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Abstract: A method for batch preparation of fucoxanthin from brown algae was established, which
possessed the advantages of high yield and high purity. The ultrasonic-assisted extraction method
was used to obtain a crude extract from Sargassum fusiforme as the separation sample. Then the
crude extract was separated by elution-extrusion countercurrent chromatography. The optimum
preparation conditions of fucoxanthin were determined as follows: n-hexane-ethanol-water (20:9:11,
v:v:v) as a two-phase solvent system, the mobile phase flow rate was 5 mL min−1, the revolution
speed was 800 r min−1, the loading capacity was 60 mg 10 mL−1 and the temperature was 25 ◦C.
By this method, 12.8 mg fucoxanthin with a purity of 94.72% was obtained from the crude extract
of Sargassum fusiforme. In addition, when the loading capacity was 50 mg 10 mL−1, the purity of
fucoxanthin reached 96.01%. Two types of by-products, chlorophyll and pheophytin, could also be
obtained during the process of separation. This optimal method was further applied to separate
fucoxanthin from Laminaria japonica and Undaria pinnatifida, and 6.0 mg and 9.7 mg fucoxanthin with
a purity of 96.24% and 92.62% were acquired, respectively. Therefore, it was demonstrated that the
preparation method of fucoxanthin established in this study had an applicability to brown algae,
which improved the utilization value of raw materials.

Keywords: brown algae; Sargassum fusiforme; Laminaria japonica; Undaria pinnatifida; fucoxanthin;
separation; elution-extrusion; countercurrent chromatography

1. Introduction

In recent decades, research on marine resources has been increasing with people
considering land-use and environmental protection. As the most important producer,
seaweed has abundant resources. There are various types of algae divided into three
categories: red algae, brown algae and green algae. Brown algae is the second largest group
of marine algae, named as its color is brown. It includes approximately 250 genera and
1500 species [1,2]. The common edible brown algae mainly include Laminaria japonica,
Undaria pinnatifida, and Sargassum fusiforme (Figure 1).

Fucoxanthin is a natural carotenoid, belonging to the lutein class. It usually exists in
algae in the form of fucoxanthin-chlorophyll protein complex, which plays a role in light
capture and light transmission [3]. Fucoxanthin is most abundant in algae of Phaeophyceae
and Diatoms. According to statistics, the content of carotenoids in nature is abundant. For
instance, fucoxanthin in brown algae accounts for more than 10% of the total carotenoid
production in nature [4], lutein accounts for 5% of marigold petal [5], while astaxanthin
accounts for 4% in Haematococcus pluvialis [6]. Most modern medical drugs are synthetic
drugs, which have potential safety hazards, such as toxicity and side effects [7]. Moreover,
the defects in synthesis process, production cost and environmental protection restrict the
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further development of synthetic drugs. This highlights the advantages of non-toxic and
harmless natural compounds [8–10]. Fucoxanthin has a unique structure (Figure 1), includ-
ing an ethylenic bond and multiple oxygen-containing functional groups such as epoxy,
hydroxyl, carbonyl and carboxyl groups [11]. This unique structure gives fucoxanthin a
variety of beneficial biological activities related to human health, such as antioxidant, anti-
obesity, anti-diabetic, anti-cancer, anti-inflammatory, etc. [12–16]. Therefore, fucoxanthin
has great potential to replace synthetic drugs in the treatment of certain diseases.

Figure 1. Physical map of three brown algae: Sargassum fusiforme (1), Undaria pinnatifida (2), Laminaria
japonica (3), as well as the chemical structures of fucoxanthin (4), chlorophyll a (5) and pheophytin a (6).

However, one of the main problems inhibiting wider commercial use of fucoxanthin
is the low efficiency ratio and cost associated with the extraction and purification pro-
cesses used nowadays. Fucoxanthin has similar physical and chemical properties as other
carotenoids. Therefore, in the process of extracting fucoxanthin, it is usually accompanied
by the dissolution of other carotenoids and chlorophyll. This undoubtedly increases the
difficulty of purifying fucoxanthin. At present, thin layer chromatography and silica gel
column chromatography are widely used in the purification of carotenoids [17–19]. Al-
though their separation effect is good, they have some shortcomings, such as inconvenient
operation, large solvent consumption, long separation time, and less sample loading [20,21].
High-speed countercurrent chromatography (HSCCC) is an efficient preparation technol-
ogy that uses the principle of liquid–liquid distribution to separate the mixture. That
is, without using a solid-phase carrier, the target compound is continuously distributed
between the immiscible liquid–liquid phases to achieve the purpose of separation [22].
HSCCC has the advantages of flexible elution method, low solvent consumption, large
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loading capacity, high product purity, simple operation, etc. [23]. According to reports,
HSCCC has been widely used to separate carotenoids from pigment mixtures, and has
achieved good results, such as astaxanthin [23], lycopene [24], anthocyanins [25], lutein [26],
etc. At present, the HSCCC method for separating fucoxanthin from brown algae is limited
to the earlier study for obtaining fucoxanthin with low yield and low purity [27]. Therefore,
it is meaningful to separate fucoxanthin effectively. Elution-extrusion countercurrent chro-
matography (EECCC) is a kind of countercurrent chromatography that has the advantage
of recovering all samples through one elution. This method can quickly elute the solute
retained on the column, thereby reducing solvent consumption and separation time [28].

In this paper, we tried to use EECCC technology to separate and purify fucoxanthin
from the crude extract of S. fusiforme. HPLC and UV-Vis spectrophotometer methods had
been applied for determination of the fractions separated by EECCC. The applicability of
the established EECCC method for the separation of fucoxanthin from other browns algae
was validated.

2. Results and Discussions
2.1. Selection of the Two-Phase Solvent System

The determination of a suitable two-phase solvent system is the first step of EECCC
separation, which can provide an ideal K value for the target compound. According to
reports, the K value should be in the range of 0.5–2.0 to obtain a suitable running time and
effective separation. If the K value is too low, solutes will accumulate and be eluted in
the early stage, which may cause loss of peak resolution. Higher K values, although the
separation effect is better, produce a wider peak and prolong the separation time [23]. In
this study, n-hexane-ethanol-water was used as the solvent system, and the K value in the
solvent system with different volume ratios was determined by HPLC. From Table 1, the K
value gradually increases with the increase in the proportion of water. This shows that the
increase in the proportion of water in the solvent system was beneficial to the separation of
fucoxanthin. The K values of 20:10:10 and 20:9:11 were 0.65 and 1.74, respectively, which
were all in the appropriate range. In order to ensure effective separation, 20:9:11 was
selected as the solvent system for separating fucoxanthin.

Table 1. K values of S. fusiforme fucoxanthin in different solvent systems.

Solvent System Volume Ratios K

n-hexane-ethanol-water

20:11:9 0.23 ± 0.09
20:10:10 0.65 ± 0.08
20:9:11 1.74 ± 0.11
20:8:12 2.28 ± 0.12
20:7:13 3.61 ± 0.14

2.2. Optimization of Elution-Extrusion Countercurrent Chromatography

Retention of stationary phase (RSP) is an important factor affecting the separation
of EECCC. The volume of stationary phase retained in the column has a great influence
on peak resolution. The higher the retention level, the better the peak resolution [23]. In
general, when the RSP is higher than 40%, a better separation effect can be obtained. When
it is lower than 40%, a large amount of stationary phase will be lost, which can significantly
reduce the separation effect [29]. According to previous studies, RSP is affected by the
changes of flow rate of the mobile phase and revolution speed [22]. Therefore, the two
conditions were optimized in this study.

2.2.1. Effect of the Flow Rate of the Mobile Phase on the Retention of the Stationary Phase

The effects of different flow rates of the mobile phase on RSP were compared at a fixed
rotational speed of 750 r min−1. According to Figure 2A, RSP gradually decreased with
the increase of flow rate, and there was an obvious linear relationship between them. The
regression equation was obtained by linear fitting (Equation (1)). Englert et al. also found a
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good linear relationship between the mobile phase flow rate and RSP [26]. When the flow
rate was lower than 4 mL min−1, the values of RSP were higher (>70%), but this also meant
that a longer separation time was required. When the flow rate was 5 mL min−1, the RSP
could also reach 69.05%. In order to shorten the separation time, 5 mL min−1 was selected
as the flow rate of the mobile phase in this study.

y= −1.67 x+77.18 (R 2= 0.9967) (1)

Figure 2. (A) Effects of flow rate of mobile phase on the retention of stationary phase (rotational
speed: 750 r min−1); (B) Effects of rotational speed on the retention of stationary phase (flow rate:
4.0 mL min−1).

2.2.2. Effect of Revolution Speed on the Retention of the Stationary Phase

The effects of different revolution speeds on RSP were compared at a fixed mobile
phase flow rate of 4 mL min−1. The results are shown in Figure 2B. With the increase of
revolution speed, the value of RSP increased gradually, which was consistent with the trend
observed by previous research [30]. The value of RSP was above 70% when the speed was
higher than 750 r min−1. When the speed exceeded 800 r min−1, the rising trend of RSP
slowed down. The system pressure will increase gradually with the increase of revolution
speed [31]. The higher speeds may produce excessive sample band broadening by intense
pulse of the column because of elevated pressure. On the other hand, when the pressure
exceeds the critical point, the pipeline may rupture. Therefore, 800 r min−1 was selected as
the best revolution speed.

2.3. Elution-Extrusion Countercurrent Chromatography Separation of Fucoxanthin

After the above optimization, the basic conditions for purifying fucoxanthin from the
crude extract of S. fusiforme were determined. The concentration of the injected sample,
which is the loading capacity, will also have a great influence on the separation effect.
Excessive capacity will result in loss of stationary phase and low resolution, while in-
sufficient capacity will reduce the yield of target compounds [32]. Therefore, the effect
of different loading capacity on the separation effect was studied. The result is shown
in Figure 3. Through HPLC analysis, fucoxanthin was detected in the fractions during
78–116 min with a higher purity. This also indicated that fucoxanthin could be eluted dur-
ing this period. When the loading capacity was 50 mg, the peaks were separated from each
other with higher resolution, followed by 60 mg. For 80 and 100 mg, the peaks representing
fucoxanthin appeared in the form of shoulder peaks with lower resolution, and some peaks
could not be distinguished.
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Figure 3. (A–D): Effect of loading capacity (50 mg, 60 mg, 80 mg, 100 mg) on the separation of
fucoxanthin from Sargassum fusiforme crude extracts; (E) and (F): The application of the optimal
method to separate fucoxanthin from Laminaria japonica and Undaria pinnatifida, respectively. The
gray area was the time that fucoxanthin was being collected.

After the separation, the peak fractions corresponding to fucoxanthin were combined
and dried to obtain purified fucoxanthin. The content and purity of fucoxanthin were
detected through HPLC. The results are shown in Table 2. For S. fusiforme, with the
increase of loading capacity, the yield of fucoxanthin gradually increased, but the purity
gradually decreased. When the loading capacity was 50 mg, 11.3 mg of fucoxanthin could
be recovered, and its purity was as high as 96.01%. When the sample load was increased
to 100 mg, although the yield of fucoxanthin increased significantly, the purity was only
85.37%. Therefore, 60 mg was selected as the best loading capacity, because it could obtain
the high demand of purity as well as appropriate yield at the same time.

Table 2. The effect of different loading capacity on the yield and purity of fucoxanthin.

Samples Loading Capacity (mg/10 mL) Yield (mg) Purity (%)

S. fusiforme

50 11.3 b,c,* 96.01 ± 1.80 A **

60 12.8 b 94.72 ± 1.47 A

80 16.7 a 90.51 ± 1.53 C

100 18.1 a 85.37 ± 1.63 D

L. japonica 60 6.0 d 96.24 ± 1.58 A

U. pinnatifida 60 9.7 c 92.62 ± 1.77 B

* The different lowercases indicate that there was a statistically significant difference (p < 0.05) between the
different yields.** The different capital letters indicate that there was a statistically significant difference (p < 0.05)
between the different purity.

Eventually, the optimal EECCC conditions were obtained: n-hexane-ethanol-water
(20:9:11, v:v:v) as a two-phase solvent system, the mobile phase flow rate was 5 mL min−1,
the revolution speed was 800 r min−1, the loading capacity was 60 mg 10 mL−1 and the
temperature was 25 ◦C. The precision and repeatability of this method were validated and
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the results (Table 3) showed that they were all less than 6%, which proved the feasibility of
the established method.

Table 3. The precision and repeatability of the optimal EECCC method.

Repeatability (RSD * %, N = 3) Precision (RSD%, N = 6)

Yield (mg) 5.2 5.9
Purity (%) 1.6 2.3

* RSD was relative standard deviation.

In order to verify the general applicability of the optimal EECCC separation method
established in this study, the method was then applied to separate fucoxanthin from other
brown algae, such as L. japonica and U. pinnatifida. From Figure 3, the chromatograms of
L. japonica and S. fusiforme were similar. The separation of 60 mg crude extract of
L. japonica achieved good results, and the resolution of the fucoxanthin peak was very
high. The yield of fucoxanthin was 6.0 mg and the purity was 96.24%. For the separation of
60 mg crude extract of U. pinnatifida, other peaks appeared in the chromatogram, and the
resolution of the fucoxanthin peak was lower. However, the analysis of the fractions during
78–116 min showed that the yield of fucoxanthin was 9.7 mg, and the purity remained
above 92%. Therefore, the preparative separation method of fucoxanthin established in this
study was an efficient method with universal applicability to brown algae.

2.4. Analysis of HPLC and UV-Vis Full Scan

The best separation effect was obtained when the injection concentration of the crude
S. fusiforme extract was 50 mg 10 mL−1, and the peak resolution was the highest. Therefore
the fractions obtained under this condition were analyzed to determine their composition.
As shown in Figure 4, the mixture was divided into four components, which correspond to
fractions F1, F2, F3, and F4, respectively. The first three fractions were obtained through
normal elution, while F4 was pushed out after changing the mobile phase around 115 min.
According to the diagram in Figure 4, the colors of the four fractions were green, colorless,
yellow, and brown, which meant they contain different pigments.

Figure 4. Elution-extrusion countercurrent chromatography separation chromatogram of 50 mg
crude Sargassum fusiforme extract. F1, F2, F3, and F4 correspond to fractions of 40–42, 56–58, 88–90
and 176–178 min, respectively.

The crude extract, fucoxanthin standard and four fractions (F1–F4) were analyzed
by HPLC at 449 nm. Five compounds can be found from the crude extract, and their
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retention times were 2.18, 3.77, 5.75, 7.72 and 14.09 min, respectively (Figure 5A). According
to Figure 5A, it could be found that F1 contained three compounds C1, C2 and C3. F3
contained compound C4, which was fucoxanthin, and a small amount of compound C5.
At the wavelength of 449 nm, no compound was clearly detected in F2. Combined with
the color of the eluate, it was speculated that the pigment content in F2 was not high, and
there may be non-pigment compounds. Li et al., 2016 used HSCCC to separate cocoa
bean polyphenols into different fractions, which contained procyanidins ranging from
monomers to pentamers, and the major individual procyanidins were further separated
from these fractions by preparative HPLC [33]. The presence of compound C5 was the
main reason for reducing the purity of fucoxanthin. In a subsequent study, preparative
HPLC can also be used to separate fucoxanthin and compound C5 to further improve the
purity of fucoxanthin.

Figure 5. Analysis of fractions (F1–F4) separated by EECCC, Sargassum fusiforme crude extract, and
fucoxanthin standard through two kinds of methods: (A) HPLC chromatogram; (B) UV-Vis spectra.

In order to further determine the compounds in the fractions, this study continued
to use a UV-Vis spectrophotometer to do full-scan spectral analysis of the fractions. From
Figure 5B, the characteristic absorption peak of the fucoxanthin standard spanned the
range of 400–500 nm, and the maximum absorption wavelength was about 449 nm. The
absorption peak of F3 was similar to the fucoxanthin standard, which proved that F3
contained high-purity fucoxanthin. With reference to previous studies [21,34,35], the pig-
ment corresponding to each absorption peak in the spectrum of the crude extract can
be determined. The absorption peaks at 415 nm and 432 nm were produced by pheo-
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phytin and chlorophyll a, respectively. The absorption peak of chlorophyll c was between
550–650 nm. Both chlorophyll and pheophytin absorb near 665 nm. The maximum absorp-
tion peak of F1 was at 443 nm, and F4 had two obvious absorption peaks at 408 and 665 nm
respectively. This showed that through EECCC separation, chlorophyll was eluted in the
early stage and was detected in F1. Pheophytin was pushed out in the later stage and was
detected in F4. When the two types of pigments were separated for UV detection, there
was no interference between the two, so the absorption peaks were shifted to both sides
respectively. Combined with Figure 5, the pigment in F1 was mainly green chlorophyll, and
the pigment in F4 was mainly brown pheophytin. According to the current information,
the chemical composition of F2 failed to be determined, but it would be identified by our
next experiment.

3. Materials and Methods
3.1. Materials and Reagents

Fresh S. fusiforme was purchased from Dongtou (Zhejiang, China), L. japonica and
U. pinnatifida were purchased from local supermarkets (Zhejiang, China). All these samples
were dried in a vacuum oven at 55 ◦C to a constant weight, then grounded into powder,
and stored under dark conditions for later use. Analytical grade ethanol, acetone, am-
monium acetate, and n-hexane were purchased from Zhejiang Changqing Chemical Ltd.
(Hangzhou, China). Methanol and acetonitrile utilized for HPLC were chromatographic
reagent obtained from Merck (Darmstadt, Germany). Fucoxanthin standard (≥95.0%) was
purchased from Sigma-Aldrich (Shanghai, China). The ultrapure water was purified by
Milli-Q system (Bedford, MA, USA), with a resistivity of 18.2 MΩ/cm.

3.2. Preparation of Crude Extract

The preparation method of the crude extract referred to the extraction method of
fucoxanthin in our laboratory. A certain amount of raw material was weighed and mixed
evenly with the extraction solvent ethanol/acetone (V/V, 3:1), and the liquid–solid ratio
was 20 mL g−1. The mixture was kept in the dark for 2 h. After preheating, the VCX500
ultrasonic breaker (Sonics & Materials INC, Newtown, CT, USA) was used as an assistant
to extract fucoxanthin [36,37]. The extraction conditions were as follows: temperature of
65 ◦C, time of 20 min, amplitude of 40%, running for 10 s, with an interval of 10 s. The
obtained extract was centrifuged at 4 ◦C and 8000 r min−1 for 10 min (Sorvall RC 6 Plus
high-speed refrigerated centrifuge, Thermo, Waltham, MA, USA), and the supernatant
was collected. The residue was extracted twice, the supernatant was combined, and the
solvent was evaporated by rotary distillation (RE-3000 Rotary Evaporator, Shanghai Yarong
Biochemical Instrument Factory, Shanghai, China). The dried crude extract was stored in
the refrigerator (4 ◦C) for the next experiment.

3.3. Quantitation of Fucoxanthin by High-Performance Liquid Chromatography

HPLC detection conditions were slightly modified based on existing methods for
detecting fucoxanthin [38]: e2695 HPLC (Waters, Milford, MA, USA), Welchrom® C18
column (250 mm × 4.6 mm, 5 µm i.d.) (Welch Materials Inc., Shanghai, China), detection
wavelength was 449 nm; the mobile phase included acetonitrile: methanol: 0.1% ammo-
nium acetate aqueous solution (v:v:v, 75:15:10) with isocratic elution mode, flow rate of
1 mL min−1, injection volume of 20 µL, column temperature of 30 ◦C, and the detection
time was 20 min.

The fucoxanthin standard was prepared into solutions with different concentrations
including 1, 2, 4, 8, 16, and 32 µg/mL, which were analyzed by HPLC. Linear regression
analysis was made between the peak area of fucoxanthin and its concentration. The
quantitative equation for fucoxanthin was obtained (Equation (2)).

y= 176603 x− 105594 (2)
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where y is the concentration of fucoxanthin (µg/mL) in the sample solution and x is the
peak area of fucoxanthin detected by HPLC.

3.4. Selection of the Two-Phase Solvent System

n-hexane-ethanol-water was selected as the two-phase solvent system for the separa-
tion of fucoxanthin, which referred to the method of purification of lutein [39]. The value
of the distribution coefficient (K) is an important index to evaluate the applicability of a
solvent system [23]. The K value of fucoxanthin in the solvent system was determined
according to the following method:

n-hexane, ethanol and water were mixed according to the set volume ratio (20:11:9,
20:10:10, 20:9:11, 20:8:12, and 20:7:13). After equilibrium and stratification, 2 mL upper
phase and 2 mL lower phase were put into a 10 mL centrifuge tube. Next, 0.5 mg crude
extract was completely dissolved by the above mixed solvent. After fully dissolving,
1 mL upper phase and 1 mL lower phase were filtered with 0.45 µm nylon membrane,
respectively. The peak area of fucoxanthin in the two phases was determined by HPLC
(specific in Section 3.3). According to Equation (3), the K value of fucoxanthin in the solvent
system was calculated.

K =
A1

A2
(3)

where A1 and A2 are the peak areas of fucoxanthin in the upper and lower phases, respectively.

3.5. Preparation of Elution Solvent and Sample Solution

After acquiring the appropriate two-phase solvent system, the solvents was added
into the separating funnel according to the volume ratio and mixed completely. The upper
and lower phases were separated after stratification. The two phases were ultrasonically
degassed in a water bath for 30 min (VCX750 Ultrasonic Cleaner, Sonics & Materials INC.,
Newtown, CT, USA) and utilized as the elution solvent. Crude extracts of different qualities
(50, 60, 80, and 100 mg) were dissolved in the solvent system consisting of 5 mL upper
phase and 5 mL lower phase to prepare sample solutions with different concentrations.

3.6. Optimization of Elution-Extrusion Countercurrent Chromatography

In this study, EECCC was used to separate fucoxanthin. The elution mode was
reversed phase from head to tail, that is, the upper phase was utilized as the stationary
phase while the lower phase was the mobile phase. Before injection, the low temperature
thermostat was opened and the temperature was set to 25 ◦C. The stationary phase was
pumped into the column at a flow rate of 25 mL min−1. After the whole pipeline was
filled with the stationary phase, the main engine (TBE-300C HSCCC, Shanghai Tongtian
Biotechnology Co., Ltd., Shanghai, China) was turned on and the revolution speed was
adjusted to the set value (650, 700, 750, 800, and 850 r min−1) in a positive direction. After
the revolution speed was stable, the flow rate was adjusted to the set value (2, 3, 4, 5, and
6 mL min−1). The stationary phase was replaced by the mobile phase, and the stationary
phase flowing out from the outlet of the detector was collected by volumetric cylinder
and recorded as VS. Through the UV detector, when the baseline reached equilibrium,
it indicated that the entire system reached hydrodynamic equilibrium. At this time, the
retention of the stationary phase (RSP) could be calculated by Equation (4), which was an
index for selecting the optimal flow rate and revolution speed.

RSP =

(
1 − Vs

Vt

)
× 100 (4)

where Vs (mL) is the volume of the stationary phase in the volumetric cylinder, and Vt is
the total volume of the chromatographic column (310 mL).

After the EECCC system reached equilibrium, the sample solution was injected into the
chromatographic column from the injection valve, and the record button of the chromatog-
raphy workstation was immediately turned on to record the UV absorption chromatogram.
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The detection wavelength was set to 405 nm. During the separation process, the liquid
flowing out from the outlet of the detector was collected by an automatic collector after
injection. Preliminary experiments showed that the fucoxanthin was completely eluted in
about 115 min. Therefore, the mobile phase was replaced by the stationary phase again at
115 min, and the elution continued. When all the pigments were pushed out, that is, the
eluate no longer had color, the elution was finished.

3.7. Verification of the Optimal EECCC Method

The EECCC method was verified from three aspects: repeatability, precision and
applicability. The repeatability and precision were performed according to previous meth-
ods [40], while the applicability was verified by applying the optimal EECCC method to
separate fucoxanthin from other brown algae: Laminaria japonica and Undaria pinnatifida.

3.8. Detection of Elution-Extrusion Countercurrent Chromatography Fractions

According to the countercurrent chromatogram, the peak fractions corresponding to
fucoxanthin were combined to obtain purified fucoxanthin by rotary distillation; 0.2 mg
purified fucoxanthin was redissolved with 10 mL ethanol. The content of fucoxanthin was
detected by HPLC to obtain the peak area. The peak area was measured by Equation (2) to
acquire the concentration of fucoxanthin (CF), while the purity of fucoxanthin (WF) was
calculated by Equation (5).

WF =
10CF

0.2 × 1000
× 100% (5)

In order to determine the other fractions separated by EECCC, HPLC was used to
analyze the fractions. They were also scanned by UV-vis spectrophotometer with the
wavelength range of 350–750 nm (Evolution 60 S, Thermo Scientific, Shanghai, China), and
ethanol was used for zero adjustment.

3.9. Statistical Analysis

All experiments were repeated three times. The results were reported as means ±
standard deviation (SD). Duncan’s multiple range test (5% of confidence level) was carried
out using SPSS v21.0. According to Duncan’s test, whether there were significant differences
between the data was judged.

4. Conclusions

In this study, an efficient preparation method was established to successfully separate
high-purity fucoxanthin from brown algae using EECCC. By this method, 12.8, 6.0, and
9.7 mg of fucoxanthin were separated from the pigment mixture of 60 mg S. fusiforme,
L. japonica, and U. pinnatifida, respectively, and the purity was 94.72%, 96.24%, and 92.62%,
respectively. In addition, this method can separate two other major types of pigments
(chlorophyll and pheophytin) from crude extract at different time periods. Overall, the
developed method might serve as a reference for contributing to the development of a new
mode of fucoxanthin production based on brown algae. In follow-up studies, efforts will
be made to increase the recovery of the two by-products of chlorophyll and pheophytin to
improve the value of this method as well as identify what kind of substance F2 is. We will
also look for suitable modifiers to increase the separation speed.
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