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Abstract We examine the Delta set of a cancellative and reduced atomic monoid S where every set of lengths
of the factorizations of each element in S is bounded. In particular, we show the connection between the
elements of �(S) and the Betti elements of S. We prove how the minimum and maximum element of �(S)
can be determined using the Betti elements of S. This leads to a determination of when �(S) is a singleton.
We then apply these results to the particular case where S is a numerical monoid that requires three generators.
Conclusions are drawn in the cases where S has a unique minimal presentation, or has multiplicity three.
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1 Introduction

Recently, several papers describing the invariants of non-unique factorizations for finitely generated com-
mutative cancellative monoids have appeared in the literature. Many of these papers have a special empha-
sis on numerical monoids. For example, [8] examined properties related to the elasticity of a numerical
monoid. Moreover, the papers [2,5,9–11] all consider properties related to the Delta set (or �(S)) of a numer-
ical monoid S. In particular, the results of [5] indicate that even if S is 3-generated, then the structure of �(S)
may be extremely complex (see for example, [5, Corollary 4.8 and Proposition 4.9]). In this note, we prove
some general structure theorems for �(S) when S is a reduced BF-monoid. Recall that S is a reduced BF-mo-
noid if the only unit in S is its identity element, S is commutative and cancellative, and for every s ∈ S the
set of lengths of its possible factorizations is bounded. We note that the reduced assumption is not necessary,
since one can always remove the units of S and consider Sred instead of S (see [14] for details). We then apply
these results specifically to the case where S is a numerical monoid that requires three generators. This is
reasonable, as several papers relating to algebraic properties of 3-generated numerical monoids have recently
appeared in the literature (see [21, Chapter 9] and the references therein).

We present our results in three additional sections. In Sect. 2, we prove two structure theorems for the Delta
set, and show connection between the elements of �(S) and the Betti elements of S. We give explicit formulas
for the minimum and maximum of �(S). Thus we are able to determine when �(S) is a singleton. Conclusions
are drawn in Sect. 3 in the case where S has a unique minimal presentation. We then apply these results in
Sect. 4 to the particular case where S is a 3-generated numerical monoid. We consider the pseudo-symmetric,
symmetric, and multiplicity 3 cases. We believe our results are of interest, as they not only improve several
results from [5], but they approach these problems in a much different manner using Betti elements.

We open with some notation and definitions. Let N0 represent the natural numbers including 0. Throughout
our work, we assume that all monoids are commutative, cancellative, reduced, atomic, and the set of lengths
of the factorizations of every element is bounded. For known results concerning non-unique factorizations in
such monoids, the interested reader is directed to the monograph [14]. For such a monoid S, there exists a set
of atoms, denoted A(S), such that every x ∈ S can be written in the form

x = c1n1 + · · · + ct nt , (*)

for some c1, . . . , ct ∈ N0, n1, . . . , nt ∈ A(S).
We focus on the representations of elements of S in the form (*). Given x ∈ S with x �= 0, set

L(x) =
⎧
⎨

⎩

∑

a∈A(S)

ca

∣
∣
∣
∣
∣
∣

x =
∑

a∈A(S)

cana, ca ∈ N and na ∈ A(S), for all a

⎫
⎬

⎭

which is known as the set of lengths of x in S. We are assuming that this set of lengths is bounded, and so L(x)
is of the form {m1, m2, . . . , mk} for some positive integers m1 < m2 < · · · < mk . The set

�(x) = {mi − mi−1 | 2 ≤ i ≤ k}
is known as the Delta set of x . We globalize the notion of the Delta set by setting

�(S) =
⋃

x �=0 in S

�(x).

By a fundamental result of Geroldinger [14, Proposition 1.4.4], if d = gcd �(S) and |�(S)| < ∞, then

{d} ⊆ �(S) ⊆ {d, 2d, . . . , kd}
for some k ∈ N. The study of Delta sets in the class of arithmetic congruence monoids can be found in [3].
A summary of known results involving properties of Delta sets can be found in [14, Section 6.7].

If S is an additive submonoid of N0, then S is called a numerical monoid. It follows from elementary
number theory that S is finitely generated. If {n1, . . . , ne} is a set of generators for S, then this is commonly
denoted by S = 〈n1, . . . , ne〉. It also follows using basic techniques that the minimal generating set for S
is unique. Unless otherwise noted, when dealing with a numerical monoid written as S = 〈n1, . . . , nk〉, we
assume that {n1, . . . , nk} is the minimal generating set for S. In a numerical monoid, 0 is the unique unit. A
numerical monoid S = 〈n1, . . . , nk〉 is primitive if gcd{n1, . . . , nk} = 1. Clearly every numerical monoid is
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isomorphic to a primitive numerical monoid, hence we narrow our study to the primitive case (the interested
reader is referred to [21] for more details on numerical monoids).

The following previously known results when S is a numerical monoid were the starting point of our work.

Theorem 1.1 (1) If S = 〈n1, . . . , nk〉 is a primitive numerical monoid, then min �(S) = gcd{ni − ni−1 |
2 ≤ i ≤ k} = gcd �(S)( [5, Proposition 2.9]).

(2) If S = 〈n, n + k, . . . , n + tk〉 where n > 1 and t, k ≥ 1, then �(S) = {k}([5, Proposition 3.9] or [2,
Corollary 2.3]).

Moreover, if S = 〈n1, n2, n3〉 is primitive and minimally generated, then [11, Theorem 3.1] provides a method
for computing max �(S) in terms of certain relations between the generators n1, n2 and n3.

2 Betti elements and Delta sets

Let S be a BF-monoid, and let Z(S) = F(A(S)) the free monoid on the atoms of S. The unique monoid map
πS : Z(S) → S that maps every a ∈ A(S) to a ∈ S is sometimes known as the factorization homomorphism
associated to S. For every s ∈ S, the set Z(s) = π−1

S (s) is the set of factorizations of s.
Let ∼S be the kernel congruence of πS , i.e., x ∼S y if πS(x) = πS(y), or equivalently, x and y are

factorizations of the same element in S (∼S is actually a congruence). It follows easily that S is isomorphic to
the monoid Z(S)/ ∼S .

For u = ∑
a∈A(S) uaa and v = ∑

a∈A(S) vaa ∈ Z(S), set gcd{u, v} = ∑
a∈A(S) min{ua, va}a (this plays

the role of the greatest common divisor, but with additive notation).
Given s ∈ S, we define the following binary relation on Z(s). For x, y ∈ Z(s), xRy if there exists a chain

x1, . . . , xk ∈ Z(s) such that

(1) x1 = x, xk = y,
(2) gcd{xi , xi+1} �= 0, i ∈ {0, . . . , k − 1}.

An element s ∈ S is said to be a Betti element if Z(s) has more than one R−class (see [12]). Observe
that there are finitely many Betti elements in S if S is finitely presented. The set of Betti elements of S will be
denoted by Betti(S). In the finitely generated case, Betti elements are tightly related to the Betti numbers of
the minimal free resolution of the semigroup ring K [S], with K a field (see for instance [6]), and the elements
used to construct a minimal presentation for S (we will address later).

Given x = ∑
a∈A(S) xaa a factorization of n ∈ S, set |x | = ∑

a∈A(S) xa . Clearly, if q(Z(S)) is the group
generated by Z(S), we can extend | · | : q(Z(S)) → Z, and it is a linear map (Z denotes the set of integers). With
this notation L(n) = {|x | : x ∈ Z(n)}. Recall that we are assuming that this set has finitely many elements.

The following result states that one can go from one factorization to another of the same element, just using
the factorizations of the Betti elements. The idea of the proof is inspired by [20, Proposition 9.3].

Lemma 2.1 Let s ∈ S and x, y ∈ Z(s). Then there exists z1, . . . , zt ∈ Z(s) such that

• z1 = x, zt = y,
• for all i ∈ {1, . . . , t −1}, (zi , zi+1) = (ai +ci , bi +ci ) for some ci ∈ Z(S) and ai not in the same R−class

as bi (and thus ai and bi are factorizations of a Betti element of S).

Proof If x and y are not in the same R−class, then we are done. So assume that x and y are R related, and
let us proceed by induction on maxL(s) (if maxL(s) = 1, then s is an atom, and x = y). By definition there
exists x1, . . . , xk ∈ Z(s) such that x1 = x , xk = y and di = gcd{xi , xi+1} �= 0 for all i ∈ {1, . . . , k − 1}. Set
ui = xi −di and vi = xi+1−di . Notice that ui ∼S vi , and if we define si = πS(ui ), then maxL(si ) < maxL(s).
If ui , vi are in the same R-class, then by the induction hypothesis there exists zi1, . . . , zit (i) such that zi1 = ui ,
zit (i) = vi , and (zi j , zi j+1) = (ai j + ki j , bi j + ki j ) for some ki j ∈ Z(S) and ai j , bi j in different R-classes. Set
ci j = di + ki j . If ui , vi are in different R-classes, then set ai1 = ui , bi1 = vi and ci1 = di . By putting all these
sequences together, we obtain the z1, . . . , zt of the statement. �

Remark 2.2 The above lemma, and thus the whole paper, can be stated in the more general setting of monoids
with the ascending chain condition for principal ideals (see [14, Definition 1.1.3]). This condition is equivalent
to saying that every descending divisor sequence is stationary. Observe that si “divides” s(s − si ∈ S). Hence,
we can repeat the process for si and because of the descending divisor sequence condition, this procedure must
end after a finite number of steps. Notice that by [14, Proposition 1.1.4] these monoids are always atomic.

123



56 Arab J Math (2012) 1:53–61

Proposition 2.3 Let S be a BF-monoid and let s ∈ S. For every x, y ∈ Z(s), |x | − |y| is of the form

λ1δ1 + · · · + λtδt ,

for some integers λ1, . . . , λt , and δi = ∣
∣|ai | − |bi |

∣
∣ with ai and bi factorizations of a Betti element in different

R−classes. In particular, every element in �(S) is of this form.

Proof As x ∼S y, by Lemma 2.1, there exits a chain x1 = x, . . . , xs = y with (xi , xi+1) = (ai + ci , bi + ci ),
for some ci ∈ Z(S) and ai , bi non-R-related factorizations of a Betti element. Thus

|x − y| = |x1 − x2 + x2 − · · · − xs−1 + xs−1 − xs | =
∑

|ai − bi |,
and the proof follows easily. �

Corollary 2.4 Let S be a BF-monoid. Then

min �(S) = gcd{|a − b| : a ∼S b, a, b in different R − classes}.
Proof Let d = min �(S) and d ′ = gcd{|a −b| : a ∼S b, a, b in different R−classes}. In light of Proposition
2.3, d = λ1δ1 + · · · + λtδt for some integers λ1, . . . , λt and δi = |ai − bi |, with ai ∼S bi and in different
R−classes. Hence, d ′ divides d . By [17, Proposition 14], d = gcd{|a − b| : (a, b) ∈ A(∼S)}, and according
to the proof of [17, Proposition 16], if a ∼S b, and a and b are not in the same R−class, then (a, b) ∈ A(∼S).
Thus d divides d ′, and this concludes the proof. �

Theorem 2.5 If S is a BF-monoid with 0 < #�(S) < ∞, then

max �(S) = maxn∈Betti(S)(max �(n)).

Proof The inequality maxn∈Betti(S)(max �(n)) ≤ max �(S) is clear, so let us focus on the other direction.
Assume to the contrary that max �(S) > max �(n) for all Betti elements n of S. As above, take x, y to
be factorizations of an element s ∈ S so that |y| − |x | = max �(S), and consequently no other factor-
ization z of s fulfills |x | < |z| < |y|. As x ∼S y, let x1, . . . , xv be in Z(s) such that x = x1, xv = y
and (xi , xi+1) = (ai + ci , bi + ci ), with ci ∈ Z(S), and ai ∼S bi and ai , bi in different R−classes for
all i ∈ {1, . . . , v − 1}. Since |x1| = |x | and |xv| = |y|, and no |xi | lies between |x | and |y|, there exists
i ∈ {1, . . . , v − 1}, such that |xi | ≤ |x | < |y| ≤ |xi+1|. Both ai and bi are factorizations of an element n
with Z(n) having more than one R-class. So there is a chain of factorizations, say z1, . . . , zu , of n such that
ai = z1, . . . , zu = bi , and |z j+1|−|z j | ≤ max �(n), which we are assuming to be smaller than max �(S). But
then z j + ci ∼S x ∼S y for all j , and from the choice of x and y, there is no j such that |x | < |z j + ci | < |y|.
Again, we can find j ∈ {1, . . . , u − 1} such that |z j + ci | ≤ |x | < |y| ≤ |z j+1 + ci |. This leads to a
contradiction, since max �(S) = |y|− |x | ≤ |z j+1 + ci |− |z j + ci | = |z j+1 − z j | ≤ max �(n) < max �(S).

�

With this Theorem we get an easy characterization of finitely generated monoids with a singleton set of

distances.

Corollary 2.6 The set �(S) �= ∅ is a singleton if and only if
⋃

n∈Betti(S) �(n) is a singleton.

Observe that numerical monoids are never half factorial (the set of lengths of its elements are singletons),
hence there is always a minimal relation (a, b) ∈ σ with |a| �= |b|, and so �(πS(a)) is not empty.

3 Finitely generated monoids having a unique minimal presentation

Let S be a monoid minimally generated by {n1, . . . , ne}. Given σ ⊆ Z(S) × Z(S), the congruence generated
by σ is the least congruence containing σ . If ∼S is the congruence generated by σ , then we say that σ is a
presentation of S. Rédei’s theorem (see [18]) precisely states that every finitely generated monoid is finitely
presented. A presentation for S is a minimal presentation if none of its proper subsets generates ∼S . In our
setting, all minimal presentations have the same cardinality. Next we briefly describe a procedure for finding
all minimal presentations for S as presented in [20, Chapter 9].
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For every s ∈ S, define σs in the following way.

• If Z(s) has one R−class, then set σs = ∅.
• Otherwise, letR1, . . . ,Rk be the differentR−classes of Z(s). Choose any ai ∈ Ri for all i ∈ {1, . . . , k} and

set σs to be any set of k−1 pairs of elements in V = {a1, . . . , ak} so that any two elements in V are connected
by a sequence of pairs in σs (or their symmetrics). For instance, we can choose σs = {(a1, a2), . . . , (a1, ak)}.

Then σ = ⋃
s∈S σs is a minimal presentation of S. Moreover, in this way one can construct all minimal

presentations for S.
We say that S has a unique minimal presentation if for any other minimal presentation σ ′, and any relator

(a, b) ∈ σ ′, then either (a, b) ∈ σ or (b, a) ∈ σ (i.e., σ is unique up to rearrangement of the components of
its relators). Monoids having a unique minimal presentation have drawn the attention of many researchers in
the last decade (see for instance [12]).

Corollary 3.1 Assume that S is uniquely presented with �(S) �= ∅, and that its unique minimal presentation
is {(a1, b1), . . . , (at , bt )}. If we set δi = ∣

∣|ai | − |bi |
∣
∣, then

min �(S) = gcd{δ1, . . . , δt } and max �(S) = max{δ1, . . . , δt }.
Moreover, �(S) is a singleton if and only if {0} �= {δ1, . . . , δt } ⊆ {0, gcd{δ1, . . . , δt }}.

Proof The first equality follows from Corollary 2.4, since every element with more than one R−class has only
two factorizations, and these occur in the minimal presentation of S.

As a consequence of [12, Corollaries 5 and 6], every Betti element in S has just two factorizations (and
each is in a different R−class). Hence, Betti(S) = {s1, . . . , st } and for all i ∈ {1, . . . , t}, Z(si ) = {ai , bi }.
This, in particular, means that �(si ) ⊆ {δi }, for all i , and max �(S) = max{δ1, . . . , δt }. Clearly, �(S) is a
singleton if and only if {0} �= {δ1, . . . , δt } ⊆ {0, gcd{δ1, . . . , δt }} (notice that by [22, Proposition 22], not all
δi can be zero). �


We now recall the definition of another invariant that is tightly related to max �(S). If s ∈ S, z, z′ ∈ Z(s),
and N is a non-negative integer, then an N-chain of factorizations from z to z′ is a sequence z0, . . . , zk ∈ Z(s)
such that z0 = z, zk = z′ and max{|zi − di |, |zi+1 − di |) ≤ N for all i , and di = gcd(zi , zi+1). The catenary
degree of S, c(S), is the minimal N ∈ N0 ∪{∞} such that for any s ∈ S and any two factorizations z, z′ ∈ Z(s),
there is an N -chain from z to z′. It is well known ([14, Proposition 1.6.3]) that

sup �(S) + 2 ≤ c(S).

Observe also that if S is a uniquely presented finitely generated monoid, then as a consequence of [7, Theorem
3.1]

c(S) = max{max{|ai |, |bi |} : i ∈ {1, . . . , t}}.

4 Embedding dimension three numerical monoids

Let us recall some basic facts concerning numerical monoids in general. Define

T(S) = {g ∈ Z \ S | g + S\{0} ⊆ S}.
The cardinality of this set is the type of S. Observe that the largest integer not belonging to S, its Frobenius
number denoted by F(S), is always in T(S) (recall that we are assuming that S is primitive, and thus N \ S is
always finite). Numerical monoids of type one are symmetric (or equivalently, the cardinality of N \ S equals
F(S)+1

2 ; see [21] for more details), and numerical monoids with T(S) = {F(S), F(S)/2} are called pseudo-
symmetric. For an element n ∈ S, define its Apéry set as Ap(S, n) = {s ∈ S | s − n �∈ S}. This set contains
exactly n elements, each being the minimum in its congruence class modulo n.

We now restrict to embedding dimension three numerical monoids. In this setting, minimal presentations
either have cardinality two or three, and the shape of these presentations are well known (see for instance [21,
Chapter 9]). Numerical monoids having just a couple of relations are complete intersections (both free and
symmetric). We show that the sets of distances can be easily described in this setting.
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4.1 Generic case, embedding dimension three

Let S be an embedding dimension three numerical monoid. Assume that {n1 < n2 < n3} is its set of minimal
generators, and that S is not symmetric. Let ci , ri j be as in [21, Example 8.23], i.e.,

ci ni = ri j n j + riknk,

with {i, j, k} = {1, 2, 3} and ci = min{k ∈ N \ {0} | kni ∈ 〈n j , nk〉}. As S is not symmetric, we have ri j > 0
(see [15] or [21, Chapter 9]). Moreover, this presentation is generic in the sense of Peeva and Sturmfels [16],
and thus S is uniquely presented. In other words, ri j are unique (see for instance [4, Proposition 5.5]). This,
in particular, means that ri j ≤ ci for all i, j . Hence, we can copy/paste [21, Lemma 10.19] and obtain that for
{i, j, k} = {1, 2, 3},

ci = r ji + rki .

Hence, we always have that

(c1, −r12, −r13) + (−r21, c2, −r23) + (−r31, −r32, c3) = (0, 0, 0). (1)

Observe that

σ = {((c1, 0, 0), (0, r12, r13)), ((0, c2, 0), (r21, 0, r23)), ((0, 0, c3), (r31, r32, 0))}
is the (unique) minimal presentation of S.

In our setting, δi = |ci − (ri j + rik)| for {i, j, k} = {1, 2, 3}. Thus δ1 = c1 − r12 − r13 is a positive integer
(c1n1 = r12n2 + r13n3 > r12n1 + r13n1), δ2 = |c2 − r21 − r23| = |δ1 − δ3|, and δ3 = r31 + r32 − c3 > 0.
Hence, Proposition 2.3 implies that every element in �(S) is of the form

λ1δ1 + λ2δ2.

We already know from Corollary 3.1 that max �(S) = max{δ1, δ2, δ3}, and as δ2 = |δ1 − δ3|, we obtain

max �(S) = max{δ1, δ3}.
Observe that �(c1n1) = {δ1}, �(c3n3) = {δ3}, and either �(c2n2) = ∅ (when δ2 = 0) or �(c2n2) = {δ2} (if
δ2 �= 0). Hence, �(S) = {d} if and only if δ1 = δ3 = d and δ2 = 0, or equivalently, δ2 = 0. Thus, �(S) is a
singleton if and only if δ2 = 0.

Notice that if �(S) is a singleton, then

n1 = r12(n2 − n1) + r13(n3 − n1)

d
, n3 = r31(n3 − n1) + r32(n3 − n2)

d
.

As we mentioned above, c(S) = max{c1, r12 + r13, c2, r21 + r23, c3, r31 + r32} (and also equal to t(S), the
tame degree of S, and ω(S), the ω-primality of S; see [4] for details). Since c1 > r12 + r13 and c3 < r31 + r32,
this maximum is max{c1, c2, r21 + r23, r31 + r32}. See [1] for a different approach to the computation of the
catenary degree of embedding dimension three numerical semigroups.

4.2 Pseudo-symmetric case

This is a subcase of the generic case. According to [21, Proposition 10.13], the minimal generators of S can
be arranged so that

c1n1 = (c2 − 1)n2 + n3,
c2n2 = (c3 − 1)n3 + n1,
c3n3 = (c1 − 1)n1 + n2,

and a minimal presentation (actually the unique minimal presentation) of S is

σ = {((c1, 0, 0), (0, c2 − 1, 1)), ((0, c2, 0), (1, 0, c3 − 1)), ((0, 0, c3), (c1 − 1, 1, 0))}.
With this we obtain the following.
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Theorem 4.1 Let S = 〈n1, n2, n3〉 be an embedding dimension three pseudo-symmetric numerical monoid.
For every {i, j, k} = {1, 2, 3} define ci = min{k ∈ N \ {0} | kni ∈ 〈n j , nk〉}. Then

max �(S) = max{|ci − c j | | 1 ≤ i < j ≤ 3},
and �(S) is a singleton if and only if {|ci − c j | | 1 ≤ i < j ≤ 3} = {0, d}.

In this setting c(S) = t(S) = ω(S) = max{c1, c2, c3}.
Recall that max �(S)+2 ≤ c(S) (in our scope the supremum in [14, Theorem 1.6.3] becomes a maximum).

Let us see when the equality max �(S) + 2 = c(S) holds for an embedding dimension three pseudo-sym-
metric numerical semigroup. Assume that c1 ≥ c2 ≥ c3 (the rest of cases are studied analogously). Then
c(S) = c1 = max{c1 − c2, c1 − c3, c2 − c3} + 2. Hence, c1 ∈ {c1 − c2 + 2, c1 − c3 + 2, c2 − c3 + 2}.
• Observe that if c1 = c2 − c3 + 2, then c1 + c3 = c2 + 2. As min{c1, c2, c3} ≥ 2, since {n1, n2, n3} is a

minimal system of generators, we get that c1 + c3 = c2 + 2 if and only if c1 = c2; c3 = 2.
• If c1 = c1 − c2 + 2, then we get c2 = 2, which forces c3 to be also equal to 2.
• Finally, if c1 = c1 − c3 + 2, then we obtain c3 = 2.

Hence, if max �(S)+2 = c(S), then c3 = 2. Using [21, Corollary 10.15], we obtain that n1 = c3(c2−1)+1,
n2 = c1(c3 − 1) + 1, and n3 = c2(c1 − 1) + 1. Thus,

S = 〈2c2 − 1, c1 + 1, c2(c1 − 1) + 1〉,
with c1 ≥ c2 ≥ 2. Notice that if in addition c2 = 2, then n1 = 3 (these semigroups are studied in the last
section). The reader is referred to [13, Corollary 4.3] for other families of monoids for which the equality
max �(S) + 2 = c(S) holds.

4.3 Symmetric case, embedding dimension three

Let S be an embedding dimension three symmetric numerical monoid (and thus a free and complete inter-
section). According to [21, Theorem 10.6], S = 〈am1, am2, bm1 + cm2〉, for some non-negative integers
m1, m2, a, b, c such that

• a ≥ 2, b + c ≥ 2,
• gcd{m1, m2} = 1 = gcd{a, bm1 + cm2}.
A minimal presentation for S (uniqueness is only granted when 0 < b < m2 and 0 < c < m1, see [12,
Theorem 17]) is

σ = {((m2, 0, 0), (0, m1, 0)), ((0, 0, a), (b, c, 0))}.
Assume without loss of generality that m1 < m2. Hence, δ1 = m2 − m1 > 0 and δ2 = |a − b − c|.

Notice that the set of factorizations of m1m2 is {(m2, 0, 0), (0, m1, 0)} and that if r and s are non-negative
integers such that rm1 ≤ c, (r + 1)m1 > c, sm2 ≤ b and (s + 1)m2 > b, then the set of factorizations of
a(bm1 + cm2) is

{(0, 0, a), (b − sm2, c + sm1, 0), . . . , (b − m2, c + m1, 0), (b, c, 0),

(b + m2, c − m1, 0), . . . , (b + rm2, c − rm1, 0)}.
The set of lengths of a(bm1 + bm2) is {a, b + c − s(m2 − m1), . . . , b + c, . . . , b + c + r(m2 − m1)}. If
�(S) = {d}, then m2 − m1 = d , and either

• a < b + c − sd and b + c − sd − a = d (equivalently, a = b + c − (s + 1)d), or
• a = b + c + kd for some k ∈ {−s, . . . , r}, or
• b + c + rd < a and a − b − c − rd = d (equivalently, a = b + c + (r + 1)d).

Observe that the converse is also true. That is, �(S) is a singleton if and only if m2−m1 = d and a = b+c+kd
for some k ∈ {−s − 1, . . . , r + 1}.

Notice also that if b + c − s(m2 − m1) − a > m2 − m1, then max �(S) = b + c − s(m2 − m1) − a, and
if a − (b + c + r(m2 − m1)) > m2 − m1, max �(S) = a − (b + c + r(m2 − m1)). And in any other case,
max �(S) = m2 − m1.
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4.4 Multiplicity three

Assume that S is minimally generated by {3 < n2 < n3}. As the Apéry set of 3 in S is {0, n2, n3}, by Selmer’s
formula (see for instance [21, Proposition 2.10]), we have that

• F(S) = n3 − 3 (the Frobenius number of S), and
• G(S) = 1

3 (n2 + n3) − 1 (the genus of S, i.e., the cardinality of N \ S).

Hence, S is of the form 〈3, 3G(S) − F(S), F(S) + 3〉 (see [19] for more details).
First we prove that S cannot be symmetric. If S is symmetric, then G(S) = F(S)+1

2 and consequently
n2 = 3G(S) − F(S) = 3

2 (F(S) + 1) − F(S) = 1
2 (F(S) + 3) = 1

2 n3. This contradicts that {3, n2, n3} is a
minimal system of generators.

As ri j are positive integers, Lemmas 10.19 to 10.23 in [21] hold, and consequently 3 = r12r13 + r12r23 +
r13r32, forcing r12 = r13 = r23 = r32 = 1. Hence, δ1 = n2+n3

3 − 2. Moreover, r21 + r31 = c1, r12 + r32 = c2,
r13 + r23 = c3. This implies that c1 = n2+n3

3 , c2 = 2 and c3 = 2. Hence, σ has the following form

σ =
{((

n2 + n3

3
, 0, 0

)

, (0, 1, 1)

)

, ((0, 2, 0), (a, 0, 1)) ,

(

(0, 0, 2),

(
n2 + n3

3
− a, 1, 0

))}

.

Note that δ1 = n2+n3
3 − 2 = r31 + r21 − 2 ≥ r31 + 1 − 2 = δ3. Then δ2 =| δ1 − δ3 |= δ1 − δ3, and

δ1 = δ2 + δ3 ≥ δ2. Hence, we get the following.

Theorem 4.2 Let S = 〈3, n2, n3〉 be an embedding dimension three numerical monoid. Then

max �(S) = n2 + n3

3
− 2.

Notice also that as S has a generic presentation, c(S) = t(S) = ω(S) = max{ n2+n3
3 , 2, a + 1, n2+n3

3 − a +
1} = n2+n3

3 . Hence, we can also deduce the above theorem by taking into account that max �(S) + 2 ≤ c(S)
([14, Theorem 1.6.3]), and L(n2 + n3) = {2, (n2 + n3)/2}.
Theorem 4.3 Let S = 〈3, n2, n3〉 be an embedding dimension three numerical monoid. The following are
equivalent.

(1) �(S) is a singleton.
(2) S = 〈3, x, 2x − 3〉 for some integer x greater than three.
(3) G(S) = F(S)+2

2 .

Proof Recall that �(S) is a singleton if and only if δ2 = 0, which in our case is equivalent to a + 1 − 2 = 0.
Hence, �(S) is a singleton if and only if a = 1. The last condition is equivalent to 2n2 = 3 + n3 (because
there are only two factorizations of 2n2, say (0, 2, 0) and (a, 0, 1)). This proves that (1) and (2) are equivalent.
The equivalence between (2) and (3) follows from [19, Theorem 7] (in this setting F(S) = 2x − 6). �
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