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Abstract

This paper presents a day-ahead optimal energy management strategy for economic operation of industrial microgrids

with high-penetration renewables under both isolated and grid-connected operation modes. The approach is based on a

regrouping particle swarm optimization (RegPSO) formulated over a day-ahead scheduling horizon with one hour time
step, taking into account forecasted renewable energy generations and electrical load demands. Besides satisfying its local

energy demands, the microgrid considered in this paper (a real industrial microgrid, “Goldwind Smart Microgrid System”

in Beijing, China), participates in energy trading with the main grid; it can either sell power to the main grid or buy from
the main grid. Performance objectives include minimization of fuel cost, operation and maintenance costs and energy

purchasing expenses from the main grid, and maximization of financial profit from energy selling revenues to the main

grid. Simulation results demonstrate the effectiveness of various aspects of the proposed strategy in different scenarios. To
validate the performance of the proposed strategy, obtained results are compared to a genetic algorithm (GA) based

reference energy management approach and confirmed that the RegPSO based strategy was able to find a global

optimal solution in considerably less computation time than the GA based reference approach.

Keywords: Energy management, Genetic algorithm, Microgrid, Regrouping particle swarm optimization, Renewable

energy

1 Introduction

Microgrids are a group of interconnected loads, distrib-

uted energy resources (including conventional energy

sources and renewables) and energy storage systems at a

distribution level with distinct electrical boundaries. A

microgrid has black start capability and can operate either

in isolated or non-isolated mode in connection with other

microgrids or main electricity grid.

Non-isolated (grid-connected) microgrids can either send

(sell) power to the main grid or receive (buy) from the main

grid. This electric power trading with the main grid has

traditionally been based on a fixed, pre-determined price

per kWh. However, with the incorporation of smart meter

technologies, capable of accurately measuring energy pro-

duction and consumption in each time instant, a shift to

time-varying electricity pricing models is being occurred re-

cently [1]. Advanced control technologies that can combine

together several generation systems and energy storage sys-

tems in microgrid entity are emerging to offer customers

the opportunity to access reliable and secured electricity lo-

cally, sell power during surplus generation or peak grid

price time periods, and buy power in case of generation

scarcity or cheap electricity prices time instants.

This energy exchange strategy development motivates

microgrid operators to adapt their energy trading actions

with the main grid and/or other microgrids according to

the current electricity price and trading conditions in order

to minimize energy production running cost (fuel cost),

ensure maximum utilization of renewables, maximize

economic benefits of the energy storage systems. To

achieve this, specific energy management system should

have to be put in place [1–4].

The topic of optimization (cost minimization or profit

maximization) in microgrids through energy management
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has already been dealt with by several researchers in

different contexts.

An energy management model, with sensitivity analysis

for energy storage capacity investment and electricity load

demand growth, for searching optimum operating policies

for maximization of profit in a microgrid system in

Taiwan is presented in [5]. In [6], the minimization of total

costs for energy production and transportation of two in-

terconnected microgrids that can trade electric energy

with each other but not connected to the main power grid

is addressed. For this aim, a distributed and a central con-

trol strategy are examined using an iterative approach and

an analytical convex optimization method.

Concerning the issue of energy exchange of a microgrid

with the main power grid, [7] targets on the develop-

ment of a neural network based energy management

system (EMS) to allocate the dispatch of generation

sources in a microgrid to take part in the energy trad-

ing market and minimize global energy production

costs. Reference [8] introduces an energy control

apparatus called “Energy Box” for controlling re-

sidential home or small business electrical energy

utilization in an environment of demand sensitive

real-time electricity pricing. A stochastic dynamic pro-

gramming method is employed based on forecast in-

formation from load demands, weather, and grid price

for optimally managing the utilization, storage and

selling/buying of electrical energy. Reference [9] sug-

gests an optimization model based on hierarchical

control for a microgrid configuration capable of par-

ticipating to the wholesale energy trading market as

both energy consumer and producer with the objective

of minimizing energy production costs and maximiz-

ing energy trading revenues.

Reference [10] proposes a generic mixed integer linear

programming technique for operating cost minimization

in market-based price environments for a residential

microgrid including electrical and thermal loads, energy

storage units and some controllable loads. Reference [11]

presents an online optimal energy/power control strategy

for the operation of energy storage in grid-connected

microgrids. The approach is based on a mixed-integer-lin-

ear-programming formulated over a rolling horizon

window, considering predicted future electricity load de-

mands and renewable energy generations.

Reference [12] presents a genetic algorithm (GA) for op-

timal unit sizing of an isolated microgrid considering mul-

tiple objectives including life-cycle cost minimization,

renewable energy penetration maximization, and emission

reduction. In [13, 14], particle swarm optimization (PSO)

has been applied for real-time energy management of

stand-alone microgrids.

In most of the literatures reported above, regarding

energy management strategies in microgrids, a single en-

ergy storage unit is considered. The integration and com-

bined optimal storage management of microgrids

containing two or more energy storage units (ESUs) have

not been considered so far. Moreover, the PSO is seen to

suffer from stagnation once particles have prematurely

converged to any particular region of the search space in

the energy management strategies that have applied the

standard version of PSO for solving the energy manage-

ment optimization problem [15].

An actual industrial microgrid (Goldwind Smart Mi-

crogrid System), in Beijing, China, is considered to deliver

the power demand requirements of the various loads

within an industrial park (Goldwind Science and Etechwin

Electric. Co., Ltd.), shown in Fig. 1. It comprises of wind

Fig. 1 Microgrid architecture and system model
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energy conversion system (WECS) that utilizes a perman-

ent magnet synchronous generator (PMSG), three solar

PV systems, diesel generator (DE) and energy storage sys-

tem (ESS) containing two storage batteries, vanadium

redox flow battery (VRB) and lithium-ion (Li-Ion) battery.

The super capacitor energy storage, shown in Fig. 1, is

used for transient energy balance compensation, not for

steady state energy storage, and hence it is not included in

the optimization model. The microgrid is connected to

the main grid through a 10 kV bus at the point of com-

mon coupling (PCC). The microgrid operates under both

isolated and non-isolated modes. The microgrid is in

islanded mode when the power switch (PCC main switch)

between the PCC bus and the main grid is disconnected

and in non-isolated mode when this switch is turned on.

The actual ratings of the components as shown in Fig. 1

are used in this paper.

In this paper, we propose a RegPSO approach to opti-

mally solve the EMS optimization model. To evaluate

and compare the performances of this approach, another

modern optimization method, genetic algorithm (GA)

was also implemented.

The rest of the paper is organized as follows. Section II

discusses the formulations of the objective and constraint

functions. In Section III, the proposed method of optimal

energy management strategy and the RegPSO algorithm

are presented. The case study simulation results are

discussed and performance comparisons are provided in

Section IV, and finally the paper is concluded in Section V.

2 Discussion

2.1 Microgrid energy management optimization model

The objective problem and constraint functions of the

optimization model for energy management in the

microgrid considering the two possible operation modes

are formulated in this section. In the isolated mode, the

microgrid objective is formulated to minimize the energy

production cost (fuel cost), and the operation and main-

tenance costs within the microgrid. While operating in

grid-connected mode, the microgrid can either send

(sell) power to the main grid or receive (buy) from the

main grid. During the periods receiving power from the

main grid, the microgrid is expected to minimize the en-

ergy production cost, operation and maintenance cost

and the expense of buying power from the main grid;

while sending power to the main grid, the objective is to

maximize the profit which is the energy selling revenue

minus the energy production cost, and operation and

maintenance cost.

This objective function is subjected to six decision

variables: the charging/discharging power of the

VRB, state of charge (SOC) of the VRB, charging/

discharging power of the Li-Ion battery, SOC of the

Li-Ion battery, the diesel generator power output,

and the quantity of power exchange with the main

grid.

2.2 Formulation of objective functions

The following are some of the information that should

be specified in advance for a day-ahead energy manage-

ment in microgrids [16, 17]:

� 24-h-ahead hourly load demand forecast

� 24-h-ahead hourly wind power forecast

� 24-h-ahead hourly PV power forecast

� Grid price forecast, or pre-specified grid price

The objective functions are formulated independ-

ently by considering three operational cases based on

the microgrid operating mode and the power flow di-

rections between the microgrid and the main grid. In

case I, the objective function for the isolated mode of

operation is considered. In case II, the microgrid is in

grid-connected mode and it receives (buys) power

from the main grid. While in case III, the microgrid

is also in grid-connected mode but it sends (sells)

power to the main grid.

2.2.1 Case I – isolated mode

In case I, the objective targets to minimize the energy

production cost (fuel cost), and the operation and main-

tenance costs within the microgrid.

The objective function is given by:

Min
X

n

t¼1 f
X

m

i¼1

F i Pi tð Þð Þ:τi tð Þ þ SCi tð Þð Þþ

X

m

i¼1

COM;i tð ÞPi tð Þ þ COMwind tð ÞPwind tð Þ þ

COMpv tð ÞPpv tð Þ þ
X

q

j¼1

COMes;j tð ÞPes;j tð Þ
g 1ð Þ

Where, n is the number of time steps for a sched-

uling day; m indicates the number of all types of dis-

patchable DGs; q is the number of all types of energy

storage units within the microgrid; Pi(t) is the power

output of the ith dispatchable DG at time t and

Fi(Pi(t)) is the corresponding fuel cost function, and

for a diesel generator it is defined as:

F i Pi tð Þð Þ ¼ ai:Pi tð Þ2 þ bi:Pi tð Þ þ c ð2Þ

Where, ai, bi and ci are the cost function

parameters.

τi(t) = 1, if the ith dispatchable DG is in operation;

τi(t) = 0, if the ith dispatchable DG is OFF at time t;

SCi(t) is the start up cost function of each dispatchable

DG and is given by:
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SCi tð Þ ¼ sci; if τi tð Þ −τi t−1ð Þ ¼ 1

SCi tð Þ ¼ 0;

otherwise

Where, sci is the start up cost of dispatchable

DG i.

cOM,i(t) is the operation and maintenance cost of the

ith dispatchable DG at time t; cOMwind(t) is the operation

and maintenance cost of the wind power generation sys-

tem at time t; Pwind(t) is the forecasted wind generation

at time t; cOMpv(t) is the operation and maintenance cost

of the PV system at time t; Ppv(t) is the forecasted PV

generation at time t; COMes,j(t) is the operation and

maintenance cost of the jth energy storage unit at time t;

Pes,j(t) is the jth energy storage charging/discharging

power at time t.

2.2.2 Case II – Non-isolated mode - buying power from

main grid

In this case, the objective aims in minimizing the energy

production cost, the operation and maintenance costs

and the expenses of energy purchasing from the main

grid.

The objective function is:

Min
X

n

t¼1 f
cgridbuy tð ÞPgrid tð Þ þ

X

m

i¼1

F i Pi tð Þð Þ:τi tð Þ þ SCi tð Þð Þ þ

X

m

i¼1

COM;i tð ÞPi tð Þ þ COMwind tð ÞPwind tð Þ þ

COMpv tð ÞPpv tð Þ þ
X

q

j¼1

COMes;j tð ÞPes;j tð Þ
g 3ð Þ

Where, cgridbuy(t) is the electricity buying price from

the main grid at time t; Pgrid(t) is the power purchased

from the main grid at time t, Pgrid(t) > 0.
2.2.3 Case III - Non-isolated mode - selling power to main grid

Here, the objective aims in maximizing the profit which

is the energy selling revenue minus the energy produc-

tion cost and the operation and maintenance costs

within the microgrid.

The objective function becomes

Max
X

t¼1

n f
−cgridsell tð ÞPgrid tð Þ−

f
X

m

i¼1

F i Pi tð Þð Þ:τi tð Þ þ SCi tð Þð Þ þ
X

m

i¼1

COM;i tð ÞPi tð Þþ

COMwind tð ÞPwind tð Þ þ COMpv tð ÞPpv tð Þ þ

X

q

j¼1

COMes;j tð ÞPes;j tð Þ
gg 4ð Þ

Where, cgridsell(t) is the electricity selling price to the

main grid at time t; Pgrid(t) is the power sold to the main

grid at time t, Pgrid(t) < 0.

2.3 Formulation of constraint functions

The objective functions formulated above are subjected

to the following constraints; comprising ESS units’ cap-

acity and operational limits, dispatchable DGs’ power

limit, grid power transfer limits, and all other technical

requirements in the microgrid:

2.3.1 Power output of the ith dispatchable DG at time t

Pmin
i tð Þ≤Pi tð Þ≤Pmax

i tð Þ ð5Þ

2.3.2 Grid power exchange limits

Pmin
grid tð Þ≤Pgrid tð Þ≤Pmax

grid tð Þ ð6Þ

The grid power exchange minimum ( Pmin
grid tð Þ ) and

maximum (Pmax
grid tð Þ) limits can be set as a large amount

or the capacity of the transformer linking the microgrid

and the main grid.

2.3.3 Demand-supply balance

X

m

i¼1

Pi tð Þ þ
X

q

i¼j

Pes;j tð Þ ¼ Pload tð Þ−Pwind tð Þ−Ppv tð Þ−Pgrid tð Þ

ð7Þ

where Pload(t) denotes the forecasted load demands at

time t.

2.3.4 ESS units charging/discharging power limits

Pmin
es;j tð Þ≤Pes;j tð Þ≤Pmax

es;j tð Þ ð8Þ

Pes,j(t) > 0, the ith energy storage is discharging;

Pes,j(t) < 0, the ith energy storage is charging;

Pes,j(t) = 0, the ith energy storage is inactive.

2.3.5 ESS units dynamic operation performance

SOCes;j t þ 1ð Þ ¼ SOCes;j tð Þ−
ηes;j tð ÞPes;j tð Þ

Ces;j

ð9Þ

SOCmin
es;j ≤SOCes;j t þ 1ð Þ≤SOCmax

es;j

Where, ηes,j(t) is the ith energy storage unit charging or

discharging efficiency at time t; Ces,j denotes the rated

storage capacity of jth energy storage unit.

Thus, the decision variables that need to be deter-

mined are the ESUs’ charging/discharging power

Pes,j(t) and their state of charges SOCes,j(t) (for i =1,

2, …, q); the power output of dispatchable DGs

Pi(t),and the quantity of power exchange with the

main grid Pgrid(t) at time t.
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3 Method

3.1 Proposed microgrid energy management strategy

The purpose of the EMS is to make secure day-ahead

decisions for the microgrid economic operations. The

proposed system takes into account the intermittency

of renewable generations, the fluctuations of load de-

mands, the energy production fuel cost, operation and

maintenance costs of different sources, technical re-

strictions and capacity limits, time-varying grid prices,

and the energy trading revenue possibilities with the

main grid. Figure 2 illustrates the information flows of

the proposed system, in which an EMS converts to

output commands for energy storage units’ optimal

charging/discharging power, diesel generator power

output, and main grid import/export power quantities.

Decisions are based primarily on renewable generation

and load demand forecasts, energy production fuel

cost and electricity prices in the main grid. These de-

cisions are generated in this paper for a day-ahead

time horizon on 1 hour interval basis.

The EMS in this study is restricted to control only the

real power. Power quality, frequency regulation, and

voltage stability are supposed to be controlled at the

generation level. Microgrid black start operation or

synchronization with the main grid is not considered ei-

ther. The proposed system comprises functions, such as

an energy storage units charging/discharging power eco-

nomic scheduling, diesel generator output power opti-

mal scheduling, forecasting for renewable generators

and load demands, and energy trading participation with

the main grid.

3.2 The RegPSO algorithm

PSO has few variables to update and is simple to imple-

ment. Many researches and applications have been suc-

cessfully implemented using the PSO concept. Reference

[18] presents a general idea of PSO and its applications

in power systems, and also gives comparisons with other

optimization methods.

For a decision vector x ∈ℜn consisting the objective

problem’s decision variables (positions), the feasible de-

sign search space is defined by a subset [17]:

Ω ¼ xL1; x
U
1

� �

� xL2 ; x
U
2

� �

�…� xLn; x
U
n

� �

⊂ℜ
n ð10Þ

where xLj and xUj are, respectively, the lower and upper

bounds of the design search space along dimension j for

j = 1, 2, …, n.

The position or coordinate of the ith particle in the kth

iteration is give by:

xi kð Þ ¼ xi k−1ð Þ þ vi kð Þ; i ¼ 1; 2; …; N ð11Þ

where N is the swarm size and vi(k) is the velocity of

the ith particle at the kth iteration which shows the rate

of change of particle’s position in the design search

space, and given by:

vi kð Þ ¼ ω kð Þvi k−1ð Þ þ c1r1 Pbest;i−xi k−1ð Þ
� �

þc2r2 Gbest−xi k−1ð Þð Þ
ð12Þ

where, ω(k) is a dynamic inertia weight whose value

declines linearly with the iteration number to dampen

the velocities over iterations, enabling the swarm to con-

verge more precisely and efficiently, and given by:

ω kð Þ ¼ ωmax−
ωmax−ωmin

kmax

� �

:k ð13Þ

where ωmax and ωmin are the initial and final inertia

weight values, respectively, kmax is the maximum

number of iterations used; c1 and c2 are the cognitive

and social learning rates respectively, and r1 and r2
are random numbers in the range of 0 and 1. The pa-

rameters c1 and c2 represent the relative importance

of the position (memory) of the particle itself to the

position (memory) of the swarm; pBest or Pbest,i is

the best position achieved so for by particle i, while
Fig. 2 Information flow in the proposed EMS
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gBest or Gbest is the global best position of all the

particles in the swarm.

However, PSO is seen to suffer from stagnation

when particles have prematurely converged to any

specific region of the design search space [15]. The

proposed RegPSO circumvents this stagnation prob-

lem by automatically reorganizing the swarm when

premature convergence is detected or when the max-

imum number of iterations or function evaluations per

grouping is reached [19]; this liberates particles in the

swarm from the state of premature convergence, thus

enabling continued exploration toward the true global

minimum solution. This is computationally simple yet

effective improvement to the conventional PSO algo-

rithm. RegPSO has been tested experimentally over

popular benchmark optimization problems and suc-

cessfully approximates the global minimum of these

benchmark problems [15]. The flowchart in Fig. 3

shows the general working principle of the RegPSO

algorithm.

At each iteration, k, the swarm radius, δ(k), is considered to

be the maximum Euclidean distance, in n-dimensional search

space, of any particle from the global best solution as follows:

δ kð Þ ¼ max
i∈ 1;2;…;Nf g

xi kð Þ−Gbestk k ð14Þ

where||.|| represents the Euclidean norm.

Let diam(Ω) = ‖range(Ω)‖ be the diameter of the de-

sign search space. Particles are considered to be in prox-

imity and regrouping is activated when the normalized

swarm radius, δnorm, satisfies the premature convergence

condition defined as:

δnorm ¼
δ kð Þ

diam Ωð Þ
< ε ð15Þ

where ε, called the stagnation threshold.

When premature convergence is noticed as given by

condition (15), the swarm is regrouped in a designed

search space centered about the global best solution.

The regrouping factor found to work well across bench-

marks tested [15], given by (16), is constant across

groupings.

ρ <
6

5ε
ð16Þ

Upon detection of premature convergence, the range

in which particles are to be regrouped about the global

best is computed per dimension as the minimum of (i)

the original range of the design search space on dimen-

sion j and (ii) the product of the regrouping factor with

the maximum distance along dimension j of any particle

from global best:

rangej Ω
rð Þj ¼ min rangej Ω

0
� �

j
; ρ max

i∈ 1;…;Nf g

xr−1i;j −G
r−1
best;j

�

�

�

�

�

�

� �

ð17Þ

The swarm is then regrouped by reinitializing particles’

position as:

xi ¼ Gbestr−1 þ r!
0
:range Ωrð Þ−

1

2
range Ωrð Þ ð18Þ

where, range(Ωr) = [range1(Ω
r),…, rangen(Ω

r)] which

utilizes a random vector r!
0

to randomize particles

within the implicitly defined design search space:

Ωr ¼ x1L;r ; x1U ;r½ � � x2L;r ; x2U ;r½ � �…� xnL;r ; xnU ;r½ � ð19Þ

with respective lower and upper bounds as:

Fig. 3 Flowchart of the RegPSO algorithm
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xjL;r ¼ Gr−1
best;j −

1

2
rangej Ω

rð Þj

xjL;U ¼ Gr−1
best;j þ

1

2
rangej Ω

rð Þj

ð20Þ

The swarm regrouping index, r, begins with 0 prior to

the incidence of any regrouping and grows by one with

each successive regrouping. Vector Gbestr−1 is the global

best at the last iteration of the previous grouping, and

x!ir−1 is the position of particle i at the last iteration of

the previous grouping. Note that before any regrouping

takes place, the original design search space, Ω0, corres-

pond to a swarm regrouping index of r = 0. The max-

imum velocity is recomputed with each regrouping:

vjmax;r ¼ λ:rangej Ω
rð Þj ð21Þ

Where, λ is the velocity clamping factor.

4 Result

4.1 Test case

The 2500 kW wind, 480 kW PV, 500 kW diesel generator,

4 h*300 kW VRB, 4 h*200 kW Li-Ion battery industrial

microgrid in this study is designed to deliver power to an

industrial company. The minimum and maximum SOC of

the ESUs is 20 and 100%, respectively. An ideal 100% char-

ging/discharging efficiency is considered for all ESUs. The

diesel generator fuel cost function parameters are 0.00025

($/kWh) 2, 0.0156 $/kWh, 0.3312 $/h, and 23$, for a, b, c,

and SC, respectively. The day-ahead forecasts for the wind

and PV generation are shown in Figs. 4 and 5, respectively.

In China, Beijing, there is a three-step time-dependent

tariff for buying electricity from the main grid (State grid)

within a day. In 2016, this energy buying price for indus-

trial companies in business development area (BDA-Yiz-

huang in Beijing) is: 5.7323 USD cents per kilowatt-hour

(c$/kWh) during the period [11 pm – 7 am), 9.7385 c$/

kWh during the periods [7 am – 10 am), [3 pm – 6 pm)

and [9 pm – 11 pm), and 13.852 c$/kWh during the

Fig. 4 Wind power forecast

Fig. 5 PV solar power forecast
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periods [10 am – 3 pm) and [6 pm – 9 pm). How-

ever, the price of selling power to the main grid is

fixed throughout the day as 5.9492 c$/kWh, shown in

Fig. 6.

The operation and maintenance costs considered

within the microgrid are, respectively 0.3767 c$/kWh,

0.2169 c$/kWh, 0.5767 c$/kWh, 0.003 c$/kWh and

0.0015 c$/kWh for the wind turbine system, PV systems,

diesel generator, VRB and Li-Ion battery.

4.2 Operation in isolated mode (case I)

The day-ahead load demand forecast for this case is shown

in Fig. 7. The peak load demand is less than the summation

of the peak generation capacity of each DG unit.

The RegPSO-based optimal energy scheduling of the

microgrid for the next day under isolated operation

mode, and the corresponding SOCs of the ESUs are

shown in Figs. 8 and 9, respectively.

As shown in the figures above, during the first 4 h

[12 am – 4 am) of the simulation period, there is a signifi-

cant generation of wind energy and no generation from

the PV source. In this period, the renewable energy com-

pletely supplies the load demands and charges the ESUs

which were at minimum SOCs (20%) before the simula-

tion started, and the DE is off (zero power) to reduce the

fuel cost as there is enough renewable generation in the

microgrid. The ESUs continuously charge and their SOCs

increases until 4 am, shown in Fig. 9. However, although

they don't get fully charged the ESUs stop charging and

their charging powers come to zero (inactive state) at

4 am since the available renewable generation can only

supply the load demand since from this time till 1 pm.

During the period [1 pm – 9 pm), the power gener-

ation from both the wind and PV sources is not enough

to supply the load demands, and thus the ESUs start dis-

charging to send power to the microgrid together with

the wind, PV and DE.

The ESUs continuously discharge and reach their mini-

mum storage capacity (240 kWh for VRB and 160 kWh

for Li-Ion battery), shown in Fig. 9, at 9 pm and their dis-

charging power come zero then after. To reduce the cost

of energy production, the ESUs are inactive state since

then; until they will be charged again by an available

Fig. 6 Grid price for industrial companies in BDA, Beijing, in 2016

Fig. 7 Load demand forecast
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excess renewable generations in the microgrid and their

SOCs are kept at minimum value of 20%. The wind and

DE supply the load demands from 9 pm to 12 am.

4.3 Operation in Non-isolated mode (case II & III)

In this case, the microgrid is in a grid-connected mode,

and participates in the energy trading exchange with the

main grid in addition to supplying the load demands

within it. Figure 10 shows the next day load demand

forecast for this scenario.

Figure 11 shows the RegPSO-based optimal energy

scheduling of the microgrid under grid-connected oper-

ation mode, and the corresponding SOCs of the ESUs

are also shown in Fig. 12.

During the period [12 am – 6 am), shown in Fig. 11,

the renewable energy completely supplies the load de-

mands within the industrial park and charges the

ESUs which were considered to be at their minimum

SOC (20%) before the simulation started at zero time

(12 am). Moreover in this period, the microgrid sells

the surplus generation to the main grid.

The ESUs continuously charge and reach their max-

imum storage capacity, shown in Fig. 12, at 6 am and

then their charging power become zero. During the

period [6 am – 1 pm), there is still an excess generation

in the microgrid, however the ESUs are already fully

charged, thus the microgrid keeps selling the excess en-

ergy to the main grid.

During cheap grid-price time period, the diesel fuel

cost is more expensive than the grid price when the

power is greater than 151 kW. In moderate grid-

price time slots, the diesel fuel cost is more expensive than

the grid price when the power is greater than 311 kW,

and at the peak grid-price period, the diesel fuel cost is

more expensive than the grid price when the power is

greater than 472 kW as shown in Fig. 13.

The power generation from the renewables is not

enough to supply the load demands and the grid price is

peak (expensive) during the period [1 pm – 3 pm).

Hence, the ESUs start discharging to support the micro-

grid load demands together with the wind and PV and

the DE and grid powers are zero in this period to

minimize the total cost as shown Fig. 11.

Fig. 8 Optimal dynamic scheduling using RegPSO in isolated mode

Fig. 9 SOCs of VRB and Li-Ion battery obtained using RegPSO in isolated mode
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During the period [3 pm – 6 pm), the generation from

the renewables is insufficient to supply the microgrid

load demands and the grid price is moderate. Hence, the

ESUs stop discharging for later peak hour demand use

and the microgrid utilizes the generations from the DE

and main grid for economic reasons as shown Fig. 11.

In the period [6 pm – 9 pm), the microgrid load de-

mand is greater than the local generations from the re-

newables. Since the electricity buying price is expensive

in this period, the ESUs restart discharging to supply the

load together with the wind and DE. The ESUs continu-

ously discharge and reach their minimum storage

Fig. 10 Load demand forecast

Fig. 11 Optimal dynamic scheduling using RegPSO in non-isolated operation mode

Fig. 12 SOCs of VRB and Li-Ion battery obtained using RegPSO in non-isolated operation mode
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capacity (240 kWh for VRB and 160 kWh for Li-Ion bat-

tery), shown in Fig. 12, at 9 pm and their discharging

power come zero then after. Thus, the ESUs are in in-

active state since then; until they will be charged again

by an available excess renewable generations in the

microgrid and their SOCs are kept at minimum value of

20% as shown in Fig. 12.

The load demand is supplied by the wind and DE dur-

ing the period [9 pm – 11 pm) and the grid power is

zero for minimum cost. In the period [11 pm – 12 am),

there comes again excess renewable generation from the

wind source and the microgrid sells this energy to the

main grid instead of starting charging the ESU for max-

imum daily total profit.

Fig. 13 Comparison of diesel fuel cost vs. time-varying grid-price

Fig. 15 Energy resources dynamic scheduling using GA in non-isolated operation mode

Fig. 14 Energy resources dynamic scheduling using GA in isolated operation mode
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Figures 14 and 15 show the GA-based optimal energy

scheduling simulation results for the isolated and grid-

connected operation modes, respectively.

The hourly values of energy production fuel costs by

both optimization methods for the isolated operation

mode is shown in Fig. 16. The hourly values of energy

production fuel costs and grid power purchasing

expenses obtained from both approaches for the grid-

connected operation mode is shown in Fig. 17. The

hourly values of energy selling revenues obtained from

both approaches for the grid-connected operation mode

is shown in Fig. 18.

As shown in Figs. 16 and 17, the microgrid hourly energy

production and purchasing expenses are zero during the

Fig. 18 Hourly comparison of energy selling revenue in non-isolated mode of operation

Fig. 17 Hourly comparison of energy production fuel costs and grid power purchasing expenses in non-isolated mode of operation

Fig. 16 Hourly comparison of energy production fuel costs in isolated mode of operation
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period [12 am – 3 pm) since the microgrid has sufficient

renewable generation within it. The best performance of

the RegPSO algorithm over the GA is clearly visible in most

of the operation hours. Using RegPSO-based approach, the

energy purchasing expense was very much lower than the

GA-based purchasing prices. This shows the effectiveness

of the proposed strategy for achieving a global optimum so-

lution as desired. Moreover, as it is shown in Table 1, the

RegPSO-based energy storage management strategy has

given a lower daily total expense of energy production and

purchasing than the GA-based approach.

As seen in Fig. 18, during the period [12 am – 1 pm),

the microgrid sells energy to the main grid and gets

profit. After 1 pm, except at [11 pm – 12 am), the

microgrid has no surplus generation to sell, and hence

the selling income is zero. Moreover, since the electricity

selling price to the main grid is fixed throughout the

day, the hourly selling income values obtained by both

algorithms (RegPSO and GA) are almost the same.

Table 2 gives the total computation time taken by both

energy management optimization approaches (using

Intel core i5-5200 CPU, 2.20 GHz processor and 4 GB

RAM PC) for both microgrid operation modes. The

RegPSO-based energy storage management has allocated

the schedule within a short period of time compared to

the GA-based method in both operation modes.

5 Conclusion

Optimal dynamic energy scheduling strategy for a

Wind-PV-DE-VRB-Li-Ion industrial microgrid under

both isolated and grid-tied operation modes was pro-

posed in this study using the RegPSO algorithm. The

proposed approach takes into account the fluctuations

of renewables and load demands in the microgrid and

appropriate day-ahead forecasts have been made to over-

come these fluctuations. Simulation results have demon-

strated the effectiveness and possible advantages of the

developed energy management strategy in minimizing

the energy production fuel cost, grid power purchasing

expense, maximizing the energy selling profit, maximiz-

ing the economic usage of ESUs and enhancing the

utilization of the renewables within the microgrid. Com-

parison of simulation results with GA-based approach,

demonstrated the effectiveness of the proposed RegPSO-

based energy management strategy in resulting a pos-

sible reduced energy production fuel cost and grid

power purchasing expense for the microgrid. Moreover,

the proposed approach is fast convergent and results

global optimum solutions in an acceptable short compu-

tation time. This also manifests the ability of the pro-

posed approach for real time energy management of

microgrids with any number of renewable DGs and

ESUs under both operation modes.
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