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On the Design of Low-Density Parity-Check Codes
within 0.0045 dB of the Shannon Limit

Sae-Young Chung, Member, IEEE, G. David Forney, Jr., Fellow, IEEE, Thomas J. Richardson, and Rüdiger Urbanke

Abstract—We develop improved algorithms to construct good
low-density parity-check codes that approach the Shannon limit
very closely. For rate 1/2, the best code found has a threshold within
0.0045 dB of the Shannon limit of the binary-input additive white
Gaussian noise channel. Simulation results with a somewhat sim-
pler code show that we can achieve within 0.04 dB of the Shannon
limit at a bit error rate of 10 6 using a block length of 107.

Index Terms—Density evolution, low-density parity-check codes,
Shannon limit, sum-product algorithm.

I. INTRODUCTION

R ICHARDSONet al. [1] constructed irregular low-density
parity-check (LDPC) codes that easily beat the best known

turbo codes when the block length of the code is large. This
shows that LDPC codes—originally invented by Gallager [2],
forgotten for decades, rediscovered by many [3], [4]—can now
outperform powerful turbo codes [5] if designed properly.

Theyalsoshowedthat formany interestingchannels, including
additive white Gaussian noise (AWGN) channels, one can use
an algorithm calleddensity evolution[6] to calculate a threshold
value for a randomly constructed irregular LDPC code which de-
termines the boundary of the error-free region asymptotically as
the block length tends to infinity. (Density evolution based on
combinatorial or Monte Carlo approaches had been previously
attempted by Gallager [2], Spielman [7], and MacKay [8].)

In this letter, we develop an improved implementation of den-
sity evolution calleddiscretized density evolution[9]. We show
that this improved algorithm models the exact behavior of dis-
cretized sum-product decoding. Using this algorithm and an
improved optimization algorithm, we design good rate-1/2 ir-
regular LDPC codes for binary-input AWGN channels that ap-
proach the Shannon limit very closely.

II. DISCRETIZEDDENSITY EVOLUTION

Our derivation of discretized density evolution is based on the
“local tree assumption” of [1], which is validated by the general
concentration theorem of [1].
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Let be a log-likelihood ratio (LLR) message from a de-
gree- variable node to a check node. Under sum-product de-
coding, is equal to the sum of all incoming LLRs; i.e.,

(1)

where are the incoming LLR’s from the
neighbors of the variable node except the check node that gets
the message, and is the observed LLR of the output bit
associated with the variable node.

The message update rule for check nodes can be obtained by
observing the duality between variable and check nodes and the
resulting Fourier transform relationship [10]. From this, we get
the following well known “tanh rule” (see [11]):

(2)

where are the incoming LLR’s from
neighbors of a degree- check node, and is the output

LLR message sent to the remaining neighbor.
From now on, we assume a random ensemble of irregular

codes specified by two degree distributions and ,
where and . Here,

is the fraction of edges that belong to degree-variable
nodes, is the fraction of edges that belong to degree-
check nodes, is the maximum variable degree, andis the
maximum check degree.

Let be the quantized message of, i.e.,

if

if

otherwise

where is the quantization operator; is the quantization in-
terval; is the largest integer not greater than; and is
the smallest integer not less than.

Discretized sum-product decoding is defined as sum-product
decoding with all input and output messages quantized in this
way. Under discretized sum-product decoding, (1) becomes

, where and for
. We denote the probability mass function
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(pmf) of a quantized messageby for
. Then, is related to its input pmf’s by

where is the pmf of ; is the pmf of ; and is discrete
convolution. Since the ’s are independent and identically dis-
tributed (i.i.d.) for , the above can be rewritten as

where , and is discrete convolution. This
calculation can be done efficiently using an FFT.

We define the following two-input operator:

where and are quantized messages. Note that this operation
can be done using a pre-computed table, which is the key step for
making discretized density evolution computationally efficient.
Using this operator, we calculate the quantized messageof (2)
as follows:

where we assume that discretized sum-product decoding at
check nodes is done pairwise.

Let . The pmf of is given by

Abusing notation, we write this as .
Since the ’s are all equal, we define for any

, and write as
. Note that we can reduce the number of opera-

tions to do this by properly nesting this calculation.1 By defining
and for any

pmf , we can write discretized density evolution as follows:
Theorem 1: Discretized density evolution is described by

where the initial pmf has all mass at 0 andis the iteration
number.

To run this algorithm, without loss of generality, we first as-
sume that the all-0 codeword was sent. Then, we fix the channel
parameter, namely noise power, and we run the above algorithm
iteratively until either the density of tends to the “point mass
at infinity” (equivalently, the probability of error tends to zero),
or it converges to a density having a finite probability of error,
which is defined as the probability of being negative. The

1Although for finite quantization different nesting might produce slightly dif-
ferent results, it still corresponds to some valid decoding algorithm and asymp-
totically, as�! 0, it will converge to continuous belief propagation.

TABLE I
QUANTIZATION EFFECT

TABLE II
GOOD RATE-1/2 CODES WITHd = 100; 200; 8000

threshold is defined as the maximum noise level such that the
probability of error tends to zero as the number of iterations
tends to infinity.

The complexity of this calculation is of order due to
the calculations at check nodes, whereis the number of quan-
tization levels. However, this is actually faster than the calcula-
tion based on changing of measures between LLR and
domains as in [1], which requires finer quantization due to nu-
merical problems when changing measures. As a result, our al-
gorithm is more accurate and also realizes the discretized ver-
sion of the sum-product algorithm exactly. This implies that the
threshold predicted by our algorithm is always a lower bound,
since it is exact for a sub-optimal decoding.

Table I shows how the threshold values are affected by quan-
tization for the rate-1/2 code in Table II. Number of
bits used for quantization versus threshold values in(noise
standard deviation) and errors in dB relative to the threshold
value for 14-bit quantization are shown. All threshold values
are rounded down. When 14 bits are used to quantize the LLR
values into 16 384 levels, we observe that the threshold has
6-digit precision.

III. OPTIMIZATION

In this letter, we use a slightly different optimization tech-
nique than the iterative linear programming used in [1] to opti-
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Fig. 1. Threshold (SNR ) of rate-1/2 LDPC codes with maximum
variable degree =20; . . . ; 8000.

Fig. 2. Simulation results for thed = 100 andd = 200 codes of Table II,
using a block length of10 .

mize , which seems to be better for designing codes, espe-
cially when is large. We maximize the rate of the code while
maintaining the following constraints: 1) ; 2) the new

is not significantly different from the old one (required
to guarantee that the linear programming formulation is valid);
and 3) the new is better than the old one (produces smaller
probability of error). For details of this algorithm, see [9].

Thresholds for some good rate-1/2 codes with maximum vari-
able degrees 20, 30, 40, 50, 60, 70, 85, 100, 200, 500, 1000,
2000, 4000, and 8000 are given in Fig. 1 [9], where
is defined as the distance from the Shannon limit in dB. Table II
gives the degree distributions for some of these codes, where
threshold values are rounded down and values are
rounded up. The Shannon limit is at rate 1/2.

We used concentrated ’s only, where
for some integer . This restric-

tion not only makes it easier to optimize , especially
for large maximum variable degrees, but also is not too

restrictive for the AWGN channel [12]. The average check
degree is used in Table II to parametrize where

.
In Fig. 2, we show simulation results for the

codes in Table II. A block length of was used, and the code
graph was constructed randomly, except that cycles of length 2
and 4 were avoided.At BER = , the code operates
within 0.04 dB of the Shannon limit. The maximum allowed
number of iterations was 2000. When decoding was successful,
about 800–1100 iterations were needed. No undetected errors
occurred.

At a BER of about 10 , we decoded 249 and 371 blocks
for the and codes, respectively—i.e., about
1.2 10 and 1.8 10 decoded bits, respectively.

More results and an online demonstration of density evolution
are available at http://truth.mit.edu/~sychung.

IV. CONCLUSIONS

We have designed LDPC codes for binary-input AWGN
channels that approach the Shannon limit very closely. Our de-
sign is based on discretized density evolution and optimization
of degree distributions via iterative linear programming. Our
design can be used to design LDPC codes of arbitrary rates
between 0 and 1 for many interesting channels.

Our results strongly suggest that optimal LDPC codes under
sum-product decoding for AWGN channels may approach the
Shannonlimitasymptoticallyastheblocklengthtendstoinfinity.
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