
On the Creation of a Reference Framework for Software Product Management:
Validation and Tool Support

Inge van de Weerd, Sjaak Brinkkemper, Richard Nieuwenhuis, Johan Versendaal, Lex Bijlsma

Department of Information and Computing Sciences
Utrecht University, The Netherlands

{i.vandeweerd, s.brinkkemper, rnieuwen, j.versendaal, a.bijlsma}@cs.uu.nl

Abstract

 Software product management does not get as much
attention in scientific research as it should have,
compared to the high value product software companies
ascribe to it. In this paper, we give a status overview of
the current software product management domain by
performing a literature study and field studies with
product managers. Based on these, we are able to present
a reference framework for software product management,
in which the key process areas, stakeholders and their
relations are modeled. To validate the reference
framework, we perform a case study in which we analyze
the stakeholder communication concerning the
conception, development and launching of a new product
at a major software vendor. Finally, we propose the
Software Product Management Workbench for
operational support for product managers in product
software companies.

1. Product management

 In the past decades, the software market has made a
shift from primarily developing customized software to
developing software as a standard product. With this
shift, a new function within product software companies
emerged: the product manager function. In other
industrial sectors, especially in manufacturing, product
management has been established since the industrial
revolution in the 19th century [29]. Recently, product
software companies like Microsoft [18] and Alcatel [20]
[21] [33] paid attention to product management as well.
In addition, scientific literature has covered software
product management [29].
 Product management is of critical strategic value in
many companies. However, it is also rather complex,
since a product manager has many responsibilities
covering requirements management, release definitions,
and new product launches. What makes these
responsibilities even more complex, is the fact that the
product manager must take the many internal and external
stakeholders into account [15] [46]. Although product
management has been established for several decades,

software product management has some new challenges.
Software products differ from other products in the fact
that the manufacturing and distributing of extra copies do
not require extra costs for the company [17]. Also,
software products can be changed or updated relatively
easy by using patches or release updates. The downside
of these advantages lies in the fact that due to the nature
of software products, the requirements organization is
highly complex. Furthermore, the release frequency is
high, since the product can be altered easily. Finally, a
software product manager has many responsibilities, but
does not have the authority over the development team.
Because of these problems, we claim that it is necessary
to integrate research efforts in this key domain.
 In a few (software) product management areas know-
how for research and educational purposes is available,
but it is very fragmented. The domain is in need for an
integrated body of knowledge, as exists in software
development [10] and project management [37]. In this
paper, we aim to develop a (preliminary) body of
knowledge for software product management, by
providing a reference framework for all its activities and
deliverables. This reference framework has been based on
an extensive overview of state-of-the-art literature,
industrial case studies, and by exploring opportunities for
operational tool support.
 The organization of the paper is as follows. In the
next section we elaborate on the rationale for the
reference framework, and the research method we have
applied to develop it. Then, in section 3, we discuss the
basic structure of the reference framework. The four
process areas are elaborated on in section 4. In section 5,
we describe a case study at a major Enterprise Resource
Planning software vendor. Subsequently, in section 6, we
describe the Software Product Management Workbench,
for operational tool support for the product manager.
Finally, we describe our conclusions and future research.

2. Rationale and research method

 In many fields, reference frameworks have proven to
be valuable for research and practice. Examples are the
ISO/OSI layers for the layering of network services [26]

and the ANSI/SPARC 3-schema architecture for database
management systems [45]. The desire to get an
understanding of the complete software product
management domain can be satisfied by developing a
reference framework. Both research contributions as well
as developments in the software industry can be
positioned in this reference framework. In this way, the
consequences can be interpreted in a uniformed context.
Also, the software product management reference
framework can provide as a starting point for (a) a
definition of key terms in software product management
and the identification of open research questions; (b) the
education of product managers and competence building;
(c) the development of improved, integrated tool support.
 The available industrial and scientific knowledge on
software product management is limited and fragmented.
Therefore, we use a proper mix of empirical and
theoretical research steps for conceptualizing the
reference framework, which are:

1. Field interviews and discussions with experienced
product managers;

2. Literature review on both non-software product
management as well as on software product
management;

3. Creation of a draft reference framework;
4. Validation by an extensive case study at a large

product software company;
5. Validation with input from an industrial workgroup

on product management;
6. Finalization of the reference framework.

The resulting draft framework was adjusted several times
after suggestions from practitioners and researchers. We
do not claim that we now have produced the definitive
version of the reference framework. Small enhancements
might still be needed, but we are convinced that the basic
structure has been established. The framework served
furthermore as input for the design of the architecture of
the product management workbench.

3. Basic framework structure

 The nature of software products has a major impact
on how the product management function is carried out.
Therefore, we base the reference framework on its core,
the software product itself, structured in a hierarchical
way. Since part of the complexity is caused by the
communication with the various stakeholders, we
position them to reveal their interactions concerning
product management.

3.1. Artifact hierarchy

Professional software product management is in essence a
matter of well-organized processing of issues related to

requirements, products and releases [19] [15]. A
hierarchical ordering of these artifacts (see Figure 1)
imposes a structure on the process areas.

Figure 1. Artifact hierarchy of product

management

 Starting on top, the scope of work of software product
management concerns the complete set of products of the
company, the so-called product portfolio. Small or young
companies may have a portfolio of just one product,
whereas larger companies have several, due to
acquisitions and/or product derivation.
 All products have a release sequence of past, present
and future releases. The release numbering is usually
determined by internal conventions, where major changes
in the technical architecture are a reason to call it an X.0
release. Marketing reasons may lead to commercial
numbering using the year of release or the same release
code as an important customer.
 Finally, each release definition consists of a set of
selected requirements. Each requirement implies the
addition of a technical or functional feature to the
product. Non-functional requirements are also
considered, such as performance constraints or
availability requirements.
 The type of work differs when dealing with artifacts
from the distinct hierarchy levels. The hierarchy gives
rise to a subdivision of software product management
into four process areas: portfolio management to deal
with the products in the product portfolio; product
roadmapping to deal with the different releases each
product has, also called roadmapping; release planning to
deal with the set of requirements of each release; and
requirements management to deal with the content and
administrative data of each individual requirement.
 Observe however, that for the sake of diagram clarity,
we have swapped the positions of requirements
management and release planning in the reference
framework (Figure 2). Release planning processes
communicate about complete releases to internal
stakeholders, whereas requirements management interacts
with all stakeholders.

3.2. Stakeholder interaction

 Software product managers are dealing with many
requirements, originating from internal and external
stakeholders. We distinguish the following internal
stakeholders [15] [19]:

- The Company board is responsible for the definition
and communication of strategy, vision and mission to
the rest of the company. Also, it has the managerial
supervision of the different departments, including
product management. Occasionally, requirements are
communicated through its strategy, but it can occur
that a requirement is sent directly to the product
manager.

- Research & innovation has two core responsibilities:
(1) doing research to new opportunities for product
innovations and (2) finding ways to incorporate
improvements or new features into the existing
products. The first one results in requirements in the
form of technology drivers that are communicated to
the product manager.

- The consultants of the Services department are
responsible for the implementation of the software
product at the customer organization. They need to
be aware of new release features and they gather new
requirements from the customers.

- Development has as main responsibility the
execution of the release plan. The release definition
also includes functional explanation of the product
requirements that serve as input for the functional
and technical design. It may occur that during the
development process new requirements can arise,
due to more complex requirements than was
anticipated.

- Support stands for the helpdesk to answer questions
(1st line support) and for small defect repair unit (2nd
line support). Large defect repair is usually
performed by Development (3rd line support).

- Sales & marketing is the first contact with a potential
customer. Through these contacts new requirements
can be gathered.

The following external stakeholders are recognized [32]:
- The Market is an abstract stakeholder, standing for

potential customers, competitors and analysts, such
as Gartner and Aberdeen. Numerous trends may be
recognizable in the market, either in an explicit way
by one of the market players, or in an implicit way
by product management.

- Most companies have different kinds of Partners: (1)
implementation partners, who implement the product
at a customer; (2) development partners, with whom
product components are developed; and (3)
distribution partners, selling the product.

- Customers often have new feature requests in the
process of closing the deal or during the usage of the
product. These requests can be communicated to

Services, Sales & marketing, Support, but also
directly to the product manager.

Observe that the stakeholder names are generic, so that
naming or grouping may differ in product software
companies. It is obvious that external stakeholders are
harder to be influenced in their operational execution and
decision making, whereas internal stakeholders should act
according to the corporate strategy.

4. Reference framework

 Little scientific literature explicitly addresses the
software product management domain. Only some sub
domains, like requirements engineering (e.g. [36], [38]
and [39]) and release planning (e.g. [11], [28] and [42])
are covered. Vähäniitty [48] found that product portfolio
management is largely overlooked in literature, and if it is
addressed, it does not mention small and medium sized
product software companies. Although software
development is largely addressed it adheres to project-
related development [24]. In this section we provide an
overview of the existing state-of-the-art research on
(software) product management.
 Figure 2 shows the reference framework for software
product management. The framework was developed
after literature research and field interviews with
experienced product managers that were employed at six
product software companies from the Netherlands. The
size of the companies ranges from 75 to 2,700 employees.
 Besides the four process areas, we show the sub
functions of the product management domain the
relations with the internal and external stakeholders. The
elements are connected with information flows, indicated
with arrows. Note that these flows should not be read as a
linear route, but as a continuing, iterative process. In the
remaining of this section, each of the four process areas is
provided with an explanation supported by research
contributions.

4.1. Portfolio management

 Portfolio management covers decision making about
the set of existing products; introducing new products by
looking at market trends and the product development
strategy; making decision about the product lifecycle; and
establishing partnerships and contracts. Product line
management is positioned in this area as well. In [14], a
software product line is defined as a set of software-
intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular
market segment or mission and that are developed from a
common set of core assets in a prescribed way. Several
case studies have shown that introducing product lines
organizations improves performance [8] [9] [44]. They

are most popular in telecommunication organizations
[33], but the last years, also the software industry pays
more and more attention to this topic [1] [4] [14]. Some
research has been done to tool support for product lines.
An example is Laqua [30], who proposes a product line
content & knowledge base on top of arbitrary
configuration management system. Product lifecycle
management is a comprehensive approach for product-
related information and knowledge management within
an enterprise, including planning and controlling of
processes that are required for managing data, documents
and enterprise resources throughout the entire product
lifecycle [1]. This is a key process in decision making
about the product portfolio. Also partnering &
contracting are important issues in product management
[7].
 Portfolio management is placed on top of the
reference framework. It contains the following main
processes: partnering & contracting, market trend
identification, product lifecycle management and product
line identification. The Company board, Market and
Partner companies provide input for this process area.

4.2. Product roadmapping

 Roadmapping is a popular metaphor for planning and
portraying the use of scientific and technological

resources, elements and their structural relationships over
a period of time [47]. It is complex due to dependencies
on other related products (even from partners),
technology changes, and the distributed development
[13]. The origins of roadmapping lie in the manufacturing
industry. Here, is it used for business oriented long-term
planning and technology forecasting [32]. In the product
software industry roadmaps are used for planning
purposes [47]. In [27] the term roadmapping is used in
two perspectives: forecasting and planning. Forecasting
concerns technology or market trends; and planning
concerns products, product lines, resources or the entire
company. We use the definition of [39]: a roadmap is a
document that provides a layout of the product releases to
come over a time frame of three to five years. It is written
in terms of expectations, plans and themes and core assets
[34] of the product.
 As is illustrated in Figure 2, product roadmapping
receives input regarding product lines from portfolio
management. This input is used to identify themes and
core assets. Themes are used give a clear direction to the
roadmap and later on to structure the requirements. Core
assets are components that are shared by multiple
products, for example an authorization function that is
used by multiple software products. All information is
gathered and described in the product roadmap.

Figure 2. Reference framework for software product management

4.3. Requirements management

Requirements management entails the activities of
gathering, identifying and revising incoming
requirements and organizing them by keeping in mind
dependencies, existing core assets, product lines and
themes. Sources are customers, sales and marketing,
development, support, R&D and the company’s
management.
 Requirements management is a key area in product
software companies [12], but [38] already recognized that
requirements engineering for product software is different
than for customized software. In [36], the following core
requirements engineering activities are recognized:
eliciting requirements, modeling and analyzing
requirements, communicating requirements, agreeing
requirements, and evolving requirements. Especially
analyzing requirements costs a lot of time in product
software companies, due to the (often) high requirements
rate, and the different sources of requirements. An
example is the use of linguistic engineering to link
customer wishes to requirements [35]. Another problem
is the integration of a software product with other
systems. Customers cannot expect that all their
requirements are met, which may lead to a software
product that does not integrate with their existing
systems. In [31] several improvements are suggested to
this practice. In [20], the requirements process in 246
industry projects is investigated and the results show that
four techniques improve schedule performance, if used in
parallel: installing of an effective core team for each
product release; focusing on the product-lifecycle on
upstream gate reviews; evaluating requirements from
various perspectives; and assuring a dependable portfolio
and release planning implementation.
 The position of requirements management in the
reference framework is between product roadmapping
and release planning. The process starts with gathering all
requirements from within the company and from external
stakeholders. The requirements gathered and organized
into product requirements. Product requirements are
identified by removing the duplicates, connecting
requirements that describe a similar functionality, and by
rewriting the requirements in understandable product
requirements. Then, the requirements are organized per
product and core asset. Also, the mutual dependencies
between the different product requirements are described.
In [35], a distinction is made between market
requirements, which refer to wishes related to future
products, defined in the customer’s perspective and
context; and business requirements, a product
requirement to be covered by the company’s products,
described in the company’s perspective and context. We
use a similar distinction. However, we make a distinction

between requirements and product requirements.
Requirements refer to all incoming wishes and change
requests. This are not only market requirements, but also
service requirement, board requests, technological drivers
form research & innovation, etc.

4.4 Release planning

 Software release management is the process through
which software is made available to, and obtained by, its
users [25]. Core functions in this process are
requirements prioritizing; release planning; constructing
and validating a release requirements document; and
scope management
Much research has been carried out on the domain of
release planning, where the set of requirements for the
next release is determined. Examples are release planning
using integer linear programming [1], the analytical
hierarchy process [41], stakeholders’ opinions on
requirements importance [40] and linear programming
techniques using requirement interdependencies [11].
More techniques can be found in [2] and [5].
 In the reference framework, release planning starts
with the product requirements prioritization. Not only the
product management is responsible for this, but also the
other stakeholders can influence this process. After the
prioritization, product requirements are selected that will
be implemented in the next release. This can be done in
multiple ways: one can choose the product requirements
with the highest priority or use integer linear
programming to estimate the best set of requirements.
During this process, also the resources have to be applied
in the calculations. When the product requirements are
selected, a release definition is written that is validated by
different stakeholders. A business case is sent to the
company board. When this has been approved by the
board, a launch preparation package is constructed and
sent to the stakeholders.

5. Case study

In finding confirmation for the validity of the identified
context, activities and relations depicted in the reference
framework, we analyzed the conception, development
and launching of a new product at a major Enterprise
Resource Planning (ERP) software vendor during the
period September 2000 to June 2002. The responsible
product manager at this company provided us with all
incoming e-mail traffic regarding this new product as a
source for our analysis. In the mentioned period the
product manager received about 1,200 emails related to
this product, which serve as the source for this case study.

5.1 ERP vendor case

After an organizational repositioning, the management
board of the ERP vendor decided to focus on providing
add-on products, so-called solutions, next to ERP
products. So, from September 2000 onwards, an
integrated procurement product was planned, including
direct materials purchasing, indirect materials purchasing,
e-procurement, e-invoicing and e-kanban (a Just-In-Time
purchasing strategy solution), to be integrated via one
Supplier Trading eXchange (STX). Note that at the start,
some of the functionality was already available in
existing products (e.g. direct materials purchasing in the
ERP-product), while other functionality needed to be
created. Existing and new functionality needed to be
disclosed through STX.
 As for portfolio management, a number of e-mails
represented the assignment of solutions, including the
STX solution. Although the board indicated (based on
market signals) the necessity of solutions, the product
manager verified the need for a specific procurement
solution through industry analysts, important customers
and competitor analysis. Specifically the successful
implementation at Komatsu of a predecessor application
of the STX, i.e. the E-Collaboration tool, encouraged the
product manager to further prepare development of the
STX. In one of the e-mails the product manager was
invited by someone from the ERP vendor’s consultancy
department to attend a knowledge transfer on E-
Collaboration based on of the successful implementation
at Komatsu: “I spoke with Komatsu today just to see how
things are going and to ask permission to access their site
tomorrow for a knowledge transfer session that I am
doing for some of the consulting folks and Sales
Managers; you are most welcome to call-in”. Note that
this particular implementation has been described in a
case study in a separate paper [49].
 A potential partner company was approached to
further enhance functionality regarding the so-called
‘round-trip’ requisitioning (i.e. linking into suppliers’
item catalogues at the suppliers’ websites in order to
purchase goods from suppliers’ sites directly). Integration
between the partner’s product and STX would make this
possible, as one of the e-mails states: “Supplier's product
information is dynamically available through agent
technology in the partner product’s Java code”.
 Regarding product roadmapping, it became clear that
not all topics and themes for an (according to the product
manager) ideal procurement solution through the STX
could be covered in one release. An example was the late
discussion of e-kanban and its incorporation in the future:
in one of the e-mails the product manager asked a
colleague to “provide me with some compelling
arguments why it is good to develop E-Kanban in STX

from the business perspective”. In general, in many e-
mails dealt with themes projection over future anticipated
releases of the STX. This included communication with
the management board of the company.
 Many of the 1,200 e-mails dealt with requirements
management and release definition. A number of detailed
requirements became clear from the previous
implementation at Komatsu. In addition, communication
with the support and consultancy departments provided
other requirements for the STX. At the end of 2000, an
early version of a release definition was communicated
with a number of internal departments, including
marketing & sales, development, and the release
management department. Later on, the architect of the
development department interpreted the requirements in a
functional design document: “Here is the first draft of
functional design document” (e-mail of 9 March 2001).
Subsequent e-mails from the development department
mainly dealt with requirement clarification (“I need
clarification about the off-line purchase in the STX”) and
scope changes (“shouldn’t we support RosettaNet
message exchange?”).
 In cooperation with other departments and associated
country organizations the product manager prepared the
launch of the STX: e.g. a white paper was written on the
product with involvement of marketing and sales (“Sure
thing! I'll make sure this is in the plan and we can work
together to get it done”.).

5.2. Case analysis

 In the case study on STX we note that all main
product management areas (portfolio management,
product roadmapping, requirements management and
release management) were addressed. Some areas and
some topics within each of the areas were more subject in
e-mails than others. For example, product lifecycle
management in portfolio management was not so much
addressed, as it concerned the first releases of STX,
therefore roadmap construction was more extensively
addressed. Also, requirements prioritization and selection
was not addressed extensively, the scope of the STX, and
the list of all requirements was rather small However,
proposed scope increases were weighed carefully in order
to either include or exclude them: the product manager
had to balance between allowing scope creep for
development and satisfying sales & marketing.
 All identified stakeholders in figure 2 were
extensively involved in the communication with the
product manager, even for research & innovation: the
development department prototyped the round-trip
functionality with the STX’s partner product.
 The largest category of all the 1200 e-mails came
from development. This can be explained by the fact that

development took place in another country than the
country of origin of the product manager. Much
communication was through conference calls and e-mails.

6. The Software Product Management
Workbench

 Product management is key to product software
companies and should be addressed and supported well.
Although there are several tools supporting part of the
product management functionality, they do not provide a
coherent and complete set of features dedicated to
software product management. Because there is a need
for an integrated tool to support the product manager, we
propose the software Product Management Workbench.
At the same time, we use this workbench to validate our
reference framework. We use the identified process areas
to outline the architecture of the system.

6.1. Existing support tools

 Several portfolio management support tools exist, e.g.
ProSight’s Application Portfolio Management, supporting
top-down portfolio management solutions for a company,
and UMT’s Portfolio Manager Software Suite, a web-
based application for portfolio management.

 Few support tools for product roadmapping exists.
ReleasePlanner [40] covers part of it. ReleasePlanner is a
web-based system solution to enable intelligent planning,
priority and road-mapping decisions.
 Tools that focus especially on requirements
management are Borland’s CaliberRM for managing
requirements throughout the software delivery process
and IBM’s RequisitePro, a requirements and use case
management tool. ReqSimile [35] is a tool that supports
the linkage process in large-scale requirements
management, by using a linguistic engineering approach.
 Some tools exist in the release planning area. The
Accept 360° platform form Accept Software is a product
planning and delivery solution that addresses the
spectrum of business requirements in all levels of the
organization. ReleasePlanner [40], earlier mentioned in
this section, is a uses integer linear programming and
prioritization of features for purposes of release planning.
This tool focuses on (but is not limited to) software
companies. In the Release Planner Provotype [11] a
selection algorithm is implemented that presents a
number of valid and good release suggestions.

6.2. An integrated solution

 To provide operational support for software product
management, we propose a tool: the Software Product
Management Workbench. As explained further, it
supports portfolio management, product roadmapping,
release planning and requirements management, in an
integrated way.
 The workbench is divided into four main modules, all
intended to aid the product manager with his daily
routines. The four modules are: requirements module,
release planning module, roadmap module, and product
portfolio module, their names corresponding to the
functionality they provide.
 The workbench is designed for different user types.
The product manager is the main user, but there are three
other users that are able to login into the system, all with
their own privileges. These three users are: administrator,
core asset developer, and employee. Product software
companies usually have multiple software products all
furnished with new releases every once in a while. The
main task of the administrator is to start new products or
new product releases. When a new core asset has been
identified, the core asset developer can login into the
system and add this new core asset to the system. In this
way the product manager can use the core asset in
defining a release, and the development team has always
access to information on the latest core assets. An
employee can logon to the system for reading the latest
news of the development progress or report some news
about his work on an upcoming release.

6.3. Architecture

The Software Product Management Workbench is a so-
called enterprise application. Building enterprise
applications is a hard and taunting task [23], because they
deal with a lot of persistent data, concurrent data access,
multiple users with different roles, and are built in a
distributed way. In the workbench the difficulties are
found in the great amounts of requirements that have to
be persistent, different actors that can login into the
system, and more. J2EE is a platform that enables the
easy creation of enterprise applications, since J2EE
handles all the difficult tasks described above for you.
This means that enterprise programmers only have to deal
with programming the business logic. For technical
information of J2EE see [6]. In [43], Szyperski provides a
thorough evaluation of the J2EE platform.
 Figure 3 gives a high level overview of the
architecture. The tool uses two types of clients: a web
client and an application client. Application clients run
on the client machine and offer the ability to perform
heavy calculations on the client machine, without
affecting the server. Enterprise Java Beans (EJB) form
the core of the J2EE platform that makes the life of an

enterprise programmer easier. Two types of EJBs are
used in the architecture, namely entity and session beans.
One entity bean represents one row in a database table (or
a row in the result of a join operation). Two types of
session beans exist, which are stateful and stateless
session beans. A stateful session bean can maintain
conversational state for one client. A stateless session
bean offers its services to multiple clients.

Figure 3. High level architecture

 The response time, the amount of time it takes for the
system to process a request from the outside, is of great
importance [23]. The product manager uses
functionalities of the tool that require a lot of processing
time, so he is the only one able to login into the
application client to execute these calculations. The web
tier handles all the requests generated by the web client
and directs these requests to the controller beans that are
deployed into the EJB tier, which provide coarse grained
access to the entity beans. The application client accesses
the controller beans directly. Note that the web tier and
the EJB tier do not have to reside on the same machine.
 The extendibility of the tool is also an important issue.
As mentioned before there are now four main modules,
but the tool should be able to be extended with minimum
effort to provide other kinds of functionality. Figure 4
shows a small part of the full architecture, but captures
some of the patterns used.

Figure 4. Requirements administrator module

The figure shows part of the requirements module, where
incoming requirements are connected to product
requirements. Remote calls and calls from the web tier to
the EJB tier are relatively very slow, so this number
should be minimized. The system uses transfer objects
that capture as much data that the client possibly wants to
get his hands on, instead of getting one piece of data at

the time at the cost of one remote call every time. The
different components of the system have to be located
with so called “look-ups”. It is efficient to extract this
code from all the components and put all the look-up
code in a service locator object. In this way, references to
components can be cached for other components that may
need a reference to that component, minimizing the look-
ups. There is no tight coupling between the components,
which makes the tool easy to change. If for example the
presentation logic has to be adapted, only the view has to
be changed leaving the other components unharmed.

6.4. Prototype

 Figure 5 shows a screenshot of the prototype of the
Software Product Management Workbench. It shows the
requirements window, in which the product manager can
link requirements with product requirements that refer to
the same functionality [35]. At the top of the screen, a list
of product requirements is depicted. A product
requirement can be selected in order to find matching
requirements from the requirements list at the bottom of
the screen. After the system has found all the possible
candidates, the requirements are displayed together with
the source, similarity ratio and the option to link this
requirement to a product requirement. When the preferred
requirements are selected, the linkage can be saved.

7. Conclusions and further research

In this article we discussed the difference between
product management and software product management,
and the need for operational support for the latter. By
performing field interviews and discussions with product
managers and by doing a literature review on (software)
product management, we developed a reference
framework for software product management.
Furthermore, we provided an overview of state-of-the-art
literature on software product management. By carrying
out a case study, we found confirmation of the validity of
the identified context, processes and relations in the
reference framework for software product management.
Finally, we proposed the Software Product Management
Workbench, which integrates several software product
management areas. This workbench is currently being
developed. When it is finished, several industrial case
studies will be performed to test the functionality.
 We are convinced that the software product
management reference framework is a first step to
position this important industrial domain in the field of
scientific research on software product management. In
the future, we hope to contribute to further refinements of
the reference framework and to its application in various
domains.

Figure 5. Screenshot of the Software Product Management Workbench

References

[1] M. Abramovici and O.C. Soeg, Status and Development

Trends of Product Lifecycle Management Systems, Ruhr-
University Bochum, Chair of IT in Mechanical
Engineering (ITM), Germany, 2002.

[2] M. van den Akker, S. Brinkkemper, G. van Diepen, and J.
Versendaal, “Flexible Release Planning Using Integer
Linear Programming”, Proceedings of the 11th
International Workshop on Requirements Engineering for
Software Quality (REFSQ'05), 13-14 June 2005, Porto,
Portugal, Essener Informatik Beitrage, Band 10.

[3] D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns,
Prentice Hall PTR, 2001.

[4] M. Ardis, N. Daley, D.M. Hoffman, H. Siy, and D. Weiss,
“Software Product Lines: a Case Study”, Software -
Practice and Experience, 2000, vol. 30, no. 7, John Wiley
& Sons, Ltd, New York, pp. 825–847.

[5] P. Berander and A. Andrews, “Requirements
Prioritization”, Engineering and Managing Software
Requirements, A. Aurum and C. Wohlin (eds.), Springer
Verlag, Berlin, Germany, 2005, pp. 69-94.

[6] S. Bodoff, D. Green, K. Haase, E. Jendrock, M. Pawlan,
and B. Stearns, The J2EE Tutorial, Addison Wesley
Professional, Boston, MA, 2002.

[7] A. Bonaccorsi and A. Lipparini, “Strategic Partnerships in
New Product Development: An Italian Case Study”,
Journal of Production Innovation Management vol. 11,
no. 2, 1994, pp. 134–145.

[8] J. Bosch, “Product-Line Architectures in Industry: A Case
Study,” ICSE Proceedings, Los Angeles, CA, 1999, pp.
544-554.

[9] L. Brownsword, P. Clements, A Case Study in Successful
Product Line Development, Technical Report CMU/SEI-
96-TR-016, Carnegie Mellon, 1996.

[10] P. Bourque and R. Dupuis, (ed.), Guide to the Software
Engineering Body of Knowledge, 2004 edition, IEEE
Computer Society, Los Alamitos, California, USA, 2004.

[11] P. Carlshamare, “Release Planning in Market-Driven
Software Product Development Provoking and
Understanding”, Requirements Engineering, vol. 7, no. 3,
Springer, London, 2002, pp. 139-151.

[12] P. Carlshamre, B. Regnell, "Requirements Lifecycle
Management and Release Planning in Market-Driven
Requirements Engineering Processes", 11th International
Workshop on Database and Expert Systems Applications
(DEXA'00), 2000, p. 961.

[13] E. Carmel, Global Software Teams, Prentice Hall: Upper
Saddle River, NK, 1999.

[14] P. Clements and L. Northrop, Software Product Lines:
Patterns and Practice. Reading, MA: Addison Wesley,
Boston, MA, 2001.

[15] D. Condon, Software Product Management, Aspatore
Books, Boston, MA, 2002.

[16] R.G. Cooper, S.J. Edgett, and E.J. Kleinschmidt,
“Portfolio Management for New Product Development:
Results of an Industry Practices Study”, R&D
Management, vol. 31, no. 4, 2001, pp. 361-380.

[17] M.A. Cusomano, The Business of Software, Free Press:
New York, 2004

[18] M.A. Cusumano and R.W. Selby, Microsoft Secrets,
Simon and Schuster, New York, 1995.

[19] A.S. Dver, Software Product Management Essentials,
Anclote Press, 2003.

[20] C. Ebert, “Understanding the Product Lifecycle: Four
Key Requirements Engineering Techniques”, IEEE
Software, vol. 23, no. 3, 2006, pp. 19-25.

[21] C. Ebert and J. De Man, “e-R&D – Effectively Managing
Process Diversity”, Annals of Software Engineering, vol.
14, no. 1, 2002, pp. 73 – 91.

[22] C. Ebert and M. Smouts, “Tricks and Traps of Initiating a
Product Line Concept in Existing Products” Proceedings
of the 25th International Conference on Software
Engineering (ICSE '03), IEEE Comp. Soc., Portland,
Oregon, USA, pp. 520-525.

[23] M. Fowler, Patterns of Enterprise Application
Architecture. Addison-Wesley, Boston, MA, USA, 2003.

[24] R.L. Glass, I. Vessey, and V. Ramesh, “Research in
Software Engineering: an Analysis of the Literature”,
Information and Software Technology, no. 44 2002, pp.
491–506.

[25] A. van der Hoek, “Software release management”,
Proceedings of the Sixth European Software Engineering
Conference together with the Fifth ACM SIGSOFT
Symposium on the Foundations of Software Engineering.
Springer: Heidelberg, Germany, 1997, pp. 159–175.

[26] Information Technology - Open Systems Interconnection
- Basic Reference Model: The Basic Model. International
Standard, ISO/IEC 7498-1. 2nd ed. Geneva: ISO, 1994.

[27] T. Kappel, "Perspectives on Roadmaps: How
Organisations Talk about the Future", IEEE Engineering
Management Review, vol. 29, no. 3, 2001, pp. 36-48.

[28] J. Karlsson and K. Ryan, “A Cost-Value Approach for
Prioritizing Requirements”, IEEE Software, vol. 14, no.
5, 1997, pp. 67-74.

[29] T. Kilpi, “Product Management Challenge to Software
Change Process: Preliminary Results from Three SMEs
Experiments”, Software Process - Improvement and
Practice, vol. 3, no. 3, 1997, pp. 165-175.

[30] R. Laqua, “Concepts for a Product Line Knowledge Base
& Variability”, Proceedings of NetObjectDays 2002,
October, 2002, pp. 30-39.

[31] S. Lauesen, "COTS Tenders and Integration
Requirements", 12th IEEE International Requirements
Engineering Conference (RE'04), 2004, pp. 166-175.

[32] L. Lehtola, M. Kauppinen, M., and S. Kujala, ”Linking
the Business View to Requirements Engineering: Long-
Term Product Planning by Roadmapping”, Proceedings
of the 13th IEEE international Conference on
Requirements Engineering (Re'05). IEEE Computer
Society, 2005, pp. 439-446.

[33] J. de Man and C. Ebert, “A Common Product Life Cycle
in Global Software Development”, Eleventh Annual
International Workshop on Software Technology and
Engineering Practice, 2003, pp. 16-21

[34] M. Moon and K. Yeom, “An Approach to Develop
Requirement as a Core Asset in Product Line”, Lecture
Notes in Computer Science, no. 3107, 2004, pp. 23 – 34.

[35] J. Natt och Dag, V. Gervasi, S. Brinkkemper, and B.
Regnell, “A Linguistic-Engineering Approach to Large-

Scale Requirements Management” IEEE Software, vol.
22, no. 1, 2005, pp. 32-39.

[36] B. Nuseibeh and S. Easterbrook, “Requirements
Engineering: A Roadmap”, The Future of Software
Engineering, A. Finkelstein (ed.), ACM Press: New York,
2000, pp. 37-46.

[37] PMBOK, A Guide to the Project Management Body of
Knowledge, first ed., Project Management Institute,
Pennsylvania USA, 2000.

[38] C. Potts, "Invented Requirements and Imagined
Customers: Requirements Engineering for Off-the-Shelf
Software," Second IEEE International Symposium on
Requirements Engineering (RE'95), 1995, p. 128.

[39] B. Regnell and S. Brinkkemper, “Market-Driven
Requirements Engineering for Software Products”,
Engineering and Managing Software Requirements, A.
Aurum and C. Wohlin (eds.), Berlin, Germany, Springer
Verlag, 2005, pp 287-308.

[40] G. Ruhe and M.O. Saliu, “The Art and Science of
Software Release Planning”, IEEE Software, vol. 22, no.
6, 2005, pp. 47-53.

[41] T.L. Saaty, The Analytic Hierarchy Process, McGraw-
Hill, New York, NY, 1980.

[42] M.O. Saliu and G. Ruhe, "Supporting Software Release
Planning Decisions for Evolving Systems," 29th Annual
IEEE/NASA Software Engineering Workshop, 2005, pp.
14-26.

[43] C. Szyperski, Component Software: Beyond Object-
Oriented Programming, 2nd ed., ACM Press and
Addison-Wesley, 2002

[44] S. Thiel, S. Ferber, T. Fischer, A. Hein, and M. Schlick,,
“A Case study in Applying a Product Line Approach for
Car Periphery Supervision Systems”, Proceedings of In-
Vehicle Software, SAE 2001 World Congress SP-1587,
Detroit, Michigan, USA, 2001, pp. 43-55.

[45] D. Tsichritzis and A. Klug, “The ANSI/X3/SPARC
DBMS Framework Report of the Study Group on
Database Management Systems”, Information Systems,
vol. 1, 1978, pp. 173–191.

[46] S. Unger, “Ten Marketing Challenges that Can Make or
Break your Business… and How to Address Them”,
Productmarketing.com, vol. 1, no. 1, 2003.

[47] J. Vähäniitty, C. Lassenius, and K. Rautiainen, "An
Approach to Product Roadmapping in Small Software
Product Businesses", Quality Connection - 7th European
Conference on Software Quality (ECSQ2002),
Conference Notes, Center for Excellence Finland,
Helsinki, Finland, 2002, pp. 12-13

[48] J. Vahaniitty and K. Rautiainen, "Towards an Approach
for Managing the Development Portfolio in Small
Product-Oriented Software Companies”, Proceedings of
the 38th Annual Hawaii International Conference on
System Sciences (HICSS'05), 2005, p. 314.

[49] J.M. Versendaal and S. Brinkkemper, “Benefits and
Success Factors of Buyer-Owned Electronic Trading
Exchanges: Procurement at Komatsu America
Corporation”, Journal of Information Technology Cases
and Applications, vol. 5, no. 4, 2003, pp. 39-52.

