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ABSTRACT

In this paper a special form of gradient-dependent elasticity is considered.
The motivation for considering higher-order gradients of strains in elasticity is
discussed. Equilibrium equations and boundary conditions are discussed. The
relationship between the special form of gradient elasticity adopted in this
study and mixture or nonlocal theories is considered. Solutions to certain prob-
lems including the propagation of harmonic waves, the longitudinal vibrations
of a beam, and the displacement field in an infinite medium weakened by a line
crack are given.

1. INTRODUCTION

Although the basic idea of taking into account not only the first but also
the higher gradients of the displacement field in the expression for the strain
energy function can be traced all the way back to Bernoulli and Euler a corre-
sponding formulation did not attract the attention of scientists for a long time.
After Voigt [1] briefly indicated the role of the gradients of rotation in elasticity,
E. and F. Cosserat [2] gave the first systematic treatment of the rotation gradi-
ents and the associated couple-stresses. The Cosserats were drawn to the gen-
eral concept of a continuous medium each point of which has six degrees of
freedom (three displacements and three rotations) similar to rigid bodies. This
concept was already known in various theories of rods and shells, and they
extended this notion in a rigorous way to three-dimensional continuous media.
The novel feature in their theory was the appearance of couple-stresses in the
equations of motion. As a consequence of the Cosserat theory, the stress tensor
is not symmetric as in the classical theory of elasticity.

For almost fifty years, not much attention was given to such generaliza-
tions in continuum mechanics. Hellinger [3] and Von Heun [4] drew attention to
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the problem of asymmetric stress of the Cosserat medium. Jaramillo [5] con-
structed a generalization of the classical theory of infinitesimal elastic deforma-
tions based on the assumption that the strain energy density was a quadratic
function of the second- order spatial derivatives of the displacement field, as
well as the first- order spatial derivatives and velocity components. Since
Jaramillo kept the stresses in their classical form, thus disregarding couple
stresses, he went on to impose some unnatural restrictions on the dependence of
the strain energy density upon the second- order spatial derivatives of the dis-
placement field. Truesdell [6] elaborated upon the balance equations for the
Cosserat continuum. Ericksen & Truesdell [7] developed a purely kinematical
description of Cosserat continua emphasizing the cases of rods and shells. They
also suggested a natural generalization of the Cosserat continuum. The orienta-
tion of a volume element can be represented mathematically by three mutually
perpendicular unit vectors. The Cosserats formulated their theory by assuming
that this triad (directors) is rigid. In Ericksen & Truesdell’s generalization of
Cosserat continuum, the orientation vectors were stretchable and did not
remain mutually orthogonal. An interesting connection between the kinematics
of a Cosserat continuum and the theory of continuous distribution of disloca-
tions was pointed out by Guenther [8]. A modern treatment of a continuum of
grade 2 (i.e. a material whose strain energy density is a function of the second-
order spatial derivatives of the displacement field, in addition to the first- order
spatial derivatives) was given by Truesdell and Toupin [9a]. They also discussed
the indeterminacy of the couple-stress tensor in the Cosserat theory. Grioli [10]
gave the first general and correct treatment of elastic materials of grade 2,
whose strain energy function was of the same form as the Cosserats’ strain
energy function. Toupin [11] has derived the associated constitutive equations
for finite deformation of perfectly elastic materials. Upon linearization, Toupin’s
results are identical with those which were obtained, for example, by Aero and
Kuvshinskii [12]. In his study, Toupin [11] also reviewed the foundations of the
theory of grade 2 elastic materials, corrected the formula for the couple-stresses
given by Truesdell and Toupin [9a], pointed out that the Cosserat continuum
was a peculiar subclass of the grade 2 elastic materials, and studied the propa-
gation of plane sound waves. Schaeffer [13] solved some explicit boundary value
problems for a two-dimensional Cosserat medium so as to illustrate some of the
novel features of the theory. Mindlin & Tiersten [14] gave an extensive analysis
on the derivations of the finite and linearized equations for the Cosserat contin-
uum and also discussed previous derivations in detail. Moreover, they extended
many of the classical results on uniqueness theorems, stress functions, funda-
mental solutions, propagation of plane waves (they showed that the propagat-
ing waves were accompanied by non-propagating waves in Cosserat
continuum), thickness-shear vibrations of an infinite plate, stress concentra-
tions and singularities, stresses around spherical and cylindrical cavities in an
infinite body under tension, nuclei of strains, etc. They also provided explicit
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solutions to certain boundary value problems illustrating the novel features of
the theory. Mindlin [15] derived a linear generalized Cosserat theory for a
three-dimensional elastic continuum, in which the constitutive equations were
identical to those obtained by Toupin [11], and studied the propagation of plane
waves. Green & Rivlin [16] developed a more general theory by considering
higher-order surface and body force multipoles. They studied the kinematics
and the nature of higher-order force multipoles extensively, and gave the consti-
tutive equations of a generalized elasticity, by also employing an appropriate
energy equation and an entropy production inequality. In a subsequent paper,
Green & Rivlin [17] developed a general theory for multipolar displacement and
velocity fields with corresponding multipolar body and surface forces, as well as
multipolar stresses. They accomplished this by using an energy principle, an
entropy production inequality, and invariance conditions under superposed
rigid body motion. They also showed that their previous work (Green & Rivlin
[16]) is special case of that developed in [17]. Toupin [18] reviewed the models
developed for continuous media with couple-stresses, identified the concepts
and principles of continuum mechanics common to all models and devised a
mathematical machinery for easy and precise expression of the basic ideas and
assumption pertaining to each model. In addition, Toupin [18] pursued quite
another direction which also leads to a modification of the familiar concept of
stress. Instead of introducing rigid or deformable material points, he expressed

the relative position vector of a material point x' in the neighborhood of the

material point x in terms of the successively higher-order gradients of the dis-
placement vector at the point x. Furthermore, he argued that it is a quite natu-
ral generalization to assume that the strain energy density depends on not only
the first but also on the higher gradients of the displacement field. Toupin [18]
also showed that a stress-free configuration (natural state) for materials of
grade 2 is an exception which is a rule in the classical theory of elasticity.

The boundary layer effect in crystals was known for a long time and
observed by low-energy electron diftraction experiments (see, for example,
Germer, MacRae & Hartman [19]). Toupin & Gazis [20] illustrated the relation
between the strain-gradient elasticity and atomic lattice (with nearest neighbor
and next nearest neighbor interaction) theories and explored the consequences
of an initial, homogeneous, self-equilibrating stress field. Later, Gazis & Wallis
[21] modeled the free-surface of a crystal by considering a semi-infinite, one-
dimensional, monatomic lattice with nearest and next nearest neighbor interac-
tions including a harmonic interaction between nearest neighbors at the end.
They showed that the particles near the free-surface must move to a new equi-
librium position, and that the force constants characterizing small oscillations
of these particles will be different from those of the infinite crystals. Mindlin
[22] formulated a linearized theory for an elastic solid in which the strain
energy density is a function of the strain and its first and second gradients. He
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showed that cohesive force and surface-tension were intrinsically included in
this theory. Also, an explicit solution for the strain and surface-tension, result-
ing from the separation of a solid along a plane was given; and a comparison
was made with an analogous lattice model.

Higher-order gradients of constitutive variables have also been employed
in other branches of continuum mechanics. In 1901, Korteweg formulated a con-
stitutive equation for the Cauchy stress that included density gradients, in
order to model the fluid capilarity effect. Theories of Korteweg’s type have also
been employed to analyze the structure of liquid-vapor interfaces by Aifantis &
Serrin [24,25]. Motivated by the success of this approach for fluid interface
problems, Triantafyllidis & Aifantis [26] formulated a nonlinear theory for
hyperelastic materials by adding the second deformation gradient into the
strain energy function to analyze the pre-and post-localization behavior of
deformation. It was shown that the width and direction of the localized defor-
mation zone could be described (without the occurrence loss of ellipticity in the
governing equations), in contrast to the classical results. higher-order gradients
of strain or other constitutive variables had been already considered for analyz-
ing dislocation patterns, microvoids and other material microstructures in sol-
ids by Aifantis and his co-workers [27-33]. These theories provided a means to
account for internal length scale and size effects in inelastic material behavior
in contrast to standard theories which could not capture these and other pat-
tern-forming instabilities effects.

In this paper, a special form of gradient-elasticity, which is based on the
linear version of the constitutive equations obtained by Triantafyllidis & Aifan-
tis [24], is employed. Our purpose is to discuss non-classical implications of the
simplest possible gradient elasticity theory and, thus, our motivation is com-
pletely different than the fundamental continuum mechanics works reviewed
above. In the following section, the derivation of the field equations and the
boundary conditions of the special form of gradient-elasticity considered in this
study is briefly introduced. In the subsequent sections the relationship between
the special form of gradient-elasticity, the nonlocal elasticity, and the mixture
theory are pointed out. The three basic modes of cracks are formulated and
solved. Then, the propagation of plane waves in an infinite medium is consid-
ered. In the last section, natural frequencies and modes during the longitudinal
vibration of a bar are discussed. Some of the results reviewed in the present
paper have discussed by the authors separately in previous publications. It was
decided, however, to include a summary of these results here for completeness
and for the convenience of the reader who is not very familiar with the field.
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2. FIELD EQUATIONS AND BOUNDARY CONDITIONS

A customary approach in obtaining a constitutive equation in elasticity is
to assume the existence of a strain energy density, which is taken as a function
of the symmetric part of the first gradient of the displacement field

w = w(g) (1)

where g;; is the symmetric part of the displacement field

i,
€ = §kui,j"‘”j,z) (2)

where y; is the Cartesian component of the displacement vector and indices fol-

lowing a comma, as usual, denote partial derivatives with respect to the space
coordinates. In gradient elasticity, the strain energy density function is
assumed to depend not only on the first gradients but also on the second gradi-
ents of the displacement field

w = w(g;, € ) (3)

Since we are dealing with single valued displacement fields one can easily
establish a one-to-one correspondence between g;; i and u; ;; (see Mindlin &

Eshel [23]). The most general form of the strain energy density function for a
linear, isotropic, gradient-dependent elastic material is

1

C1&4, i€ik, k + €284 k€, j ¥ €381, k€jj k. + Ca®yj kCij, 1 T CsEij ki, i (4)

For the special form of gradient elasticity that we consider here we assume that
cg and c4 are the only non-vanishing gradient coefficients. More specifically, we

take the strain energy density function as
1 s
w= iketiejj +UE €, + C(5AE; (€ ¢+ HE; € ) (5)

where c denotes a newly introduced strain gradient parameter which is the only
non-standard coefficient of the theory.
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Next, we consider that the following expression for the variation of virtual
work (for a body occupying region B bounded smooth surface S)

ISwdv - I(t,-Su, +1;,D8u;)da = 0 (6)
B S

holds for every variation of the displacement field (6u;) where f; is the force, ¢; is
the surface traction, t; is a “hypertraction” and Ddu;=du; jn; represents the nor-
mal derivative of the variation du;. It was shown by Ru and Aifantis [34] that

the variational statement (6) leads to the following system of equlibrium equa-
tions and boundary conditions

c,;;=0 (7)

t; = oyn;+cL{hey 8, +2pe ), ny (8)

Ty = CLAE 0. +2UE; by mn; 9)
where

O, = ey d,i+21e, —c{h gy, + 1€, um (10)

and L; is a differential operator defined by
Liv;} = nk,k{vi}nj— {vi’j} +v; nn;

Although these results are obtained for static cases there is no essential diffi-
culty to their dynamic counterpart.

Boundary value problems can now be defined in terms of determining an
ordered triplet {u;, €;, t;;} which satisfies the displacement - strain relation (2),

the balance equation (7), the stress - strain relations (10) and the boundary con-
ditions

w=U, or t= o;n;+cLi{he, 8, +2ue;} , n = T, (11a)
and

w, jn; = E, or 1= c{heyd; +2pe;} ¢ mpn; = S, (11b)
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where U;, Ty, E;, S; are prescribed functions on appropriate portions of the
boundary.

2.1. A Uniqueness Theorem

Next, we sketch the proof of a uniqueness result for the equilibrium equa-
tions (7) with the constitutive equations (10), and the boundary conditions (11).
On assuming the existence of two solutions {u;!, g5, t;;'}, {u;?, €;?, tj;?}it can be
easily seen that the difference solution defined by

e L2 )
satisfies the balance equations

Q5= 0 (13)
and the homogeneous boundary conditions.

and

It can be shown then that if
3 +2u>0 , u>0 , and ¢>0 (15)

{u;, &;;, o;;) is identically zero and, thus, the two solutions {u;!, &', o'} and {u?,
eijz, cijzl corresponding to the same boundary data are identical. Indeed, by mul-
tiplying (13) by u; and integrating over the domain B we can write

J.O',-jeijdV = J.(_o;-l_-u;-)'l_. dv = Joijuinjds (16)
B B S

where the divergence theorem is used. The surface integral on the right hand
side of this equation is zero because of the boundary conditions (14a). By
employing the constitutive equation (10), and the boundary conditions (14b),
after some manipulations it is arrived at

[red;; + 2ne)e vV + [ (heyd, + 2pe,) 4 €,V = 0 amn
B B
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The integrants of both integrals are quadratic forms. Since this relation should
hold true for an arbitrary volume B, for an arbitrary strain field ¢;;, and strain

gradient field g;; , the conditions given by (15) should hold in order uniqueness

to be hold. The first two conditions are the same as those met in classical elas-
ticity. If the gradient parameter c is positive, then uniqueness of the boundary
value problems is assured without any further consideration. On the other
hand, there is some evidence that the gradient parameter ¢ should be negative
in certain circumstances in order to capture realistic material behavior. In such
cases, it is clear that uniqueness fails and, thus, existence and stability of solu-
tions require further care. On the other hand experiences on the elliptic differ-
ential equations shows that if uniqueness fails, existence and stability of the
solutions require further care. In other words, the solution space of boundary
value problems in the special form of gradient elasticity should be defined care-
fully to ensure the uniqueness, existence, and stability of the solutions when
c<0. Alternatively, one may allow for the inclusion of an additional higher-order
spatial derivative in the constitutive equation such that standard uniqueness
results can be established even for the case c<0.

3. CONNECTION WITH OTHER GENERALIZED THEORIES

The special form of gradient elasticity suggests a modification of the consti-
tutive equation for elastic bodies by adding the Laplacian of Hookean stress.
With this modification, the constitutive equation of elasticity relates closely to
the constitutive equation of in nonlocal elasticity and mixture theory. These
relations are displayed below.

3.1 Relation to Nonlocal Elasticity

Nonlocal elasticity is based on the assumption that the forces between
material points can be at long-range in character, thus reflecting the long-range
character of interatomic forces. Kroener [35] indicated the relation between
nonlocal theory and the theory of continuous distribution of dislocations. Beran
[36] showed (see also Levin [37]) that, the relation between moving averages or
ensemble averages of the stress and strain in a statistically non-homogeneous
medium is of a nonlocal form. Later, Eringen & Edelen [38] provided a formal
thermomechanical and variational derivation of the constitutive equations of
nonlocal elasticity. Rogula [39] and his co-workers investigated the mathemati-
cal structure of nonlocal elasticity, proposed different types of nonlocal relations
between stress and strain, and applied it to various critical problems in contin-
uum mechanics. Kunin [40] collected his works on the physical background of
nonlocal elasticity in a book, and studied various problems in Fourier space.
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The most familiar form of nonlocal relationship between stress and strain
reads.

oy = [k(lx—2D{rey ()8, + 2pe, () v (18)
B

where

T(x,y') = A-“:kk(l.c')sij'" 2pe; (x)
is the conventional Hookean stress and k(]x — x'|) is the interaction (or nonlocal-
ity) kernel. More details about this equation and some fundamental aspects on

the boundary value problems can be found, among others, in Altan [41-45].

Let us consider the special form of the nonlocality kernel

n

2
k(lx-x)) = ZE-Ko{B»/(x—J'c')2 + (y—y')z} (19)

where K| is the modified Bessel’s function of the first kind and B > 0 is the non-
locality parameter for a two-dimensional infinite domain. The nonlocal kernel
given by (19) was proposed by Ari [46] to match the dispersion relation obtained
within the framework of lattice dynamics for the propagation of two-dimen-
sional waves. We first assume that the expansion

oo k+1
) =Y Y L N -9 - y) (20)
k=0 I=0 3x‘3y’ g .

is valid for every pair of x, y and throughout the entire domain. Next, we define

Li= [ [ Ko@Bdx-x)+ (-3 -0 - p'avay @D
which can be written in the equivalent form

Iu=[ | KoBNE +n"E M dtan 22)

where § = x'-x , n = y' -~y .It can easily be shown that
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;=0 (k1=1,35,..)

The remaining integrals can be handled in polar coordinates (£ = pcos6

M = psin® ) more conveniently. We then have

R il

I =4[ [” hnn.cZKﬂsian,lg\"’r'nl(K+l)+ 1K d 5
2k, 21 \JO j\JO r G(Bp) D)

Since

Jt/2

) —IM(21=-1
JO cosZosin?ede = ! (2k-D2I-1N!=

S+ (1 +k)! 2

(Gradshteyn & Ryzhik [64], 2.511.1~2) and
Impz(Hk)HKo(Bp)dp L 22(k+1)B-2(k+1+1)[(k+l)!]z

Jo

(Gradshteyn & Ryzhik [64], 6.561.16) we arrive at
Ty = 27 P76 Dk - 1yt - nmice + HNZ

from (18) - (27) we have

S 20k D, .
2\ +[(2k - DN[2I= DNk +D)!] © T4 ¥)
ci'(x’ )’) = 5
Y kgo 12;’0([32) [(2k)'1(2D)!] ax2k8y21
Considering the identity
k-1 _ 1
(2k)! 2% (k1)

expression (28) is radically simplified to read

~2(k+ 1

v g 2k+HK+1I)! 0 T(x, y)
%% ) = kz:) EOB DAY~ 5%k,

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

Additional simplifications can be achieved by taking into account the following

identities
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Z ZAkl: 2 ZAm—n,n (31)

k=0 [=0 m=0 n=0
and
= m! azmt(x y) m
2 =A1 (32)
ng‘o(m—n!)(n!) axz(m—")ay2"

indicatmgthat the Laplacian A

2 2
At 3_2+§_2 (33)
dx~ dy

with A™ = AA...A (m times) obeys a binomial expansion. Introducing (31)
and (32) into (28) we obtain the following gradient expression for the stress

ey 1 1
Gij(x’ y) = 2 B mAmTij(x, y) = Tij + B—ZTU’ kk + —41‘-.," kkil G iaon (34)
m=0

This result indicates that the nonlocal constitutive equation of the form (18) is a
gradient type relation containing all order Laplacians of the strain field. By

recalling the Green’s function formalism we may also deduce that a constitutive
relation of the type (18) also contains the boundary conditions which should be

imposed on the strain field.

In concluding, we wish to point out the following interesting consequence of
expression (34). Note that

=2 - -2 1 1 -2
B Ac, (6 )= X, BT VA" Iny(x y) = BAT + BTN 4 =0y -1, (35)

m=0

from which it follows that
2
T; = 0B Acy; (36)

which can be written equivalently as
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ey(x.y) = S;-BAS, (37)
where
1
S; = 2——u(3x+Zu){—lckkSij+(37x+2u)cu} (38)

Expression (37) which is equivalent to (18) (with the assumption of (19)) sug-
gests that the nonlocal elasticity may be viewed as a gradient elasticity not in
strain space but in stress space. In other words, if we wish to produce a gradi-
ent-dependent stress-strain relation by following the procedure outlined in the
previous section but choosing stress (instead of strain) as independent constitu-
tive variable, then we would arrive at the constitutive relation of the form given
by (37).

Finally, we to point out that if the nonlocality kernel is chosen as

2
k(x-xD) = (B) expllx- x| +1y-¥1} (39
the stress-strain relation can be written in the form

= - azmti'(x! )’)
oyxN =Y Y 5 (40)
m=0 n= OB ox ay

or equivalently

non
g 7—] ij (41)

g;(x,y) = §;- B_Z(_ s+ —-P
d
where s, is defined by (38).

3.2. Relation to Mixture Theory

Motivated by Maxwell’s kinetic theory of gases, Truesdell & Toupin [9b]
presented an axiomatic mixture theory for interacting continua based on the
premise that each point of space is simultaneously occupied by all constituents
of the mixture. In the 60’s and 70’s some special mixture theories were derived
to investigate the mechanical behavior of composite materials. Bedford and
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Stern [47], and Stern and Bedford [48] developed such a theory and applied it to
laminated composites. Fiber-reinforced composites were considered by Bedford,
Sutherland, and Linge [49] for investigating wave propagation in heteroge-
neous media. Another binary mixture theory was developed by Hegemier, Gurt-
man and Nayfeh [50] for modeling wave propagation in laminated and uni-
directional fibrous composites. This theory was equipped with microstructure
such that it is possible to obtain some information on the distribution of dis-
placements and stresses within individual constituents. This theory was
applied for both transversely and horizontally polarized shear waves propagat-
ing parallel to laminates by Nayfeh and Gurtman [51]. Another type of mixture
theory has been developed by McNiven and Mengi [52-54] for modeling wave
propagation in periodically structured composites. A general theory for two
phase materials is developed in detail by McNiven and Mengi [52]. This theory
was applied to laminated composites by McNiven and Mengi [53, 54] who also
studied transient wave propagation in laminated composites.

A suggestion for producing higher-order strain gradients in the constitu-
tive equation for an elastic nanostructured material was given by Aifantis [29b]
by considering it as a mixture of two phases: the “bulk” and the “grain bound-
ary” regions. We further elaborate upon this suggestion and show that the con-
stitutive equation of the present gradient elasticity theory, Eq. (10), can be
obtained by considering the total stress for a mixture of two elastic continua
with each constituent obeying the classical Hooke’s law. To this end, we consider
a mixture of two elastic materials indicated by superscripts 1 and 2. The dis-

placement of each constituent is denoted by u} and u?. Each constituent obeys
its own equilibrium equation of the form

1
ijyJ

= oc(ui1 —uiz) and o’ ;= —oc(ui1 —u,-2) (42)

C ij,J

where the terms in the right hand side account for the interaction between the
constituents in the form of an internal body force.

The constitutive equations for each constituent are the same as those in
classical elasticity, i.e.

A il & o o 1S
Oy = Al 1 O+ iy (u; j+u; ;) (43)

Q
I

= lzuf’ k8,-j - llz("zj"' uii) (44)

The balance equations (42) then give
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G}j,j = (M + ”1)“11c, kit P'lu.!, kk = 0‘("; ’“?) (45)
and
°x‘2j,j = (A + ”2)“:, kit uzuf. kk = —0‘(“.! "“;‘2) (46)

In the following we show that if the average displacement of a mixture is
represented by the arithmetic average of the displacements of each constituent
and the average stress as the sum of the stresses of each constituent, then the
resulting constitutive equation for the mixture as a whole is of a gradient type.

To this end, we define the average u; and the difference v; displacements by

u; = (u} +u?)/2 and v; = (u:—u?)/2 (47a)
such that
u} = u;+v; and u,2 = u,-v, (47b)

and assume that the total stress for the mixture considered as a whole is given
by

1 2
G;; = 0;; + Oy (48)

Next, we express u,-2 in terms of u: and its spatial derivatives by using (45)

A+l V)
2 1 1 1 1 1 1
B = s Ykt Yk (49)

Similarly, from (46) we have

1 2 M+l 52 fp o
u, = u; - o uk,ki_a Ui kk (50)

On substituting (49) in (46) we obtain

[(Ag+Hp) + (g + )] iy, it (Mt Hl)u}, kk

1 1 - 1
a{ulu2 Ui g+ [ A+ ZA000 + 2001, + 301010y 1y} = 0 (51)
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and a similar equation by means of (50) and (45) for uf
[(hg + 1g) + (hy + )] g g+ (b + B =
1 5 2
a{uluz “E kit + [MAg + 2000 + 20y + 30 oYU 4y} = O (562)
Moreover, substitution of (49) into (44) gives

2 1 IR
Oy = Agip 8+ My j+ ) —

1 1 1 1 2 1
&{7‘2(7“1 + 20 )t Oy + WMo (8 o+ 8 i) } = a{u2(}"l + M)y b (53)
while substitution of (50) into (43) gives
Gilj = KluikS,-j + ul(uzj + uii) =

1 2
'&{110"2 0y 2”2)"1%, ki + uluZ(uiZ, jkk T “5, i)} — a{ul(lz + u2)ui,kij 1 (54)

In view of (53) and (54) the total stress of the mixture can be written in terms of
the average u; and difference displacements v; as

o, = 0':,-+0',—21 =

(A, + Xl)uk'kﬁij +(Uy+ )y 4w ) -

é{ [Ay(Ag +2pp) + Ay (Mg + 205) Ty, 10,5 + 21y (1 ekt U i) —

é[”z(M +R) Ry Ay + )iy +

A=A o8+ (R =)DV, j+v; ) -

é[lZ(ll +21)) = Ay (Mg + 219) 1V 48—

é[uz(ll +Hp) = By g+ 1)1V ks (565)
Since the stress for each constituent satisfies (42) the total stress satisfies the

following balance equation
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Gy j = c_-_._.+o.._.’..=0 (56)
By summing (51) and (52) side by side we obtain
[+ 1) + Ay + )] g+ By + By g —

1
G IRHe 4+ (AR + 201y + 281 + 3y Ju g} (67)

On the other hand, by using (55), we obtain from (56) the relation

[Ag+Wo) + Ay + 1T sy g+ (Mg + B g —
2
&{uluz Ui e (A Ay + 20 1y + 2R, + 3R Mo Uy i} +

[(7»2+u2)—(7»1+u1)]vk,k,-+(u2—u1)vi,kk =0 (58)

On comparing (57) and (58) we conclude

1
a{uluz i pent F (M A + 20 1o + 2051y + 30 o Juy g} -
[Ap+H2) = A+ DIV i+ (M~ W)V g = 0 (59)

Next, we define

Sy = (}"2_}"1)vk,k8ij+(U2_ul)(v,',j+vj,i) (60)

and

1
Zy = UMMy + 20 pg + 20l + 20 Wi y8y5+ BB 1y + w5 )} (61)

and observe that the relation

Sij = Zij (62)

implies that, condition (59) is satisfied. From (62), the symmetric part of the
gradient of the “difference displacement” is found as

Y i }\,2—}\,1
Vv, .+V - ,:I

L= | x5,
PLPE 2L Y 3 - Ag) +2(Hy - 1y) u® )
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In terms of the average displacement u. and the difference displacement
v;, the constitutive equations of each constituent (43) and (44)) read

Oy = gty 10+ Wy +u: d+ Ay S+ 1y (v j+v; ) (64)

So that the expression for the total stress o, becomes

o, = o,.lj + c,-zj = (A + Xz)uk,kéij + (W + M)y sty )+
(A _x2)vk.k8ij+ (M = M)V ;+v; ) (66)

Upon substitution of (63) into (67) we finally arrive at the following gradient-
dependent expression for the total stress.

oij = (7&1 + Kz)uk,kS,-j ar (ul + uz)(ui,j + u; i) -

{IA Ay + 2A 1y + 2R, + 210 1o Juy 4 g 1)8,-]- + UM uy i+ uy Dt (67)

This is identical to the constitutive equation of the special theory of gradient
elasticity as introduced on purely phenomenological grounds.

4. CRACK PROBLEMS

In this section, solutions to the three basic modes of crack prob’ems will be
given by employing gradient theory of elasticity. As is well known, linear elas-
ticity predicts infinite stress and strain at the crack tip and, thus, fails to give
an accurate description of the state of affairs in that region. Since the singular-
ity in both stress and strain at the crack tip is not realistic, it prohibits the use
of any fracture criteria based on stresses or strains. Various alternatives have
been introduced to circumvent this difficulty (see, for example, Unger [55]).
Although these concepts, such as stress intensity factor, the J-integral, and
other fracture toughness parameters have often been proven useful for engi-
neering purposes, they do not provide any information about the structure of
the crack tip. In this connection, we would like to mention two models previ-
ously proposed in order to explain the structure of the crack tip. Elliot [56] pro-
posed an atomistic model which is basically a discretized version of the
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continuum. An important result of in this study is that the adjacent atomic
planes defining the crack surface displace with respect to each other beyond the
crack tip in contrast to the results of classical elasticity. In his celebrated work,
Barrenblatt [57] has introduced a small cohesive zone (and corresponding inter-
atomic forces) ahead of the “physical” crack tip whose size is explicitly deter-
mined by requiring the cancellation of singularity at the tip of the cohesive zone
(or the tip of the “effective” crack). However, in this model, the slope of the crack
opening displacement at the physical crack/cohesive zone tip becomes infinite,
even though a smooth closure of the crack faces is assured. Having recognized
the importance of the interatomic forces, Eringen et.al. [58] have attacked the
crack problem by using nonlocal elasticity. Their work seems to indicate that
nonlocal elasticity eliminates the stress singularity at the crack tip. However,
the solution seems to be approximate, in the sense that the stress boundary
condition at the crack surface is not satisfied exactly.

Recently, crack problems are investigated by the special form of gradient
elasticity. Altan and Aifantis [59] solved mode III crack problem within the
framework of the special form of gradient elasticity. In this study which will be
summarized here, the off-plane component of the classical surface traction and
the second derivative of the off-plane displacement are set equal to zero on the
crack surface. The interesting features of this solution is that the strain is finite
everywhere (including the crack tip) and the displacement is discontinuous not
only on the crack surface but also on the crack plane outside the crack. Ru and
Aifantis [34] developed a method for reducing traction boundary value problems
in gradient elasticity to corresponding problems of classical elasticity. They
obtained an expression for the crack opening displacement by requiring it to
vanish at the tip of the mathematical crack. Unger and Aifantis [60] considered
the mode III crack problem by searching for the “small scale yielding” analogue
of the classical solution within the structure of gradient elasticity. Their solu-
tion exhibits a smooth closure at the crack tip and can also lead to oscillatory
crack profiles. Vardoulakis, Exadaktylos & Aifantis [61] considered a modified
form of gradient elasticity to solve the mode III crack problem. This form moti-
vated by the work of Casal [62] and considers an additional term in the strain
energy function to account for surface energy effects. They formulated the mode
III crack problem in such a way that the solution of the problem was reduced to
the solution of a successive system of dual integral equations. By using the Rie-
mann-Liouville fractional integral representation, the system of successive dual
integral equations were transformed into a Fredholm integral equation of the
first kind and then this equation was transformed to a Fredholm integral equa-
tion of the second kind by employing a generalized Delta function. Based upon
this procedure, they found that the crack tip forms a cusp of the first kind and of
zero enclosed angle with zero first derivative of the displacement at the crack
tip.
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In what follows, the solution of the mode III crack problem within the
framework of the special form of gradient elasticity is outlined and the solution
of the other two basic modes is also provided. We consider an infinite medium
weakened by a line crack which is located at I < x <[, y=0. The crack is viewed
as an interior surface, and therefore is treated as a boundary of the body. Since
the theory we employ requires additional boundary conditions, the following
extra boundary condition 3*u/d y2 is adopted on the crack surface where u is the
appropriate component of the displacement field according to the type of the
crack mode considered.

4.1 Formulation of Mode III Crack

As in the classical case, we assume that the displacement field for a crack
loaded in the off-plane direction in the mode III configuration is given by

u, =0, uy=0, u, = w(x,y) (68)

The non-vanishing components of the strain and stress fields are

_ low _low
®2 " Jax' 329y 69

3 3 f -3 5
o,, = p{a—w—c(a—‘fﬁ- 9 wzl} y Oy = 111 %&)—C[d—nw—*d—‘:]} (70)
dx”  0dxdy’, Loy dx“dy 9y

The stress components are obtained from (10). Introducing the stresses into the
balance equation (7) the following fourth order differential equation is obtained

2. a2 4 4 4
i‘;TL‘;_c[dmz dzw4+d“.’J=o (71
ox” dy 0x’ dxdx  dy"

The Fourier transform of this equation on x-coordinate is

,J4— - '27. ~ "
Y (1+2cE) 2 +E(1+cE)w = 0 (72)
dy’ dy”

where w(&, y) is the Fourier transform of the displacement and is defined as
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W& y) = | wix y)eTdx (73)

N ZTY —o0
The characteristic equation of (72) is [cD2 -(1+ c§2)][D2 - &2] =0
and, thus, the solution of (72) for y >0 reads

2\,

_ el N TR ST
w(&,y) = A(E)e """ + B(E)e (74)

where the condition that the displacement vanishes as for y — « was used. In
view of the fact that the displacement field is symmetric with respect to x, i.e.
w(x,y) = w(=x,y) for —eo < y < it follows that

I—2
w(x,y) = JEJ:{A(&:)EF"‘#B(_E:)e'y“/“+c§ Vc]cos(x&)d& (75)

The Fourier transform of the stress components are

0y y) =M, 2 EA®)e ¥ cos (L)
(76)

05 y) = -t L[ EA@)e P sin (L)

It is interesting to note that the stress field is independent of the extra
unknown function B(€). As discussed in detail by Altan and Yelkenci [63] it is
not necessary to define the cracks as a mixed boundary value problem. Accord-
ingly, we seek a solution for the mode III crack corresponding to the following
boundary conditions

22
O'yz(x, 0) =1 and ~ w(x.00)=0 for |x|<I (77
ay‘

Note that the boundary conditions are imposed only on the crack surface. By fol-
lowing the procedure detailed in [63] we consider the Neumann series expan-
sion of the unknown function A%), i.e.

oo

EAGB) = Y a,J,(8) (78)

n=0
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which, upon substitution in (76); gives

O, (x,y) = —uﬁfzf 3 a,,J,,(li)] ™ cos (xE)dE

\n=0 y

In order to find the unknown coefficients a,’s the boundary condition (77), is
used, i.e.

,.Z:oa" _jc J,(1&)(cos(xE)dE) = —J%‘f (79)
where (Gradshteyn & Ryzhik [64](6.671.2)),

J: J (I€)cos(xE)dE = cos[n arcsin(x/D)/NIF-x* , |xl<I (80)

It can also be shown that

cos[(2k + Darcsin(x/D]/NIE = x* =D I U, (x/1)

cos[2k arcsin(x/D)/AP = x* = (=1)°T, (x/1)/ P - x*

where Uy, and Tg;, are Chebyshev polynomials of the second and the first kind,
respectively. By inserting (80) and (81) in (79) we arrive at

(81)

> {a2k+ 1(—1)kl—lU2k(x/l)+ Ay (

,2 2
k=0

I©--x

k

T2k(x/l)} = —A/;it%) for |x <1 (82)

As is clearly seen from this result, the only possibility to satisfy the stress
boundary condition (77); is to take

n To

a; = - AT a =0 S = U2 (83)

from which we conclude that

Ag) = —ff il J‘gg) (84)
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The unknown function A(€) is thus the same as in the classical elasticity.

In order to find the other unknown function B(€) we employ the boundary
condition (77), by following similar procedure. The boundary condition (77),

leads to

372

El—‘fﬁ—zB(a)cos(x&)d& =—f§ G2l 110sin(E)E —-f ul{l_(’)}

x/7] <1 (85)
(Gradshteyn & Ryzhik [64](4.451.4)). Upon substitution of the Neumann series
expansion for the unknown function B(x)

1B pr) ¢ i b,J,(IE) (86)
c - n“n

n=1
in (85) we obtain

=372

d ol x
;b { J‘”J (l§)sm(x§)d§} J; m {1 —(7)} (87)
Since
JI‘; J (IE)sin(xE)dE = sin{n - arcsin(x/D}/JP-x> | |x <1 (88)
the boundary condition (77), is satisfied by
bl_-,@— , by=0 , k=2,3,.. (89)
NZ |

It is interesting to note that (89) suggest that the boundary condition (77), is

satisfied not only for |x| <! but on the whole x-axis. In conclusion, the boundary
conditions (77); and (77), are satisfied by

[ J [
A<§)=—”:‘ﬁ’ ég) and B<§)=—f—‘ % CQ&J(li) (90)

B 14 cE?
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4.2 Formulation of Mode I and II Cracks

The procedure for solving the mode I and mode II crack problems is similar
to the one employed for the mode III crack. We assume that the displacement

field for these problems are of the form

u=ulxy), v=vixy), w=0 (91)

The components of the strain tensor corresponding to this displacement field
are

R N 1 VO O
* ox’ ey Ty xmy (a)’ ax) =0 Yu=0 1,=0 (92)

and the corresponding components of the stress tensor are

B v du v
(x+2u)a +Ag5-cV [(sz) ‘ ]

- du _ 4 ou
o, = (x+2u)a +A5E-cV [(x+2p)a =

_ .(du  dv 2(du , dv
o = (3 +55)- [V (5 + 5]

_ af9u  9v)_ du , dv _ _
Oz = X(ax”ay) C’“[V (ax ay)] , 06,=0 , o,=0 (93

2z

Introducing these stress expressions into the balance equation (7) we obtain

(Mzu)a - aaav u(; > a(iavy}
Y
2
cV? (7L+u)—+7Laa—ay+u(g g aia"yj} =0 (94)

and
2

v o*u v du
(X+2u)a—yz+lm+u(a—f+m]_

2 2 2 20
2 d7v v v du || _
A% {(;\.'l'u}ayz"')\. xay'l"u.[— . m]} =0 (95)
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For solving these coupled partial differential equations we use the Fourier
transform technique. In the Fourier space (94) and (95) become

-
— A+ 21)(1+ cED)E 2w+ [(h + 2)(cE)) + (1 + e8] EE -
dy*
' . 2dv  di
—ucﬁ—(:&)(?\&u)[(l +cE )(g—c;yi;] =0 (96)
and
2_
S (14 cBDER + [(h + ) (1 + cB2) + p(cEH]
dy”
Gy ;di dn
A+2W)c——(EEYA+ )| (1 +cE)>—==c-=| =0 97)
dy2 dy dy3

where #(E, y) and v(€, y) are the Fourier transforms of u(x, y) and v(x, y)

8 y) = —= [ uey)ePdx , vty = —= [ viuyeSax  (98)

J3m = Jom 2

The characteristic equations of these differential equations are

[eD* = (1 + cEHI{IUD* — (A + 2)E% 1w + (iE)(L + B)DV} = 0 (99)

[eD* = (1 + cED{ LD = (A + 2)E% @ + (iE)(A + )D¥} = 0 (100)
With the definitions

[eD*—(1+cEHa=TU , [cD*~(1+cEHp=V (101)

we obtain from (99) and (100) the following set of coupled ordinary linear differ-
ential equations for the determination of Vand U

[uD* = (A +2p)E*1T + (i) (A + w)D
[(A+2p)D* - uE*IV + (iE)(A + u)D

0 (102)
0 (103)

1%
U

Upon elimination of V or U between these two equations we obtain

(D*-E)’T =0, (D*-EH’ V=0 (104)
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It follows that the characteristic equations for # and v are
[cD?*— (1+cE))(D*-E)u=0 and [cD®—(1+cEH(D*-EYv=0 (105)

From these results, the solution for # and v can be written as follows

G(E, y) = {A(E) + vBy(Erpe ™ 4 ¢y (E)e I+ EVe y>0 (106)
and

V& y) = {Ay(E) +yByE)}e P 4 @)U EY e ys0 o)

Since the original equations for # and v are (99) and (100), the unknown coeffi-
cients appearing in (106) and (107) should satisty the following relations

iB, = sgn(§)B; , iA, = Sgn(é)A1+§%3—JLBI (108)

4.2.1 Mode I

Before we list the boundary conditions for mode I we note the symmetry
properties for the displacement field u(x, y) = —u(-x, y) and v(x,y) = v(-x, y)
imply the following conditions for the unknown functions entering in the dis-
placement expressions (106) and (107)

A(€) = -A(-€) , B() =-Bi(-§) , Ci&) =-C(-&)
and (109)

Ay8) = Ay(-8) , By6) = By(-8) , Cy(8) = Cy(-E)

For the mode I crack we have the following boundary conditions.

2 2
) d
G,y =0y , —s=0 , 22 =0 for y=0, |d<I
dy dy
and (110)
6,,=0 for y=0

xy

The boundary condition (110), imply

—[E|A (&) + (1 -2cE%)B, (&) - ilE| A(E) — 2¢E7B,(E) = O

255



Vol. 8, No. 3, 1997 On Some Aspects in the Special Theory of Gradient Elasticity

which upon combination with (108) gives

_1(A+2p
A,(8) §(7~+u -2c &)Bz(ﬁ) for £>0 (111)
and
A4,(5) =_é(ﬁ+2cgz)32(g) for £>0 (112)

On the other hand, in view of (93), (107-110), (111) and (112) we have
G,,(§ 0) = —2uB,(§) for £>0 (113)

By following the procedure which already outlined for mode III, we conclude
that

[ log
By(E) = J% n J1(I§) (114)

With the results (108), (112-113) and (114) at hand we have (for y>0 and £>0)

lo J,(1€) T
(&, y)= —iA/gt 2—3 {(Xtu+2c§2)+§y}%e{y+Cl(g)e yN(1 +cg7)/

(115)

A+2 2 J1(I8) gy —y(1 +cE*) /¢
(I 5 2”{(7”}1 2C§)+§)’}T€ +C,(8)e

In order to find the unknown coefficients C;(§) and C5(§) we employ the
extra boundary conditions on the displacement field. The inverse transform of
the u component of the displacement field can be written as

T .
u(x,y) = —i NIRJ: (&, y)sin(xg)dg

2
and, thus, the boundary condition 8_142 =0 y=0, [x<! implies
dy

1+ cE? . _ 2L+ p 1 (I8)
zJ;I; " C,(§) sin(xE)dE = J: {)»"‘ll } z sin(x€)d§  (116)
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By a similar procedure as for the mode III problem we find

_ . [m% cE J2A+p , 2
C‘(g)"'fwu“cgz{hu 2C§}Jl(l§) , &20 (117)

The inverse transform for the v component of the displacement field is

2
V(5 y) = [Z [ 9 y)(cos(xE) d

2

and, thus, the boundary condition d ‘;
dy

2 > (1+cE?) _log e af A ALGUI)
4/1;!:—-0_- Cz(é)cos(xg)dg—'ﬁ J:ﬁ {m"”h’é} 2 cos(x§)dE:  (118)

=0 y=0, |x<! implies

By a similar procedure as for the mode III problem, we find

= _[®S _c& | A ;02
C2(E.|) b _J; -2Tl ;_T&i {x+u+26‘§ }Jl(lﬁ) ’ &20 (119)
4.2.3. Mode 11

The displacement field for the mode II crack satisfies the symmetry proper-
ties u(x,y) = u(-x,y) and v(x,y) = - v(-x, y) which imply

Al(é) = Al(—g) ’ Bl(é) = Bl(—é) ’ Cl(é) = Cl(—é)
and (120)

Az(é) = —Az(_é) ’ Bz(&) = —Bz(—é) ’ Cz(&) = —C2(-—§)

The relevant boundary conditions are

2 2
cxy=—co,?—‘;=0,d‘;=0 for y=0 , |x<I
oy dy
and (121)

yy
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The boundary condition (121)y imposes the following condition on the unknown
coefficients.

CINEA[(E) — 2IAcEPB,(E) — (M + 2M)EA,(E) + (A +21) (1-2¢E%)B,(&) = 0

which upon combination with (108) gives

AyE) = —E(ﬁ —2c§2)31(§) for £>0 (122)
and
A E) = - é("xfiucgz)&(é) for £>0 (123)

On the other hand, in view of (93), (107-109), (120), (122) and (123) we have
G6,,(&0) = -2uB (&) for £>0 (124)
By following the same procedure as for the mode III problem, we conclude that

Io,
B,(§) = L o J,(18) (125)

With the results (108), (123-124) and (125) at hand we have (fory >0 and £>0)

(&, y)= J; n {}‘+2”+2 £ty }Jl(lg) e+ C (E)e -y(L+ et /e

A+ i 3

and (126)
lo _ ) —
v(Eﬂ )’) =85 A/;; 2:{},2“ 2C§ +§y} (lé)e §y+ C2(§)e yal(1 § )/

In order to find the unknown coefficients C;(€) and Cy(§) we employ the

extra boundary conditions for the displacement field. The inverse transform of
the u component of the displacement field can be written as

u(x,y) = 2[5 ycos(x)a
2

. y =0, |x <l wearrive at
dy

from the boundary condition
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2
iﬁ j: L *:5 C, (&) cos (xE)dE =

l:O | 2 }\« ~ v2]“|(l§) . e
Oa {x | L5 J é EMN{BTEI71 ’ |X| l (127)

By a similar procedure that we have followed for mode III problem we find

c A
C,(§) = ,ﬁ 23 lfié {Mu—zc&}h(l&) (128)

The inverse transform of the v component of the displacement field is

v y) = =i 2 (6 y)sin(at) de

2
From the boundary condition d‘; =0 y=0, |x<! wearrive at
dy

lo, (22 211, (E)
’A/;J::I +c§ C,(E)sin (xE)dE - .::C?*L?;L:: +2cE J} r sin(x&)d¢& (129)

By a similar procedure as for the mode III problem, we find

c A
Cy(8) = - [2 23 152 {K+u+2c§ } J (&) , &20 (130)

5. PROPAGATION OF PLANE WAVES

This section is devoted to some immediate consequences of gradient elas-
ticity on wave propagation phenomena. Propagation of a disturbance in an infi-
nite medium is investigated. Dispersion of harmonic waves and the attenuation
effect is also discussed.

Wave propagation is generally dispersive, i.e. the frequency or the speed of
propagation (phase velocity) is a function of the wavelength (or wave number), a
result more pronounced at the range of small wavelengths and/or at large trav-
elling distances of waves. Studies on dispersive elastic wave propagation have
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been motivated by the problems of seismic wave propagation and the nature of
the seismograms recorded from earthquakes (see, for example, Postma [65] and
the references cited therein). On the other hand, the importance of dispersion in
the application of acoustic waves in mining and non-destructive testing of mate-
rials is well-known. Moreover, as the use oficomposite materials increases, a
simple approach to modeling dispersion will become quite useful since it is a
well-accepted fact that wave propagation in composites is dispersive (see, for
example, Herrmann & Achenbach [66] or Drumheller & Bedford [67]).

In order to indicate the relation between dispersive wave propagation and
higher-order strain gradients, we refer to a paper by Kohn [68] in which one-
dimensional wave propagation in a periodically-structured medium is consid-
ered. It is assumed that a harmonic motion in a periodically-structured medium
can be represented as follows

u(x,t) = v(x, k)ei(kx_mt) (131)

where v(x, k) is a strictly periodic function, i.e. v(x, k) = v(x +a, k). By consider-
ing the following series expansion

v(x, k) = 1+ (k) (x) + (1K) 2vy(x) + ...
and a corresponding polynomial expression for the dispersion relation
(k) = K- B+ ...

a consecutive set ofiequations for v,(x), v,(x), ... are obtained. It is shown that
“the envelope function” U(x,t) which is defined by

u(x,t) =<1+v (x)g-+v (x)a—2+ U(x,t)
’ Box " 72 ax2 ’
satisfies the differential equation
32 [.a* _.a* )
—U(x,t) =<scc——-p — +...}U(x,1) (132)
o (527" o f

Finally, it is shown that the envelope function U(x,t) alone can describe all
mechanical quantities, such as strain and stress in the medium. The impor-

260



B.S. Altan and E.C. Aifantis Journal of the Mechanical Behavior of Materials

tance of this study as related to the gradient elasticity is Eq. (132). Even though
conventional elasticity was assumed, the existence of dispersion in the medium
resulted in a field equation (132) for the envelope function which contains
higher-order derivatives with respect to the space variable. As will be shown in
the next section, the equation of motion of the gradient elasticity is exactly the
same as (132) for one-dimensional problems.

For the sake ofisimplicity we will deal with propagation of one-dimensional
longitudinal waves. As usual, we consider the following displacement field

ul(g, t) = u(x, t), u2=0, u3=0 (133)
for which the strains are

€ = &(x,t) others g; =10 (134)

and the stresses are given by

_ e o 3%
Oy = 0, = (A+2U){€-c——= ¢, Oy = O33 = AE—c— > others o; =0 (135)
ox l ox?)

For one-dimensional problems the following boundary values should be pre-
scribed for a finite domain (0,/).

u(0,¢) or 0,001, ; u(l,r) or o, (Lt)
and (136)

€(0,t) or c(k+2u){g—§} 2 e(l,t), or c(k+2u){g—§}

2= x=1

The relevant initial conditions are the same as in classical elasticity, i.e. the val-
ues

u(x,0) and u(x,0) (137)

should be supplied when dealing with initial value problems.

Before we proceed, it is pointed out that the equation ofi motion for the gra-
dient elasticity reads
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2 4 2
dx~ ox dt
which is identical to (132)arrived at by a different argument. It is thus not
unreasonable to assert that an elastic medium in which the wave propagation is
dispersive, could be viewed as obeying an elastic gradient-dependent constitu-
tive relation.
5.1 Dispersion Relation
In this section, we first show that wave propagation in gradient elasticity
is dispersive and then discuss the structure and consequences of the dispersion

relation. The dispersion relation is obtained by looking for a solution of the gov-
erning equations in the form

u(x, t) = A"~ (139)
Equation (138) admits a solution of the form of (139) if

©® = VKA1 + k) (140)

This is the dispersion relation of gradient elasticity where
v,?: = (A+21)/p (141)

denotes the velocity of wave propagation (phase velocity) for longitudinal waves
in conventional elasticity. Next, the structure of the dispersion relation (140) is
discussed for different signs of the gradient parameter c.

i) For ¢ = 0, the dispersion relation (140) reduces to the classical result

© = vk (142)
for which the phase velocity defined by

=2y, (143)

and the group velocity defined by
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e A (144)

are same.

ii) For ¢ > 0 we have

® = vkl +ck® (145)

for which the frequency increases monotonically with increasing wave numbers.
A natural result ofi this property is that the group velocity

2
dw 1+2ck
V, = == = Y (146)
dk N1 +ck2

is larger than the phase velocity

v, = % = vLJl +ck? (147)
for every value of k, as it can easily be seen from the relation

_ ck’
Vg = vp+vLI~/,_—1 k—; (148)
+c

The case v, >v, is called “anomalous dispersion” in the literature (Achenbach
[69]).

iii) For ¢ < 0 we have

® = ka1 —ck® (149)

Eqn. (149) is quite close to the result obtained by using dynamic lattice theory
(Brilluoin [70]), as shown in Fig.1.

Following Brilluoin [70], we find the cut-off frequency and the corresponding
wave number as
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Figure 1: Dispersion relation in one Brillouin Zone
v 1
o, =—= and k, = — (150)

© 2 oY

It follows that waves with frequency w> ®, cannot propagate with real k. The

imaginary part of k is known to be the attenuation factor. This factor can be
found by solving k in terms of real @’s from (149)

" _ 2
Q? = (@/v) = Bl-ck) , i, = 1EA1-4cQ (151)

e

It is quite clear that gradient elasticity is capable of modeling the attenua-
tion effect, which is also an important issue in composite materials (see, for
example, Christensen [71]). This phenomenon will be studied extensively in
connection with composite materials. It is noted in a future publication in more
detail, however, that the uniqueness of corresponding boundary value problems
is not unconditionally assured if c<0.

5.2 Propagation of a Disturbance

In this section, we discuss the general solution of the one-dimensional ini-
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tial-value problem in gradient elasticity. Consider an infinite medium which is
at rest for t < 0. Let a one-dimensional disturbance defined by

u(x,0) = U(x) and u(x,0) = V(x) (152)
be introduced into the medium at t=0. The governing differential equation is

still given by (138). Application of Fourier transform on x upon this equation
yields

9
8 1+ k)i = 0 (153)
dr’

where #u is the Fourier transform of u given by

ik, 1) = 712:;:}2 e™*u(x, t)dx (154)

)e>0
In this case the general solution of (153) reads
u(k,t) = A(k)cosw(k)t + B(k)sinw(k)t (155)

where w(k) is the frequency defined by (145) and A(k), B(k) are unknown coeffi-
cients to be determined by the initial conditions (152). In fact, if U and V denote
respectively Fourier transforms of the initial displacement U and the initial
velocity V, respectively. it can easily be shown that

A(k) = U(k) and B(k) = V(k)/o(k) (156)
Thus, we arrive at
u(k, t) = U(k)cosw(k)t+{V(k)/w(k)}sin® (157)

which by inverse Fourier transform gives

u(x, f) = ﬁ J: {T(k)cosw(k)t + [V(k)/w(k)]sina(k)r}e Fdx (158)
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Notice that if V(k) = 0 and w(k) = vok (classical case), the solution can be
written in the form

u(x, 1) = S{U(x=v, 1)+ U(x—v,0)} (159)

which is the well known D’Alembert solution of classical one-dimensional elas-

todynamics. In the present case, the form of an initial disturbance is subject to

change while it is propagating, because of the dispersive properties exhibited by
the gradient elasticity and therefore The D’Alembert solution is not applicable

in gradient elasticity model.

i) c <0
In this case the corresponding differential equation becomes
2 4 )
vi[d—z + cd—l‘;J = Q_;‘ (160)
ox ox ot
whose Fourier transform is

28
L8V (1- ok = 0 (161)
dt
The first complication with this equation arises in the sign of the coefficient of
u, that is
2,2 2 -
vik (1-ck’)>0 for k<1/Jc (162)

Vi (1-ck®)<0 for k>1/c (163)

indicating that the solution of (160) can be written in the form

a(k, 1) = A(k)coso(k)t + B(k)sinw(k)t for k<1/.¢ (164)

ak,t) = Ek)e " ' e F)e™®  for k> 174 (165)
where

o(k) = vkl —ck® for k< (166)
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@*(k) = v kalck®—1 for k> ¢ (167)

Note that the condition F(k) = 0 ensures finite displacements for increasing t. It
can easily be verified that the initial conditions (152) are satisfied if

Ak) = Uk) , B(k) = V(k)/a(k) , k<l/Jc (168)
E=%{U—V/(o*} ., F={U+V/0*} , k>1/4c (169)

and the solution can then be obtained by applying the inverse transform. It
should be noted, however, that if

F(k)#0 > U(k) #-V(k)/w*(k) (170)

the solution grows unboundedly with increasing time. Note that uniqueness of
the initial-boundary value problems is not unconditionally assured in this case.

From the above discussion we conclude that the role of the sign ofithe gra-
dient parameter c on wave propagation studies may be different than in unique-
ness studies, Uniqueness is always assured by the positive definiteness of the
strain energy which, in turn, implies a positive c. On the other hand, wave prop-
agation results similar to the lattice theory are established for negative c. Mind-
lin [70] encountered the same difficulty in discussing the dispersion relations
for a simple cubic Bravais lattice. On the other hand, Beran and McCoy [71]
concluded (by comparing the solutions obtained by using gradient and nonlocal
elasticity) that it was necessary to give up the positive definiteness of the strain
energy density in order to obtain the correct solution of the problem of point
force in an infinite medium.

Bedford and Stern [47] developed a “multi-continuum” theory which is a
special mixture theory in which the constituents interact by means ofiintrinsic
body forces which depend on the constituent relative motion. The theory was
applied to wave propagation in elastic laminates (Stern & Bedford [48]) and in
fiber-reinforced elastic material (Bedford, Sutherland & Linge [49]). The disper-
sion of plane harmonic waves propagating in a direction normal to the fibers
was found to obey the relation

2
14 X
s = (171)
L
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where (k) = v,k is the phase velocity, v, is defined by (141) with the elastic

coefficients determined by the effective properties of the composite, o and P are
constants related to the material and geometric properties of the composite.
Next, we wish to compare the dispersion relations (171) and (166). It can be eas-
ily shown that the phase velocity predicted by the gradient elasticity can be
arranged as using (151))

v, = vLJ;[l + {1 —ﬂ:a)zJ (172)
L4

Predictions of both expressions (171) and (172) are quite close for a = 16,
=.852, ¢ = 0.5625 in a wide range of frequency. Dispersion relations obtained
from both approach are shown in the Fig.2

120 T T 1 T T T T T
‘5‘ 1.00 _—
& Gradlent Elastlclty
> 080 |- N -
Q \
: \
% 0.60 |- \\ —
] \
:a 040 - \ —
E Bedford & Stem'|
| _
z 020 - ||
0.00 L 1 1 L | | | |
000 050 100 150 200 250 300 350 400 450

Normalized Frequency

Figure 2 Dispersion relations in gradient elasticity and a
“composites” theory

6. TENSILE BAR

In this section we analyze the displacement field in a straight beam loaded
by a homogeneous axial stress. the corresponding one-dimensional displace-
ment field is
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uy = u(x) , uUy=u;3=0 (173)

The corresponding strain and stress components are

€ =€ =E= 3—'; all others zero (174)
2 2

6, =60 = (X+2u){e—ca—§2} , Oy = O3 = X{e—cé-g} (175)
dax ox

The equation of motion is

g—‘; = o (176)

and the standard boundary conditions are (for a finite domain 0<x<1)

u(0) = U, or 6(0) =T, C u(l) = U, or o() =T, (177)
while the non-standard ones are

e(0) = E, or £(0) = S, ; €0)=E, or g() =8, (178)
The initial conditions are identical to those of classical elasticity.

Next, we would like to demonstrate the effect of the extra boundary condi-
tions (e.g. the boundary conditions given by (178)) on the displacement of a ten-
sile bar. To this end, we note first that the stress field in the beam is symmetric
with respect to the mid-point of the beam, and the same is true for &(x) and
e"(x). This property, which implies that

e(/2) =0 (179)
simplifies the analysis on the effect of the extra boundary condition.

1) Strains prescribed at the ends of the bar

Here, we consider the following boundary conditions
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6(0)=c(l) =T , e0) =K , €U/2)=0 (180)

where T and K are constants. Then the relevant differential equation for the
strain field

o e = 0 (181)

obtained by combination of (175) and (176) for the static case of ii = 0. The gen-
eral solution of (181) is

g(x) = A+ B/ 4 cet/ (182)
and the corresponding stress field is
o= (A+2p)A (183)

i.e. a constant. By using the remaining boundary conditions we find the coeffi-
cient A as

A=T/(A+2p) (184)
By using the other boundary conditions we obtain the solution as

e(x) = A+—2"4 _ Chl2x-1)/(240)] (185)

ch(1/2.Jc)

The variation of this strain field is displayed in Fig.3 for
A=2 , K=l and L=1/Jc=2;20 (186)

ii) Strain gradient prescribed at the ends of the bar
c0)=0c() =T ¢€0)=S ¢€/2)=0 (187)

The solution can easily be obtained from (182) as

SJc

— 2N ch{(2x-1)/2.c 188
" {(2x-1)/2Jc} (188)

e(x) = A-
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Figure 3: Strain distribution when the strain assigned
at the ends of the bar

The variation of this strain field is displayed in Fig.4 for

A=2 , SJe=1 and L=I/Jc=2;20 (189)
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Figure 4: Strain distribution:
gradient of strain described at the end of the beam

The following observations can be made on the basis of (185) and (188).
From these results the following point are interesting.

(DIf €(0) = K # 0 (extra bc) the strain distribution is generally not homoge-
neous even if the tension (standard be) is zero. The strain field is given by

e(x) = Kch{(2x-1)/(2c)}/ch{l/(2Jc)} (190)
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which can be interpreted as a stress-free deformation in a tensile bar.

(ii) If €(0) = 0 (extra bc) the strain field does not vanish throughout the bar.
Instead, if the applied stress T is constant (standard bc) the strain field is inho-
mogeneous and given by

e(x) = [T/(A+2W)1{1 - chl(2x-1)/(24c)]1/ch[1/(2]c)]} (191)
(iii) If €’(0) = S#0 the strain field corresponding to a homogeneous ten-

sion in the bar is not homogeneous even if the tension is zero. The strain distri-
bution is given by

e(x) = SJc{chl(2x—1)/(2Jc))/sH/ 2 e} (192)

which is also a stress-free deformation in a tensile bar (please note the similar-
ity between (190) and (192))

(iv) The only extra boundary condition which gives a homogeneous strain
field for constant applied tension (classical case) is that €'(0) = 0.

(v) In general, the distribution of a non-homogeneous strain field is quite
sensitive to the gradient parameter ¢ and the length of the bar. For large values

of 1/ Jc the variation of the strain field is large near the ends of the bar, other-
wise is almost constant.

From these observations the following conclusions can be drawn:

a) The gradient theory of elasticity is capable of predicting end effects
unless €'(0) = 0. The “surface effect” in solids seems thus to be included in the
theory presented here.

b) The strain distribution corresponding to an applied constant tension is
not homogeneous and reaches its maximum value in the middle of the bar. This
property is a clear indication that the gradient elasticity can be employed as a
potential model to explain the necking phenomenon or the strain localization
phenomenon in linear elastic phases. This property may also be used to estab-
lish the gradient parameter ¢ through a carefully performed experiment.

¢) The strain distribution is strongly dependent on the length [ of the bar,
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especially when the ratio I./c is small. This suggests that the gradient theory
presented in this study may be quite suitable of modeling the behavior of thin
films.
7. LONGITUDINAL VIBRATIONS OF A BAR

The main purpose of this section is to display the consequences of the
present gradient elasticity vibration problems. The longitudinal vibration of a
bar under homogeneous boundary conditions is analyzed. It is shown that the
vibration modes contain not only travelling waves but also exponential end-

effect terms.

Consider the natural frequencies of the longitudinal free vibrations of a
straight beam whose ends are fixed. The equation of motion is

GRS e O Cl = p/(h+2p) (193)

For wave type solutions of the form u(x,t) = Aelx @) the relevant dispersion
relation is given by

® = CPk*(1 + ck?) (194)

as discussed earlier by using a somewhat different notation. On considering
solutions of (193) of the form

u(x,t) = Ux)T(¢t) (195)

it can easily be shown that the functions U and T satisfy the following differen-
tial equations

U —U” k(1 +ck®)U = 0
(196)

e 2
T'-Cik (1+ck)T =0

The general solution of (196); is
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U(x) = A(k)cos(kx) + B(k)sin(kx) + C(k)e—m + D(k)er (197)
where
Ji1+ck*y/c = x (198)

The following homogeneous boundary conditions are considered

U© =0, Ul =0, €0)=0, el)=0 (199)
leading to the characteristic equation

(1/c¢)sin(kl)sh(Ix) + 2kx — 2kxcos(kl)ch(lx) = 0 (200)

The roots of this transcendental equation describe to the natural frequencies
and the corresponding natural modes of the beam. For computational purposes,
it is convenient to express (200) in the following non-dimensional form

F(A L) = 202 + A2 cosAch L2 + A2 = 1) /P —sinhshal L% + 22 (201)

where the dimensionless number A (not to be confused with the elastic constant
A) and L defined as follows

A=kl , L=1/Jc (202)

Some roots of this transcendental equation are displayed along with their clas-
sical counterparts (obtained for c=0 as the roots of sinA = 0) in Table 1. The fre-
quencies corresponding to each mode are found by

% = kN1 +ck® = %‘Jl +A%/L? (203)
1

i.e. they are dependent on the gradient parameter and this dependence is stron-
ger at higher frequencies. The non-dimensional frequencies (Q=Aw/c;) are tabu-

lated in TABLE 1, along with the corresponding frequencies of the classical case
(c=0)

Q=% ., Q=1+ (204)

c c

274



B.S. Altan and E.C. Aifantis Journal of the Mechanical Behavior of Materials

TABLE 1. Comparison of normalized natural modes (1) natural
frequencies (Q2)

mode A,Q A (gradient) Q (gradient)
no. classic L=1 L=20 L=500 L=5000 L=1 L=20 L=500 L=5000

3.142 4707  3.481 3.154 3.143 22.646  3.534 3.154 3.143

[y

6.283 7.845 6915 6.308 6.286 62.045 7317 6.309 6.286
9425 10992 10283 9463 9429 121312 11.562 9.464 9.429
12566 14.135 13591 12617 12571 200.288 16431 12621 12.571
15708 17.277 16853 15771 15.714 298997 22,038 15779 15.714
18850 20.419 20.083 18925 18.857 417.442 28460 18939 18.857
21991 23561 23289 22079 22000 555.623 35747 22.101 22.000
25.133  26.703 26480 25234 25.143 713541 43935 25266 25.143

O 00 3 N L AW N

28.274 29.845 29.659 28.388 28286 891.198 53.048 28.433 28.286

The corresponding mode shapes are found as
X,(2) = A{cos(AZ) - B(\)sin(AZ) - C(AM)e * - D(A)e"“}/(2hshx —xsinA) (205)
where

K = »‘/L2+7L2 , Z=x/1 > B(A) = 2x(chx - cosA)
(206)

C(A) = Ae"—xsinA—AcosA  , D(A) = —Ae “—xksinA + AcosA

The results obtained above clearly show that the predicted mode shapes of
a longitudinally vibrating beam are composed of both traveling (sin and cos)
and non-traveling (exponential or hyperbolic) terms, in contrast to the classical
elasticity which predicts only travelling modes. The following features are inter-
esting to discuss:

(i) The wave numbers and especially the frequencies are strongly depen-

dent on the gradient parameter c. If the ratio IJ/c is small, the wave numbers
and frequencies drastically deviate from the conventional results. For large val-

ues of the ratio I/.J/c, the wave numbers and frequencies asymptotically
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approach the conventional results. In fact, for the first twenty modes the differ-
ence between the conventional and the gradient results are almost negligible

for 1/(.fc ~ 5000. For smaller values of the ratio I/.Jc, the difference between
the conventional and the gradient results (especially for the frequencies)
remain large for all modes.

(ii) The frequencies are dependent on the wavelength. Gradient elasticity
is capable of predicting a dispersion relationship. If the gradient parameter is
positive then the frequencies increase monotonically. If the gradient parameter
is negative the frequencies become imaginary and mode transition occur.
Instead of travelling wave, an evanescent wave appears which decays as it trav-
els away from the boundaries.

(iii) The mode shapes given by (205) contain oscillatory terms and exponen-
tial terms. Every propagating wave is accompanied by a non-propagating (eva-
nescent) component in gradient elasticity, although this form is not predicted in
the conventional theory.

The these observations the following conclusions can be drawn:

a) The wave numbers and the frequencies are quite different from the con-

ventional results, especially for small values of 1/./c. This phenomenon should
be checked by experiments which may yield a realistic estimation of the gradi-
ent parameter. Gradient elasticity appears to be more suitable than conven-
tional elasticity for describing wave propagation in thin layers, for example,
laminated composites.

b) If the characteristic length of the structure is large compared to charac-

teristic length ./c associated with the gradient parameter, and small compared
to the wavelength then the results obtained from gradient and classical elastici-
ties coincide.
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