [ln (1 − �)]−3
+ (6�2 − � − 2) [ln (1 − �)]−2
+ 2 (−6�3 + 3�2 + 3� − 1) [ln (1 − �)]−1
+ 2 (� − 1) ln−3� + (6�2 − 11� + 3) ln−2�
+ 2 (6�3 − 15�2 + 9� − 1) ln−1�] .

(73)

�e exact solution of the above problem is� (�, �) = L��2 (1 − �)2 . (74)

Table 1 shows the maximum error between the exact solution
and the numerical solution obtained by the second-order
accurate implicit numerical method described in Section 2
for Example 1 at time � = 1. Figure 1 also shows the
exact solution and the numerical solution. From Table 1 and
Figure 1, it can be seen that the numerical results are in good
agreement with the theoretical results.

Example 2. Consider the following Riesz space distributed-
order advection-dispersion equation in 2D case:�� (�, j, �)�� = ∫1

0
� (�) ��� (�, j, �)� |�|� 	�

+ ∫1
0
� (�) ��� (�, j, �)� HHHHjHHHH� 	�

+ ∫2
1

 (�) ��� (�, j, �)� |�|� 	�

+ ∫2
1

 (�) ��� (�, j, �)� HHHHjHHHH� 	�

+ � (�, j, �) ,

(75)
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Figure 1: Exact solutions and numerical solutions with $ = & =1/1000 and ℎ = 8 = 1/80 at � = 1.0.
where

� (�) = −2Γ (5 − �) cos(��2 ) ,

 (�) = −2Γ (5 − �) cos(��2 ) . (76)

Now we consider (75) in the 	nite domain Ω = [0, 1] ×[0, 1] with the following initial and boundary conditions:

� (0, j, �) =� (1, j, �) = � (�, 0, �)=� (�, 1, �)=0, � ∈ [0, 1] ,� (�, j, 0) = �2 (1 − �)2 j2 (1 − j)2 ,(�, j) ∈ [0, 1] × [0, 1] , (77)

where� (�, j, �) = L��2 (1 − �)2 j2 (1 − j)2 − 2L�j2 (1
− j)2 [(2�2 − 2�) ln−3 (1 − �)
+ (6�3 − 5�2 + � − 2) ln−2 (1 − �)
+ 6� (2�3 − 2�2 − � + 1) ln−1 (1 − �)
+ 2� (� − 1) ln−3� + � (6�2 − 13� + 5) ln−2�
+ 6� (� − 1) (2�2 − 4� + 1) ln−1�] − 2L��2 (1
− �)2 [(2j2 − 2j) ln−3 (1 − j)
+ (6j3 − 5j2 + j − 2) ln−2 (1 − j)
+ 6j (2j3 − 2j2 − j + 1) ln−1 (1 − j)
+ 2j (j − 1) ln−3j + j (6j2 − 13j + 5) ln−2j
+ 6j (j − 1) (2j2 − 4j + 1) ln−1j] − 2L�j2 (1
− j)2 [−2�ln−3 (1 − �)
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Table 2: �e maximum errors for the numerical method and the
convergence orders with $ = & = 1/1000 and 8 = ℎ at time � = 1.ℎ = 8 Max. error Error rate

1/20 3.592L − 2 —

1/40 8.916L − 3 2.010

1/80 2.204L − 3 2.016

1/160 5.388L − 4 2.032

+ (6�2 − � − 2) ln−2 (1 − �)
+ 2 (−6�3 + 3�2 + 3� − 1) ln−1 (1 − �)
+ 2 (� − 1) ln−3� + (6�2 − 11� + 3) ln−2�
+ 2 (6�3 − 15�2 + 9� − 1) ln−1�] − 2L��2 (1 − �)2
⋅ [−2jln−3 (1 − j)
+ (6j2 − j − 2) ln−2 (1 − j)
+ 2 (−6j3 + 3j2 + 3j − 1) ln−1 (1 − j)
+ 2 (j − 1) ln−3j + (6j2 − 11j + 3) ln−2j
+ 2 (6j3 − 15j2 + 9j − 1) ln−1j] .

(78)

�e exact solution of the above problem is

� (�, j, �) = L��2 (1 − �)2 j2 (1 − j)2 . (79)

Table 2 shows themaximumerror between the exact solu-
tion and the numerical solution obtained by the second-order
accurate implicit alternating direction method described in
Section 4 for Example 2 at time � = 1. Figure 2 also shows the
exact solution and the numerical solution. From Table 2 and
Figure 2, it can be seen that the numerical results are in good
agreement with the theoretical results.

6. Conclusion

In this paper, we considered the Riesz space distributed-
order advection-dispersion equations in 1D and 2D cases.
For 1D case, we discretized the Riesz space distributed-order
advection-dispersion equation (RSDO-ADE) into multiterm
Riesz space fractional advection-dispersion equations (MT-
RSDO-ADE), and a second-order accurate implicit numeri-
cal method is proposed using Crank-Nicholson method and
a second-order accurate numerical scheme. �e stability and
convergence are proved. For 2D case, we proposed a new
second-order accurate implicit alternating direction method
for MT-RSDO-ADE; the stability and convergence of this
method are also proved. Finally, numerical results are pre-
sented to support our theoretical analysis. �is method may
be extended to the high-dimensional time, space, and time-
space distributed-order partial di�erential equations. �ese
numerical methods and techniques presented are accurate

u(x, y, t)

0.010

0.005

0.000

1.0

0.5

0.0

x

1.0

0.5

0.0

y

Figure 2: Exact solutions and numerical solutions with $ = & =1/1000 and 8 = ℎ = 1/320 at � = 1.0.
and e�ective and can be used to simulate the corresponding
physical process.
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