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Abstract— Multi-controller architectures have become very necessary for software-defined networks 
to provide more efficiency, scalability, flexibility and security. However, the controllers must be 
interconnected in a way that aims to improve the overall performance. In this paper, we propose the 
OMCH-SDN, an Overlay Multi-Controller Hypercube-based topology to interconnect controllers by 
using a Hypercube pattern to take advantage of its various mathematical characteristics. The proposal 
for this research is evaluated through simulations of a real overlay network. The results show that the 
OMCH-SDN model shows better results concerning the synchronization delay, the throughput as well as 
the end-to-end latency comparing to a flat-based SDN multi-controller topology. 
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I. INTRODUCTION 

The networking field knows recently a big revolution with the introduction of new concepts like, network 
automation, network function virtualization and software-defined networking, which aim to shape the network 
and improve its productivity.  

Software-defined networking (SDN) [1], which is a new concept that separates the control plane from the 
data plane in network nodes, like switches and routers, mainly to limit the complexity and to enable the 
programmability in the network throughout all types of APIs, to make it more agile and flexible, especially the 
integration of new functionalities and services.  

An SDN network in general has three layers: the infrastructure layer, the control layer, and the management 
layer, each layer has its own characteristics as well as its own components. 

Southbound APIs (SB-APIs) like OpenFlow [2] for example, which the most recognized and used 
Southbound API in the SDN community. They allow communication between the infrastructure layer and the 
control layer, by giving the end user more power over the network, to adjust and configure smoothly the 
different components inside the forwarding plane. OpenFlow is supported and maintained by the Open Network 
Foundation (ONF) [3], and backed by many IT big enterprises, like Facebook and Google. There are many other 
SB-APIs, for instance OpFlex [4] from the worldwide networking leader, Cisco. 

While, northbound APIs (NB-APIs) permit interaction between the controller and the management layer. 
They give a big opportunity to enable programmability inside the network, and automate many repetitive 
networking tasks. NB-APIs can be integrated with all sort of orchestration platforms like emerging and fast 
growing solution OpenStack [5] or automation stacks like Puppet [6], Chef [7], Ansible [8] and others. 

The control layer, or the control plane is the most important piece and the smartest of an SDN network. Once 
it is configured by a network engineer or administrator, it takes care of all the rest of its own, from pushing 
policies to the different devices in the network to observing everything happening in the network and reporting 
it in the form of logs that can be very useful in the future to analyze the behavior of the network and solve 
problems that might occur.  

SDN used at first apparition a control plane that has a single centralized controller, for example NOX [9], and 
Floodlight [10] which showed after a while many scalability, overall performance, and security limits. Therefore, 
SDN networks with multiple controllers have been proposed [11]. Hence, many SDN controllers have been 
proposed with support for multiple controllers, mainly the Open Source SDN Platform, OpenDayLight [12], and 
the Open Network Operating System, ONOS [13]. 
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Fig. 1. The SDN distributed control plane architecture 

In an SDN classic flat-based multi-controller topology for example, each controller is connected to two 
neighbors, except the edge ones, which are linked with just one controller. This topology interconnects the 
controllers among one level; it is suitable for designs with a few number of nodes. However, when the network 
scales to a certain number of controllers the time response between far nodes becomes too long. 

As we explained this type of topologies present problems that are directly affecting performance and 
scalability.  

For this reason, we propose in this paper, the use of an n-dimensional hypercube because of its advantageous 
mathematical properties that can be used to enhance the performance and increase the scalability. In fact, it has 
been deployed in many works, and demonstrates in the past its usefulness and its efficiency. For example, in the 
networking field, we find HyperCuP [14], which suggests a Hypercube-based peer-to-peer network introducing 
an efficient method for broadcasting and searching, or BlueCube [15], which offers a Bluetooth network based 
on a Hypercube, to support parallel computing and ensure fault tolerance. The Hypercube has been proposed in 
the context of SDN to connect between nodes in the underlying network [16], which is not the case in this paper. 

Henceforth, we propose in this paper an Overlay Multi-controller Hypercube-based Software-define Network 
(OMCH-SDN), which consists of following a Hypercube pattern to connect between the controllers of the 
control plane using virtual tunnels. We consider this solution as an overlay solution because the controllers can 
be connected via the OMCH-SDN model independently of the underlying network, which means that controllers 
can be dispersed around the globe and still able to form the OMCH-SDN. 

The remainder of this paper is organized as follows. In section 2, Material and Method, we first recall the 
definition of a Hypercube, its main properties and their benefits, and then, we describe our OMCH-SDN model. 
After that, we present our simulation description, by presenting the simulation Testbed, then the performance 
indices, the synchronization delay, the throughput and the end-to-end latency, which we are going to measure. 
In section 3, Results and Discussion, we present, discuss and analyze the simulation results. Finally, in Section 4, 
we give a Conclusion. 

II. MATERIAL AND METHOD 

In this section, we first present the hypercube and its mathematical characteristics, then explain how we will 
build the OMCH-SDN model. 

A. The n-dimensional Hypercube and its proprieties 

A hypercube is one of the most efficient ways used to interconnect between objects to improve their 
interaction performance in many fields because of its different mathematical characteristics. In graph theory, the 

n-dimensional Hypercube graph ( nH ), with a total number of n2  nodes, and 12 nn edges has the following 

properties: 

Property 1:  The longest path in nH  is n. 

Hence it is better than a flat topology with n2  nodes, where the longest path is n2 - 1. 

Property 2:   nH  has an Euler tour for 2n . 
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Which means that nH  is fully connected and each vertex has an even degree. This implies that nH  has a 

high connectivity and high fault tolerance. 

Property 3:   nH  has a Hamiltonian cycle for 2n . 

Which can be viewed as cyclic Gray Code of all n2  binary strings of length n, thus, each node in nH  can be 

represented in an n-bit format. A Gray Code is used to represent each number from 0  to n2 - 1  in a binary 
form of length n, with the condition that adjacent numbers need to have just one bit that differs in their Gray 

Code representations. In other words, in a nH , two nodes are directly connected if their binary representations 

differ with just one bit. This property will help us to assign to each controller node a Gray Code sequence, 
which will permit us to build our OMCH-SDN topology. 

B. The OMCH-SDN model 

The OMCH-SDN is an SDN network that has a control plane that contains multiple controllers connected 
following the hypercube pattern using virtual tunnels. Additionally, the OMCH-SDN is an overlay network, 
which means that the controllers can be at different locations in the world since the virtual tunnels can be 
created using routable public IP addresses. In other words, two controllers can be adjacent even if they need to 
go through multiple routers and switches in the underlying network. 

The OMCH-SDN is constructed, using Gray Code sequencing system and basic interaction between the 
controllers and using the GRE (Generic Routing Encapsulation) [17], which is tunneling protocol that can be 
used to connect two devices remotely. 

The OMCH-SDN constructing process has three steps: 

Step 1 is the Setting up process where we have c controllers, each one has a routable IP address, and we give 
to each controller an environment variable with its binary representation (Gray Code sequence), and another 
environment variable that represents its ID. 

Step 2 is The Solicitation process where each controller will send the other controllers a message with its own 
Gray Code sequence and its ID, looking for those that have their Gray Code string differs with just one bit. Then, 
create for them a matching number of locally GRE interfaces to attach the GRE tunnels later.  

Step 3 is The GRE Tunnels Forming process where each controller will build the GRE tunnels using the GRE 
interfaces and the routable IP addresses with its neighbors. 

After that, the OMCH-SDN constructing process is complete. But before that, even though controllers will 
have routable IP address, which means that they can reach each other’s, when we will create the GRE tunnels, 
we will assign new private IP addresses to theses GRE interfaces, so we need a mechanism to enable routing. 
For this reason, we can use for example Quagga [18], a routing framework that can be employed in Linux 
systems to provide basic and advanced routing between various Linux servers. 

To understand how the OMCH-SDN constructing process works, we will show you a use case for a 
hypercube of dimension k=3. 

In a three-dimensional hypercube, we have eight nodes (controllers) and twelve links. Each node can be 
represented in a Gray Code sequence of three bits. To start the OMCH-SDN constructing process, we should 
follow the steps already explained. 

First, the setting up process where each controller will have a routable IP address, and two environment 
variables (binary representation + ID). 

TABLE I.  The Binary Presentation Of OMCH-SDN Of Dimension 3 

The controller ID NUMBER Gray Code 

C1 01 000 

C2 02 001 

C3 03 010 

C4 04 011 

C5 05 100 

C6 06 101 

C7 07 110 

C8 08 111 
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Second, each controller will send its binary presentation to other controllers aiming to find those that differ 
with just one bit. In this case, each controller will find three adjacents. Therefore, it will create three GRE 
interfaces that will be used to form the GRE virtual tunnels inter-controllers. Finally, each controller will build 
three GRE virtual tunnels to establish the OMCH-SDN model. 

The following table summarizes the two final steps, while showing the GRE interfaces IP addresses as well as 
the controllers that will be connected to each controller within this hypercube-based topology: 

TABLE II.  The Hypercube Constructing Process For The OMCH-SDN Of A Dimension 3 

The controller GRE INTERFACES It will be connected to 
C1 Gre0:192.168.12.1 

Gre1:192.168.13.1 
Gre2:192.168.15.1 

C2,C3,C5 

C2 Gre0:192.168.12.2 
Gre1:192.168.24.2 
Gre2:192.168.26.2 

C1,C6,C4 

C3 Gre0:192.168.13.3 
Gre1:192.168.34.3 
Gre2:192.168.37.3 

C1,C4,C7 

C4 Gre0:192.168.34.4 
Gre1:192.168.24.4 
Gre2:192.168.48.4 

C2,C3,C8 

C5 Gre0:192.168.15.5 
Gre1:192.168.56.5 
Gre2:192.168.57.5 

C1,C6,C7 

C6 Gre0:192.168.68.6 
Gre1:192.168.26.6 
Gre2:192.168.56.6 

C2,C5,C8 

C7 Gre0:192.168.37.7 
Gre1:192.168.78.7 
Gre2:192.168.57.7 

C3,C5,C8 

C8 Gre0:192.168.48.8 
Gre1:192.168.68.8 
Gre2:192.168.78.8 

C4,C6,C7 

The final illustration of the OMCH-SDN of dimension three will look like the showing in figure 1: 

 
Fig. 2. The OMCH-SDN of a dimension 3. 

 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Othmane Blial et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i2/181002030 Vol 10 No 2 Apr-May 2018 479



C. Simulation description of OMCH-SDN model 

In this subsection, we are going to describe the Testbed, which is built on the top of a real overlay network, 
present the performances indices that we are going to measure, which are the synchronization delay and the 
throughput inter the edge controllers. 

1) Testbed description: 

Our Testbed is using a Hosting Service called ATLENTIC.NET [19] to which we have subscribed to perform 
this simulation. It provides us with a cloud based environment that is billed by the hour. 

 To build our real overlay network, we are going to provision Ubuntu Linux servers in the USA-EAST-2 
region in New York City. Each server has 2 CPUs and 4G of RAM. Additionally, each server is reachable on 
layer three connectivity to the other servers via the Internet. 

In order to evaluate our proposition, we build our OMCH-SDN for dimension k = 3, which has eight 
controllers, where each one is up and running on one of our Linux servers that we have provisioned earlier. We 
use the open source project, OpenDayLight [12] as an SDN controller, the Beryllium release, because it supports 
multiple controllers, and has an engaging community that discusses, supports and contributes to this project. 
OpenDayLight supports an SDN-enabled network with multiple controllers, by building a logically centralized 
architecture as a cluster which is highly consistent thanks to the continuous synchronization inter-controllers 
mechanism.  

Finally, we attach to each controller to a simulated underlying network generated by Mininet [20] with a 
particular number of nodes (OVS switches [21] + hosts), we take for example 9 underlying nodes (3 OVS 
switches, where each switch is connected to 2 hosts) by controller, in total 72 nodes.  

The following figure summarizes the testbed for a hypercube-based topology: 

 
Fig. 3. The Testbed for a hypercube based topology of dimension 3 with 8 controllers 

We will also similarly build a flat-based topology with same number of controllers and underlying nodes, to 
compare with, like you see in the following figure: 

 
Fig. 4. The Testbed for a flat based topology with 8 controllers 
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Next, in the following subsection, we are going to present the performance indices that we will measure. 

1) Performance indices: 

When evaluating a multi-controller architecture, in particular, the logically centralized which needs a strong 
synchronization, an important performance index is the synchronization delay, which measure the time 
consumed to declare that a neighboring controller is aware of an event that was generated on some other 
controller. For this reason, we are going the measure the synchronization delay between the farthest controllers 
in the case of 8 controllers’ scenario, in a hypercube-based topology and in a flat topology.  

Then, we will measure the throughput also between the farthest controllers in our topology. Taking into 
consideration that the maximum throughput offered by our Testbed is 600 Mbits/s, we would like to know how 
the OMCH-SDN model will react, and what specific value will reach.  

After that we finish by measuring the end-to-end latency. 

We use Wireshark [22] to compute the synchronization delay, which is a software that permits to see what is 
happing in the network at a microscopic level.  

While, we use Iperf [23] to measure the throughput, which is a tool used for active measurements of the 
maximum achievable bandwidth in a network and others. 

Finally, we measure the end-to-end latency using the Ping utility. 

III. RESULTS AND DISCUSSION 

In this section, we are going to present and discuss the simulation results, by showing the simulation results of 
the synchronization delay and the throughput. 

A. The synchronization delay 

When we lunch the generated Mininet underlying networks inside each OpenDayLight controller, which is 
already a member of the cluster, we go through two phases, the switching events building, which takes a just 
few seconds, then the watching phase, which is the lasting phase, where the cluster synchronization happens 
each time something is changed, added or removed in the network in addition to maintaining a continuous 
consistency checking to ensure high consistency among all controllers. 

In the following figure, we measure the synchronization delay between the edge controllers within the 
watching phase, while we add, remove or update hosts and flow entries to their underlying networks. 

 
Fig. 5. The synchronization delay inter edge controllers regarding a hypercube-based and a flat-based topology 

Figure 5 shows the synchronization delay inter edge controllers during a segment of time of 60 seconds, while 
adding, removing and updating hosts and flow entries to the underlying networks. 

We notice globally the synchronization delay for the flat-based topology goes up to 46 ms, while it doesn’t go 
more than 38 ms in the hypercube-based topology. When digging deeper, we see that some values that go 
beyond 30 ms, however, the synchronization delay for the most of the time is under the 1.5 ms for the 
hypercube-based topology, and goes between 9 ms and 2.5 ms for a flat-based topology. 

When we sum up the synchronization delay for both topologies, we found that the hypercube-based topology 
is faster 61.88% than the hypercube-based topology.  
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It is so clear, why we had such an improvement, because in the case of a hypercube based topology, to go 
from one edge controller to another, we go through 3 controllers, while in the flat based topology we go through 
7 controllers. 

B. The throughput 

In the following, we measure the throughput between the edge controllers within the watching phase for a 
duration of 90 seconds. 

 
Fig. 6.  The throughput inter edge controllers regarding a hypercube-based and a flat-based topology 

Figure 6 shows that the throughput inter-controllers for a hypercube-based topology is approximately the 
twice the throughput for a flat based topology.  

When measuring the sum of values to found the percentage of improvement, we have found that the 
hypercube-based topology optimizes the flat-based topology’s throughput up to 153%. 

Additionally, knowing that that maximum throughput offered by our Testbed from Atlentic.net is 600 
Mbits/s, the hypercube-based topology can reach up to 66% of it, which can be considered very efficient.  

C. The end-to-end latency 

In the following, we measure the end to end latency using a simple ping, for both hypercube based and flat 
based topologies. 

 
Fig. 7.  The end-to-end latency inter edge controllers regarding a hypercube-based and a flat-based topology 

Figure 7 shows that the end to end latency for a hypercube-based topology is lower in comparison to a flat 
based topology.  

In addition, we have found that the end-to-end latency for the hypercube-based topology is 59.84% faster than 
the flat-based topology. 
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IV. CONCLUSION 

SDN multiple controllers are necessary to enhance scalability, security and performance. The way we connect 
between these controllers may affect the overall performance of the SDN based network. 

In this research paper, we have implemented and evaluated the OMCH-SDN topology, which is a Hypercube-
based way that we have proposed to interconnect between multiple controllers in an SDN environment. The 
results demonstrated that the OMCH-SDN model has favorably and significantly succeeded to enhance many 
network performance measurements, like the synchronization delay, which become more 62% faster in 
comparison to a flat-based topology. In addition, the throughput has been improved and was able to use more of 
the available throughput. 

In general, the OMCH-SDN model has helped to improve the overall performance of a logically centralized 
multi-controller SDN network. 
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