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The spontaneous behavioral responses of individuals to the progress of an epidemic are recognized to have a
significant impact on how the infection spreads. One observation is that, even if the infection strength is
larger than the classical epidemic threshold, the initially growing infection can diminish as the result of
preventive behavioral patterns adopted by the individuals. In order to investigate such dynamics of the
epidemic spreading, we use a simple behavioral model coupled with the individual-based SIS epidemic
model where susceptible individuals adopt a preventive behavior when sensing infection. We show that,
given any infection strength and contact topology, there exists a region in the behavior-related parameter
space such that infection cannot survive in long run and is completely contained. Several simulation results,
including a spreading scenario in a realistic contact network from a rural district in the State of Kansas, are
presented to support our analytical arguments.

M
odeling human reactions to the spread of infectious disease is an important topic in current epidemi-
ology1–10, and has recently attracted substantial attention11–21. The challenges in this topic concern not
only how to model human reactions to the presence of epidemics, but also how these reactions affect the

spread of the disease itself22. In general, models of human preventive response to epidemic spreading can be
categorized in the following three types3: (1) change in the system state: for example, individuals go to a ‘removed’
state when they receive vaccination23; (2) change in system parameters: individuals might choose to use masks,
therefore, have a smaller infection rate parameter18, (3) change in the contact topology24: For example, the use of
available information on the health state of the neighbors is studied in24, where the contact network is modified on
the base of this information. At the population level and under specific assumptions, the authors determine the
effectiveness of human responses to eradicate or slow down the spreading process. A comprehensive review of the
existing results that examine the interaction of the epidemic spreading and the human behavior can be found in3.
However, current advances in including human behavior into epidemic models are still in the initial phase. There
is a substantial gap between what has been developed so far, and what is actually required to deeply understand the
impact of human responses. Most of these models are simulation-based and are useful for specific scenarios. An
analytically-grounded approach to the problem of interconnecting epidemic models with human behavior can
provide invaluable insights into this complex process.

The characteristics of classical epidemic models have been studied for a long time and are well-established. The
ratio between the infection rate b and the curing rate d, called infection strength t 5 b/d, characterizes the
aggressiveness of the infectious diseases. Among the important information that can be obtained using classical
mathematical models for epidemics, the determination of the epidemic threshold plays a key role. For infection
strengths below the epidemic threshold, initial infections quickly die out, while for infection strengths above the
epidemic threshold, the initial infections will spread throughout the population. The epidemic threshold is related
to an important epidemiological parameter called basic reproduction number, universally denoted by R0. The
basic reproduction number is defined as the number of secondary infections from a single initial infection in a
susceptible population. If R0,1 the initial infections die out while if R0.1, initial infections grow25.

The interconnection of epidemic models with human behavioral models has introduced a new class of
problems for which a thorough understanding is still in the initial phase. Sometimes apparently conflicting
interpretations and definitions are observed in the literature addressing the problem of interconnection of
epidemic models with human responsive behavioral models. For example, results in20 and15 show that ultimately
the epidemic threshold is not influenced by self-initiated changes in human behavior, although the infection size
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is reduced. Alternatively, the epidemic thresholds obtained in17 and26

are influenced by human behavior. In27, authors make assumptions
about people behavior during an epidemic, and incorporates beha-
vioral responses concerning mobility patterns into a meta-
population model. They find that travel limitations due to prevalence
information do not alter the epidemic invasion threshold. Another
interesting result from this paper is that real-time individual res-
ponse may even have negative effect on the mitigation of the spread-
ing of the disease.

The study of these problems demands a revised look into classical
concepts of epidemic models. For development of epidemic models
which incorporate the human behavior to be functional to the vari-
ous stakeholders, it is important to revisit and define new and con-
sistent terminology. Furthermore, the few models that incorporate
human behavior are mostly designed in such a way that the beha-
vioral elements and the epidemic elements are merged into each
other and cannot be distinguished for the purpose of analysis and
potential intervention design22. There is a compelling need to under-
stand the dynamic characteristics of the new class of epidemic models
that incorporate the human response in a way that clearly identifies
the behavioral effects, define the critical quantities, and allow analysis
not only at the population level but also at the individual level.

The objective of this paper is to contribute toward a clarification of
the definition of epidemic threshold in the case of spontaneous beha-
vioral responses, and to assess the capability of the human behavioral
responses to influence the epidemic spreading. The idea here is sim-
ple. In the classic epidemic models, there exists a critical value for the
infection strength that qualitatively divides the dynamical response
of the models into two regions. For infectious diseases with strengths
below this critical value, initial infections do not spread and die out
quickly. When infection strengths are beyond this critical value,
initial infections start growing. When considering human response
to the infection, the dynamics becomes richer. One of the important
observations is that, when initial infections get the chance to grow,
people in the population start reacting to the infection. If the reaction
is strong enough, it can effectively contain the infection. Otherwise, it
can only reduce the size of the infection. This problem can be also
explored from a different angle. For any given preventive behavioral
pattern, when the reproduction number R0 is greater than one, infec-
tion initially spreads. However, if the basic reproduction number R0

is not too big, infection-preventive human responses can suppress
the infection. Therefore, it is reasonable to look for a second thresh-
old which characterizes the epidemic evolution in the intermediate
and long run period.

In17, the reproduction number depends on the fraction of the
people in the population who have adopted a cautious behavior. If
all susceptible individuals have normal behavior, then the reproduc-
tion number is the same as the classic SIR reproduction number. On
the other hand, if all the susceptible have cautious behavior then the
reproduction number is the same as that of an SIR model with a
reduced infection rate. For intermediate fraction of alerted popu-
lation, the reproduction number is a linear combination of these
two values. However in this paper, it is not determined under which
conditions the awareness propagation is strong enough to lower the
reproduction number to values less than one. The authors of20 find
the conditions for epidemic die-out at extreme cases. In particular, if
the spread of the fear among the population is much slower than the
spread of the disease itself, then the basic reproduction number
corresponding to the classic SIR model determines the outbreak
condition. On the other hand, if the fear spreads much faster than
the epidemic, then the basic reproduction number of an SIR model
with reduced infection rate determines the outbreak condition. The
authors relate the non-extreme cases to reduction of the infection
peak, and observation of multiple peaks. However, it is not argued
under which conditions, or equivalently, for which values of spread-
ing strength of fear, human response can contain the infection. In

this paper, we have built the simplest structure that could fully show
the existence of the two threshold values for the infection strength.
Our model does not show periodicity or multiple peaks but provides
elegant and explicit expressions for the two thresholds and the sub-
sequent arguments. Using a mean-field type approximation, a sys-
tem of nonlinear differential equations is developed which has
linearly growing state space size. Behavioral responses are incorpo-
rated by adding a behavioral component to the individual-based SIS
model through a closed-loop feedback structure. The results for the
stability of the disease free equilibrium points obtained from a rig-
orous mathematical analysis are reported. Furthermore, extensive
simulations performed under many scenarios, parametric conditions
and contact network topologies are presented. Considered contact
networks include realistic ones built using data collected in several
rural communities in Kansas, US.

Summarizing, when considering previous epidemic models that
do not take into account human responses, only two possible scen-
arios are possible: either the epidemic strength is smaller than the
epidemic threshold and the epidemic dies out, or the epidemic
strength is greater than the epidemic threshold and the epidemic
spreads. The inclusion of spontaneous human responses to epi-
demics, determines the existence of a cushion region for epidemic
strengths greater than the epidemic threshold, in which the epidemic
can be contained by alerted and cautious human behavior.

Results
In the SIS (Susceptible-Infected-Susceptible) model the probability
of being infected is shown to follow the solution of a set of differential
equations. In this model, an infected node can infect its neighbors
with an infection rate b, and the infection is cured with curing rate d.
However, once cured and healthy, the node is again prone to the
virus. The infection and curing processes are independent of each
other.

The SAIS model. In21, authors previously proposed a preventive
behavioral response model coupled with the SIS model to account
for the preventive human behavior. Specifically, upon observation of
infection, individuals adopt a cautious behavior. Those individual
with alert behavior have a lower infection rate. The alert indi-
viduals are represented by a new compartment, denoted by ‘alert’.
In this article, we refer to this model as Susceptible-Alert-Infected-
Susceptible (SAIS) model. Both susceptible and alert individuals can
potentially be infected. However, the infection rate for the alert
individuals is lower. A preventive behavior can be either changing
the contact or changing the disease-relevant parameters like infec-
tion rate or recovery rate. In the SAIS model in this paper, only the
reduction of the infection rate as the preventive behavior is taken into
account. Furthermore, this behavior can be thought of as adopting
hygienic behavior. It is more realistic to consider different levels of
reduction in the infection rate. However, in this research work; only a
single reduction of the infection rate is considered.

In our work, the contact network in this formulation is considered
as a generic graph. Each node is allowed to be in one of the three
states "S: susceptible", "I: infected", and "A: alert". A susceptible indi-
vidual becomes infected by the infection rate b times the number of
its infected neighbors. An infected individual recovers back to the
susceptible state by the curing rate d. An individual can observe the
states of its neighbors. A susceptible individual might go to the alert
state if surrounded by infected individuals. Specifically, a susceptible
node becomes alert with the alerting rate k times the number of
infected neighbors. An alert individual can get infected in a process
similar to a susceptible individual but with a smaller infection rate 0
# ba , b. We assume that transition from an alert to a susceptible
state is much slower than other transitions in the system. Hence, in
our modeling setup, we assume that an alert individual never
goes back directly to the susceptible state. For completeness, the
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compartmental transition diagram of a generic node i with Yi

infected neighbors are depicted in Figure 1.
The SAIS model separates the model of the epidemic from the

model of the behavioral response, and it has a feedback structure
since the behavioral response is function of the number of infected
neighbors, which is the output of the epidemic model. Let pi, and qi

denote the probabilities of individual i to be infected and alert,
respectively. According to the Markov process theory28 and using a
Mean Field Type approximation29, the time evolution of the epi-
demics is:

_pi~b(1{pi{qi)
X

j[Ni
aijpjzbaqi

X
j[Ni

aijpj{dpi, i[f1, . . . ,Ng

_qi~k(1{pi{qi)
X

j[Ni
aijpj{baqi

X
j[Ni

aijpj, i[f1, . . . ,Ng
ð1Þ

For the SIS epidemic model, it has been proved that the epidemic
threshold is the inverse of the spectral radius of the adjacency matrix
A of the contact network29–32. Assume that the alert infection rate ba

is small enough to allow the die out of the epidemic in the simple SIS
model with infection rate ba and no alertness. Mathematically, this is
equivalent to having:

ba

d
v

1
l1

, ð2Þ

where l1 is the spectral radius of the adjacency matrix A. The SAIS
model exhibits three types of behavior: (a) quick die-out, (b) slow die-
out, (c) infection persistence in the long run, as shown in Figure 2.

In the quick die-out region, the epidemic dies out exponentially,
while in the slow die-out region, the epidemic spreads at the begin-
ning, but after some time it dies out as the result of increased alertness
in the network. For the last case, persistence of infection in the long
run, the infected population fraction never goes to zero and stabilizes
at a constant value greater than zero. In Figure 3, the dynamical
evolution of the epidemic for three values of the infection strength
corresponding to the three different regions are described.

Analytical Results. Based on the discussion above, we have
analytically derived the ranges of the three regions for the dynamic

evolution of the epidemic21. If
b

d
v

1
l1

is satisfied, the epidemic will

die out quickly. As a consequence, the no-spreading threshold tc1 is
defined as

tc1~
1
l1
: ð3Þ

The first threshold (3) depends only on the contact network and

is not influenced by the human behavior. If
1
l1

v

b

d
v

1
l1

z
k

ba
1
l1

{
ba

d

� �
is satisfied, the epidemic will first spread, and then it

will die out slowly. As a consequence, the die-out threshold tc2 is
found as

tc2~
1
l1

z
k

ba

1
l1

{
ba

d

� �
: ð4Þ

The second threshold (4) depends on behavioral responses, which
are represented by parameters k and ba. The die-out region of the
epidemic is increased from (0, tc1 ) in the SIS model to (0, tc2) in the
SAIS model, as seen in Figure 4. If the epidemic strength b/d is
smaller than the die-out threshold, the epidemic will die out
ultimately. However, if epidemic strength (b/d) is greater than the

Figure 1 | Transition diagram for the SAIS epidemic model for individual
i, where Yi is the number of infected neighbors of node i, b is the infection
rate, d is the curing rate, k is the alerting rate, and ba is the alerted
infection rate. There is a separation between the epidemic model and the

response models.

Figure 2 | The two thresholds qualitatively divide the total range of effective infection strengths in three regions: when the infection strength b/d is smaller
than the first threshold, the infection does not spread and dies out quickly; between the two thresholds the infection initially spreads, but later, due to the
alertness effect, it dies out slowly; finally, when the infection strength b/d is greater than the second threshold, the infection persists in the population.
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no-spreading threshold, initially the epidemic will spread, while only
in a later time it will start dying out. If b=dwtc2 is satisfied, the
epidemic will persist in the steady state. In this last case, the size of
the steady state infection in the SAIS network is reduced by the
behavioral responses and it is equivalent to that of an SIS model
with a reduced infection rate beff defined as

beff :~b

ba

k

1z
ba

k

zba
1

1z
ba

k

~b{
b0{ba

1z
ba

k

ð5Þ

In21, proofs for determining the conditions for these three regions of
behavior are provided.

The results described above concern the behavior of the system
when time increases. It can be observed that the response of SIS
model and SAIS model are very similar in the early stage. The effect
of alertness is only visible after some time as a closed-loop reaction to
the spreading process. The higher the alerting rate is, the quicker
individuals react to the presence of infection. Interestingly, the
expression of the second threshold (4) allows the discovery of a

threshold value kc for the alerting rate k. Using (4), the expression
for the critical alert rate kc is

kc

d
~

ba

d

b

d
{

1
l1

1
l1

{
ba

d

, ð6Þ

or equivalently,

kcl1

d
~

bal1

d

bl1

d
{1

1{
bal1

d

: as a normalized expression: ð7Þ

Given an infectious disease characterized by b and d such that b/d is
greater the first threshold tc1, and an alerted infection rate ba, if k is
greater than kc the epidemic will die out (slowly) since b/d will be
smaller than tc2. In Figure 5, the effect of the alerting rate k on the
steady state infection fraction is shown. For kl=d smaller than
the threshold, the epidemic persist in the steady state, while for
kl=d greater than the threshold kcl=d the epidemic dies out in the
long run.

SAIS simulations for a lattice contact network. Consider a lattice
graph on the square [0,1]3[0,1], with 2,500 nodes, and 15 randomly
selected nodes are initially infected. The states of the individuals
are computed every 30 days for three different scenarios through
numerical simulation. The results are depicted in Figure 6. Red
nodes represent infected individuals, and green nodes represent
alert individuals. In order to make the progress of the epidemics
easier to be seen, the contact network and the susceptible nodes
are not shown in the figures. In Figure 6 a), the spreading of the
infection, with no alertness considered, is shown. In this example the
epidemic spread initially and persists in the long run. When alertness
is added to the system, two scenarios are possible. If the alert rate k is
smaller than kc, the epidemic start spreading initially, but later the
alertness creates a form of containment in the infected areas of the
network. As a consequence, the total number of infected individuals
becomes less than the case with no alertness, as shown in Figure 6 b).
If the alert rate k is greater than kc, as is the case of Figure 6 c), a form
of barrier is created by the alert individuals around the infection and
the barrier is so strong that the infection is totally suppressed at the
end. Network-based epidemic models provide not only temporal, but
also spatial information about the disease propagation. Observing
from Figure 6 c), the alerted nodes are located around the infection
area. The key factor to contain the epidemic is not the percentage of
alerted nodes, but rather their spatial position in the network.

SAIS simulations for an Erdős–Rényi contact network. Consider
an epidemic network where the contact network is an Erdős–Rényi
random graph with N 5 500 nodes and connection probability p 5
0.07. For this scenario, the largest eigenvalue is approximately
l1<p3N535. The initial infected population is 2% of the whole
population. The simulation parameters are d50.2 Day21, b 5 2 d/ l1,
ba 5 1/23d/ l1. From (7), the threshold value for the alerting rate is
found to be kc5 d/ l1. Three trajectories (a), (b), and (c) derived
from the analytical model and the results of Monte-Carlo
simulations (in blue) are presented in Figure 7, corresponding to
k50, k50.63kc, and k533kc. As can be seen, there is a
reasonable agreement between the SAIS model (1) and the Monte
Carlo simulation. It can be observed that increasing the alerting rate
k decreases the steady state infection probability. For alerting rates
greater than the threshold value, i.e., k . kc, infection is suppressed
totally in the long run.

SAIS simulations for a rural community contact network. We
apply the proposed model with alertness on a contact network
model, shown in Figure 8, developed using data collected through

Figure 3 | The SAIS model exhibits three categories of responses, quick
die-out (blue), slow die-out (black), infection persistence in long run
(red).

Figure 4 | The die-out region of the epidemic is increased from (0, tc1 ) in
the SIS (black line) to (0, tc2) in the SAIS (red line). However, within the

two thresholds, the epidemic initially spreads but then dies out.

www.nature.com/scientificreports
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a survey campaign conducted in rural Clay and Kearny counties in
Kansas, USA, in 2009. Authors of33 surveyed residents of two rural
Kansas counties through a visit to a county seat and mailed surveys.
The survey consisted of 30 short questions, a question concerning
visits to local businesses and locations, a question concerning visits to
cities within the surrounding region, and a set of contact questions.
By changing k from zero to infinity, we obtain a spectrum of
responses depicted in Figure 9. The largest eigenvalue of this
network is l15 3.03. We have included three limiting cases, i.e., k
5 0, kc, ‘. Red lines are for the case where epidemic persists in the
steady state. Blue lines refer to the case where alerting is strong
enough to suppress the infection. The values used for this
simulation are d50.1 Day21, b52d/ l1, ba 51/33d/ l1.

Discussion
The two epidemic thresholds or tipping points are very important
and provide information on different aspects of the process. Given an
effective strength of the epidemic, denoted by b/d, the smaller epi-
demic threshold only depends on the network topology, being equal
to the inverse of the adjacency matrix spectral radius l1. As a con-
sequence, this threshold cannot be affected by human behavior. If the
effective epidemic strength is smaller than this value, the epidemic
will die out exponentially and will not invade the network.

Very different are the characteristics and the role of the second
epidemic threshold. The second threshold depends not only on
the network characteristics but also on the parameters related to
the human behavior: k, the rate at which people become alert, and
ba, the infection rate in the alert compartment that is smaller than
the original disease infection rate. If the effective epidemic
strength is greater than the first threshold but smaller than the
second one, a very interesting phenomenon happens. Initially the
epidemic starts spreading in the same way as if there were no
reactions to the spreading. This behavior is expected since at the

early stage of infection propagation, the size of the infection is
small and individuals have not yet responded to the infection. But
after some time, the preventive behavior will give some fruits in
reducing the number of infected individual and will eventually
bring that number to zero. It is desirable to make this second
threshold as large as possible, since this will increase the range
of effective strengths in which the epidemic will die out.
Fortunately, this threshold depends on human behavior, so it
can be utilized for developing mitigation strategies. The two
thresholds define the limits of the so called cushion region, where
preventive behaviors are effective in suppressing an epidemic that
would have spread in absence of any mitigation.

If there is no change in behavioral patterns, the two thresholds
coincide and the SAIS model has the same response as the SIS model.
However, as soon as k.0, the range of die-out scenarios increases,
and behavioral changes become more and more effective as the alert-
ing rate k increases and the alerted infection rate ba decreases. The
study of the extreme cases provides very interesting insights. The
second threshold grows unboundedly large as the alerting rate
becomes large or as the alerted infection rate becomes very small.
If the alerting rate k is very large, the infection dynamics is as if the
infection rate is equal to ba. Furthermore, if the alerted infection rate
ba is very small, the epidemic spread is completely controlled. This
case, i.e. alerted infection rate being very small, is effectively similar to
the problem of vaccinating the whole population.

We can also use these results to provide guidelines on the minimal
alertness rate required in order for the infection to die out. In fact, kc

in equation (6) increases with b/d, showing that more aggressive
epidemics require larger alert rates to be suppressed. If the effective
epidemic strength is greater than the second threshold, the epidemic
will persist in the long run. However, the size of the persistent epi-
demic will be reduced with respect to that in the absence of prevent-
ive human responses.

Figure 5 | Effect of the alerting rate k on the steady state infection fraction. For alerting rates greater than the critical value kc, infections are completely

suppressed by the alerting process.
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Through this model, we have been able to show that two thresh-
olds exist. The first threshold characterized the response of the model
at the initial phase. Results15,20 that only look at the initial phase of
infection propagation identify the first threshold. The first threshold
does not change with behavioral preventive responses. For example,
the threshold values in15,20 do not depend on the behavior-related
parameters. Alternatively, if the behavioral processes are considered
very fast with respect to the propagation of the infection, the system
behaves as if alerting is always in effect. As a consequence, the initial
phase, during which alertness is starting to become important, is
absent. Therefore, these results do not identify the first threshold.
The second threshold is in turn affected by preventive behaviors.
Threshold values found in17,26 depend on the behavior related para-
meters and are based on the assumption that the behavioral processes
are very fast.

It is critical to determine potential benefits and limitations of
spontaneous behavioral responses, and under which specific epi-
demic conditions behavioral responses can be exploited by public
health agencies. In addition, the real-world interpretation of the
behavioral parameters like the alerting rate and proper quantification
of these parameters are very important from the public health point
of view and can be the focus of future research.

One important aspect of our study is that our model is individual-
based. This allows us to incorporate the influence of the topology of
the contact network. Using this framework, we can step ahead and
consider more advanced interconnections among the individuals in
the population. For example, we propose to consider information
dissemination architecture among individuals in order to investigate
how information dissemination can help boosting the resilience of a

population against the spreading. The information dissemination is
realized through an additional network among individuals, which
has the same nodes (individuals) but different links with respect to
the contact network. Each link in the information dissemination
network is a directed link which provides the health status of the
source individual to the end individual – we call that the "Infor-
mation Dissemination Network". This Information Dissemination
Network has connections between nodes that do not have any phys-
ical contact, so the infection cannot spread via these links, but the
alertness can spread due to information dissemination. The study of
such a system where both the Contact Network and Information
Dissemination Network are functioning is very important from tech-
nological and public health perspectives and is the topic of our future
research.

Methods
In this section, the construction of the SAIS model (1) is explained. In our individual
based modeling, we represent the population and the contact between them by a
graph. Each node represents an individual. The graph has N nodes and two nodes are

Figure 6 | (a) SIS epidemic spreading on the lattice contact network with

R052.5, d50.1 Day21. Red dots represent infected nodes, (b) SAIS

epidemic spreading with R052.5, d50.1 Day21, ba5b/4, and k5kc/2. Red

dots represent infected nodes while the green dots denote the alert nodes.

Alertness is reducing the epidemic size for alertness rate k , kc, (c) SAIS

epidemic spreading with R052.5, d50.1 Day21, ba5b/2, and k53kc. Red

dots represent infected nodes while the green dots denote the alert nodes.

Alertness is suppressing the infection for alertness rate k . kc.

Figure 7 | Monte Carlo simulation for Erdős–Rényi graph with N5500, p
50 .07, l1<p3N535. The initial infected population is 2% of the whole

population. The simulation parameters are d50.2 Day21, b 5 2 d/l1, ba 5

1/23d/l1, and (a) k50, (b) k50.6 3 kc, (c) k53 3 kc.

Figure 8 | Contact network of a rural community in Kansas USA33.

www.nature.com/scientificreports
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connected by a link if the two individuals are in contact with each other and can
spread infection. We say that aij51 if node i is connected to node j, and zero other-
wise. Each node is allowed to be in one of the three states: "susceptible", "infected", and
"alert". For each individual i[f1,:::,Ng, let the random variable xi(t)51 if the
individual i is susceptible at time t, xi(t)52 if alert, and xi(t)53 if infected.

There are four stochastic transitions in the continuous-time Markov process
representing the SAIS model.

(1) A susceptible individual becomes infected by the infection rate b times the
number of its infected neighbors, i.e.,

Pr xi tzDtð Þ~3jxi tð Þ~1,X tð Þ½ �~bYi tð ÞDtzo Dtð Þ,

for i[ 1,:::,Nf g and Yi tð Þ :~
XN

j~1

aij1 xj(t)~1ð Þ:

(2) An infected individual recovers back to the susceptible state by the curing rate
d, i.e.,

Pr xi tzDtð Þ~1jxi tð Þ~3,X tð Þ½ �~dDtzo Dtð Þ:

(3) An individual can observe the states of its neighbors. A susceptible individual
might go to the alert state if surrounded by infected individuals. Specifically, a
susceptible node becomes alert with the alerting rate k times the number of
infected neighbors, i.e,

Pr xi tzDtð Þ~2jxi tð Þ~1,X tð Þ½ �~kYi tð ÞDtzo Dtð Þ:

(4) An alert agent can get infected in a process similar to a susceptible agent but
with a smaller infection rate0vbavb, i.e.,

Pr xi tzDtð Þ~3jxi tð Þ~2,X tð Þ½ �~baYi tð ÞDtzo Dtð Þ,

for i[ 1,:::,Nf g.
In above equations, Pr :½ �denotes probability, X tð Þ :~ xi tð Þ,i~1,:::,Nf gis the joint

state of the network, Dtw0is a time step, and the indicator function 1{Q} is one if Q is
true and zero otherwise. A function f (Dt) is said to be o(Dt) if limDtR0 f (Dt)/Dt 5 0. It
is assumed that transition of an individual from an alert state to a susceptible state is
much slower than other transitions. Hence, in the SAIS modeling setup, an alert agent
never goes back directly to the susceptible state.

A common approach for studying a continuous-time Markov process is to derive
the corresponding Kolmogorov forward (backward) differential equations (see28). As
can be seen from the above equations, the conditional transition probabilities of a
node are expressed in terms of the current state of its neighboring nodes. Therefore,
each state of the Kolmogorov differential equations corresponding to the Markov
process will be the probability of being in a specific joint state. In this case, we will end
up with a set of first order ordinary differential equations of the order 3N. Hence, the
analysis will become dramatically complicated as the network size grows. Using a
proper mean-field-like approximation (see21,29), it is possible to express the transition

probabilities in terms of infection probabilities of the neighbors. Hence, using this
approximation, the differential equations (1) are derived.
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