
Citation: Roman, A.; Forestano, R.T.;

Matchev, K.T.; Matcheva, K.; Unlu,

E.B. Oracle-Preserving Latent Flows.

Symmetry 2023, 15, 1352. https://

doi.org/10.3390/sym15071352

Academic Editor: Longfei Zhang

Received: 18 May 2023

Revised: 2 June 2023

Accepted: 30 June 2023

Published: 3 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Oracle-Preserving Latent Flows
Alexander Roman , Roy T. Forestano † , Konstantin T. Matchev *,† , Katia Matcheva † and Eyup B. Unlu †

Institute for Fundamental Theory, Physics Department, University of Florida, Gainesville, FL 32611, USA;
alexroman@ufl.edu (A.R.); roy.forestano@ufl.edu (R.T.F.); katia@phys.ufl.edu (K.M.); eyup.unlu@ufl.edu (E.B.U.)
* Correspondence: matchev@ufl.edu
† These authors contributed equally to this work.

Abstract: A fundamental task in data science is the discovery, description, and identification of any
symmetries present in the data. We developed a deep learning methodology for the simultaneous
discovery of multiple non-trivial continuous symmetries across an entire labeled dataset. The
symmetry transformations and the corresponding generators are modeled with fully connected
neural networks trained with a specially constructed loss function, ensuring the desired symmetry
properties. The two new elements in this work are the use of a reduced-dimensionality latent space
and the generalization to invariant transformations with respect to high-dimensional oracles. The
method is demonstrated with several examples on the MNIST digit dataset, where the oracle is
provided by the 10-dimensional vector of logits of a trained classifier. We find classes of symmetries
that transform each image from the dataset into new synthetic images while conserving the values of
the logits. We illustrate these transformations as lines of equal probability (“flows”) in the reduced
latent space. These results show that symmetries in the data can be successfully searched for and
identified as interpretable non-trivial transformations in the equivalent latent space.

Keywords: symmetry transformations; symmetry invariant; Lie groups; Lie algebras; supervised
learning; deep learning; encoder–decoder; MNIST handwritten digit dataset

1. Introduction

Symmetries permeate the world around us and can be found at all scales—from the
microscopic description of subatomic particles in the standard model (SM) to the large-scale
structure of the universe. Symmetries are used as a guiding principle in contemporary
science [1], as well as in our everyday interactions. Therefore, a fundamental task in data
science is the discovery, description, and identification of the symmetries present in a given
dataset. According to Noether’s theorem [2], the presence of a continuous symmetry in data
implies that there exists a conservation law that is universally applicable and indispensable
in understanding the system’s behavior and evolution. At the same time, symmetries can
be perceived as aesthetically pleasing in the arts and be used to recognize and evaluate
the work of schools and individual artists [3]. In both theoretical physics and abstract
mathematics, there is a rich tradition of studying symmetries and their underlying group
properties, which prove interesting in their own right [4].

Applications of machine learning (ML) to the study of symmetries have been pursued
by a number of groups in various contexts. Previous research has concentrated on examin-
ing the correlation between a specific symmetry and a learned representation of the data.
This has been explored in various domains, such as astronomy [5] and particle physics [6].
Similarly, investigations have been conducted into how a symmetry can be incorporated
within the ML architecture, e.g., in the embedding layer of a neural network (NN) [7].
In addition, alternative approaches have proposed for the development of specialized ML
architectures, such as equivariant NNs, which are intentionally designed with specific
symmetry properties from the beginning [8]. For example, Lorentz symmetry can be use-
fully enforced in particle physics to classify jets [9,10], to identify top quark decays [11,12],
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or for anomaly detection [13]. Gauge symmetry can be similarly implemented in lattice
simulations [14] (for a review, see [15]). When symmetries are incorporated directly into the
ML model, it becomes more economical (in terms of learned representations), interpretable,
and trainable. The explorations in this field can also be expanded to include discrete sym-
metries, particularly permutation symmetries [16,17]. These endeavors lay the groundwork
for data-driven investigations in search of new physics, whereby the data are rigorously
tested for any potential deviations from the well-established symmetries of the standard
model [18–20].

Machine learning techniques have recently been applied to more formal mathematical
questions that traditionally have fallen within the domain of theorists, e.g., performing sym-
bolic computations [21,22] or deriving analytical formulas by training a symbolic regression
on synthetic data [23–28]. The benefits of symbolic deep learning have been demonstrated
in a number of usage cases, including astrophysics [29–31], astronomy [5,32], exoplan-
ets [33], particle physics [34–36], material [37], and social science [38]. A comprehensive
understanding of the symmetries inherent in a problem often leads to the identification of
conserved quantities [39,40] or provides insights into a more fundamental description of
the problem [41]. Machine learning has been employed in various applications, including
the detection of symmetries in potentials [3,7,42], determining the symmetry relationship
between input pairs [43], exploring scale-invariant and conformal symmetries [44], and the
landscape of string theory [45–47]. Recent advancements have leveraged generative adver-
sarial networks (GANs) to learn transformations that preserve probability distributions [48].
Furthermore, ML applications have extended into the realm of group theory, which serves
as the mathematical language for abstract symmetries. For instance, ML has been utilized
to study irreducible representations of Lie groups [49], as well as to obtain the Lie group
generators that reflect symmetries present in the data [50–53].

The primary objective of this paper is to develop a deep learning approach that
emulates the cognitive processes of traditional theorists and has the ability to identify
and classify the complete set of (continuous) symmetries present in a given dataset, all
“from first principles”. This means that the method does not rely on any preconceived
assumptions or biases. The only inputs required for our methodology are a labeled dataset
(x; y) similar to the one shown in Equation (1) and a vector oracle (~ϕ(x)), which can either
be learned from the dataset itself or provided externally. Our study complements or
extends previous related works [3,7,42,50–53]. The procedure is general and does not
require a priori knowledge of what potential symmetries might be present in the dataset.
Instead, the symmetries are learned from scratch. A public code for this paper is available
online [54].

2. Definition of the Problem

Our starting point is a labeled dataset containing m samples of n features and k targets:

x(1)1 , x(2)1 , . . . , x(n)1 ; y(1)1 , y(2)1 , . . . , y(k)1

x(1)2 , x(2)2 , . . . , x(n)2 ; y(1)2 , y(2)2 , . . . , y(k)2
...

...
...

...
...

...
...

...
x(1)m , x(2)m , . . . , x(n)m ; y(1)m , y(2)m , . . . , y(k)m

(1)

We use boldface vector notation

x ≡ {x(1), x(2), . . . , x(n)} ∈ Rn (2)

for the n-dimensional input features and arrow vector notation for the k-dimensional
target vectors.

~y ≡ {y(1), y(2), . . . , y(k)} ∈ Rk. (3)

The dataset (1) can then be written in a compact form as {xi;~yi}, where i = 1, 2, . . . , m.
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In order to define a symmetry of the data (1), we utilize the vector function ~ϕ(x),
which plays the role of an oracle producing the corresponding target labels (~y1,~y2, . . . ,~ym):

~yi ≡ ~ϕ(xi) , i = 1, 2, . . . , m . (4)

This is an ideal classifier on the given dataset. In data science applications (our primary
interest in this paper), the vector oracle (~ϕ : Rn → Rk) needs to be learned numerically
from the dataset (1) via standard regression methods. On the other hand, in certain more
formal theoretical applications, the oracle (~ϕ) can already be provided to us externally in
the form of an analytical function. The methodology developed in this paper applies to
both of these situations.

With this setup, the main goal is to derive a symmetry transformation (f : Rn → Rn)

x′ = f(x) , (5)

which preserves the ~ϕ-induced labels (4) of our dataset (1). In other words, we want to find
the function (f(x)) for which

~ϕ(x′i) ≡ ~ϕ(f(xi)) = ~ϕ(xi), ∀i = 1, 2, . . . , m . (6)

In general, a given dataset exhibits several different symmetries, which can now be
examined and categorized from the point of view of group theory. For this purpose, one
needs to focus on infinitesimal symmetry transformations and study the corresponding set
of distinct generators ({Jα}, α = 1, 2, . . . , Ng). A given set of generators ({Jα}) forms a Lie
algebra if the closure condition is satisfied, i.e., if all Lie brackets

[
. , .
]

can be represented
as linear combinations of the generators already present in the set:

[
Jα, Jβ

]
=

Ng

∑
γ=1

a[αβ]γJγ. (7)

The coefficients (a[αβ]γ) are the structure constants of the symmetry group present in
our dataset (the square bracket index notation reminds the reader that they are antisymmet-
ric in their first two indices: a[αβ]γ = −a[βα]γ). The simplest algebras (referred to as Abelian)
are those for which all generators commute and, hence, have vanishing structure constants.

3. Method

Following [52,53], we model the function f with a neural network (FW ) with n neurons
in the input and output layers, corresponding to the n transformed features of the data
point x′. The trainable network parameters (weights and biases) are generically denoted by
W . During training, they evolve and converge to the corresponding trained values (Ŵ) of
the parameters of the trained network (FŴ ), i.e., the hat symbol denotes the result of the
training. In order to ensure the desired properties of the network, we design a loss function
with the following elements.

Invariance: In order to enforce invariance under transformation (5), we include the
following mean squared error (MSE) term in the loss function L:

Linv(W , {xi;~yi}) =
1
m

m

∑
i=1

[~ϕ(FW (xi))−~yi]
2 . (8)

A NN trained with this loss function produces an arbitrarily general (finite) symmetry
transformation (FŴ ) parameterized by the values of the trained network parameters
(Ŵ). The particular instantiation of FŴ depends on the initialization of the network
parameters, so by repeating the procedure with different initializations, one obtains a
family of symmetry transformations.



Symmetry 2023, 15, 1352 4 of 15

Infinitesimality: In order to focus on the symmetry generators, we restrict ourselves to
infinitesimal transformations (δF ) in the vicinity of the identity transformation (I):

δF ≡ I + ε GW , (9)

where ε is an infinitesimal parameter, and the parameters (W) of the new neural network
(G) are forced to be finite. The loss function (8) can then be rewritten as

Linf(W , {xi;~yi}) =
1

mε2

m

∑
i=1

[~ϕ(xi + εGW (xi))−~yi]
2 , (10)

with an extra factor of ε2 in the denominator to compensate for the fact that generic
transformations scale as ε [42]. In addition, we add a normalization loss term:

Lnorm(W , {xi}) =
1
m

m

∑
i=1

[‖GW (xi)‖ − 1]2 +
1
m

m

∑
i=1

[
‖GW (xi)‖ − ‖GW (xi)‖

]2
, (11)

where the overline in the last term indicates sample averaging.
After minimization of the loss function, the trained NN (GŴ ) represents a correspond-

ing generator
J = GŴ , (12)

where

Ŵ ≡ arg min
W

(
Linf + hnormLnorm

)
(13)

are the learned values of the NN parameters (hnorm is a hyperparameter usually set to 1).
By repeating the training Ng times under different initial conditions (W0), one obtains a set
of Ng (generally distinct) generators ({Jα}, α = 1, 2, . . . , Ng).

Orthogonality: To ensure that the generators ({Jα}) are distinct, we introduce an
additional orthogonality term to the loss function.

Lortho(W , {xi}) =
1
m

m

∑
i=1

Ng

∑
α<β

[
GWα

(xi) · GWβ
(xi)

]2
. (14)

Group structure: In order to test whether a certain set of distinct generators ({Jα})
found in the previous steps generates a group, we need to check the closure of the alge-
bra (7), e.g., by minimizing

Lclosure(a[αβ]γ) = ∑
α<β

Tr
(

CT
[αβ]C[αβ]

)
, (15)

with respect to the candidate structure constant parameters (a[αβ]γ), where the closure
mismatch is defined by

C[αβ](a[αβ]γ) ≡
[
Jα, Jβ

]
−

Ng

∑
γ=1

a[αβ]γJγ. (16)

Since Lclosure is positive and semidefinite, Lclosure = 0 indicates that the algebra is
closed and that we are therefore dealing with a genuine (sub)group.

In principle, the number of generators (Ng) is a hyperparameter that must be specified
ahead of time. Therefore, when a closed algebra for a given Ng value is found, it is only
guaranteed to be a subalgebra of the full symmetry group, and one must proceed to also
test higher values for Ng. The full algebra then corresponds to the maximum value of Ng
for which a closed algebra of distinct generators is found to exist [52,53].
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4. Simulation Setup

In order to illustrate the method, we use the standard MNIST dataset [55] consisting
of 60,000 images of 28 by 28 pixels. In other words, the dataset (1) consists of m = 60, 000
samples of n = 28 × 28 = 784 features. The images are labeled as digits from 0 to 9.
The classic classification task for this dataset is to build an oracle (~y = ~ϕ(x)) that calculates a
ten-dimensional vector of ‘logits’ in the output layer (this raw output is typically normalized
into respective probabilities with a softmax function). An image is then classified as
arg max(~ϕ(x)).

When applied to the MNIST dataset, the general problem presented in Section 2 can
be formulated as follows: what types of transformations (5) can be performed on all of the
original images in the dataset so that the 10-dimensional logit vector (~ϕ(x)) is conserved,
i.e., the symmetry Equation (6) is satisfied? Note that conserving all ten components of the
oracle function as in Equation (6) is a much stronger requirement than simply demanding
that the prediction for each image remains the same. For the latter, it is sufficient to ensure
that the map (f) is such that

arg max(~ϕ(f(x))) = arg max(~ϕ(x)). (17)

As discussed in Section 3 and illustrated with the examples in the next section, we
apply deep learning to derive the desired transformations (f). The neural network (FW ) is
implemented as a sequential feed-forward neural network in PYTORCH [56]. Optimizations
are performed with the ADAM optimizer with a learning rate between 3× 10−5 and 0.03.
The loss functions were designed to achieve a fast and efficient training process without the
need for extensive hyperparameter tuning. The training and testing data (1) were obtained
from the standard MNIST dataset [55].

4.1. Trivial Symmetries from Ignorable Features

Before proceeding, let us develop some intuition by discussing the trivial symmetries
that are present in the dataset in analogy to the treatment of cyclic (also called ignorable)
coordinates in classical mechanics [57]. In classical mechanics, if the Lagrangian of a system
does not contain a certain coordinate, then that coordinate is said to be cyclic or ignorable,
and its corresponding conjugate momentum is conserved. Let us ask whether there are any
such ignorable features in our case. The two heat maps in Figure 1 show the maximum
value for each pixel (left panel), as well as the mean value for each pixel (right panel), when
averaged over the whole dataset. Figure 1 reveals that there are a number of pixels near the
corners and the edges of the image that contain no data at all. This suggests that a robust
classifier is insensitive to the values of those pixels, i.e., these pixels behave similarly to the
ignorable coordinates seen in classical mechanics. This observation is further evidenced by
the fact that the highest, i.e., least informative, principal components across the features
(not shown here) are linear combinations of those corner and/or edge pixels. We are not
interested in such trivial symmetries.

It may be possible to find non-trivial maps directly between images using a deep
NN, but training is predicated on the existence of a metric capable of capturing non-trivial
structure in the dataset. (For example, rotating an image slightly may result in a symmetry
with respect to a classifier, but it changes the values of many pixels. Hence, the value of
a naive metric such as the MSE between these two images would be large. On the other
hand, the distance as measured by a more sophisticated metric, such as the Earth Mover’s
Distance, would be small.) One candidate for such a metric is the Earth Mover’s Distance,
which solves an optimal transport problem between two distributions. However, it is
too computationally expensive to be used in the loss function. In what follows, we first
reduce the dimensionality of the dataset and explore symmetry transformations in the
corresponding `-dimensional latent space (R`) with ` � n because in latent space, the
Euclidean metric captures rich structure.
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Figure 1. Heat maps of the maximum value (left panel) and the mean value (right panel) of each
pixel in the MNIST dataset. The individual pixel values in the dataset range from 0 to 255.

4.2. Dimensionality Reduction

As shown in Figure 2, instead of looking for transformations (f) in the original feature
space (Rn) that are symmetries that preserve the oracle (~ϕ) from (4), we choose to search for
transformations (g) acting in a latent space (R`), which are symmetries that preserve the
induced oracle (~ψ : R` → Rk). For this purpose, we train an autoencoder, the architecture
of which is shown in Figure 3, consisting of an encoder (E : Rn → R`) and a decoder
(D : R` → Rn). The latent vectors (zi ∈ R`) are defined as

zi ≡ E(xi) , i = 1, 2, . . . , m . (18)

The induced classifier (~ψ : R` → Rk) is trained as

~yi = ~ψ(zi) = ~ψ(E(xi)), i = 1, 2, . . . , m ; (19)

built as a fully connected dense NN with three hidden layers of sizes 128, 128, and 32; and
trained with the categorical cross-entropy loss.

With those tools in hand, we look for symmetry transformations (g) : R` → R` in the
latent space in analogy to Equation (9):

z′ = z + ε g(z) , (20)

which preserves the new oracle (ψ) in analogy to (6)

~ψ(z′i) ≡ ~ψ(z + ε g(z)) = ~ψ(zi), ∀i = 1, 2, . . . , m . (21)

A single transformation (g) is represented by a fully connected dense NN with various
architectures, as necessitated by the complexity of the exercise, and trained with the loss
functions described in Section 3. Once such symmetry transformation (g) in the latent space
is found, and its effect on the actual images can be illustrated and analyzed with the help
of the decoder (D).
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Figure 2. Flow chart of the different data processing steps discussed in this paper: an encoder
(E : Rn → R`), a decoder (D : R` → Rn), a transformation in the feature space (f : Rn → Rn), a
transformation in the latent space (g : R` → R`), a trained vector oracle (~ϕ : Rn → Rk), and a trained
vector oracle (~ψ : R` → Rk). The transformations (f) and g are symmetries if ~y(x′) = ~y(x) and
~y(z′) = ~y(z), respectively.
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Figure 3. The network architecture of our autoencoder consisting of an encoder (E) and a decoder (D).
The yellow modules are convolutional layers, the green modules are fully connected layers, and the
blue modules are convolution transpose layers. The dark shaded regions indicate ReLU activa-
tion functions.

5. Examples

For the main exercise presented in Section 5.3 below, we use the complete set of digits
and a 16-dimensional latent space in which the results are difficult to plot and visualize,
which is why we begin with a couple of toy examples for which we consider only two
classes—the zeros and the ones—and either a two-dimensional latent space (Section 5.1) or
a three-dimensional latent space (Section 5.2).



Symmetry 2023, 15, 1352 8 of 15

5.1. Two Categories and ` = 2 Latent Variables

In this subsection, we perform a toy binary classification exercise in ` = 2 latent space
dimensions. We keep only the images of class “0” and “1”, which are then randomly
train–test-split in a ratio of 3:1. The training set is used to train the autoencoder shown in
Figure 3 and the classifier (ψ). Since this example is a simple binary classification, ψ is set
to have a single output layer neuron, the logit (raw output) of which is fed into a sigmoid
function. The results are shown in Figure 4 in the plane of the two latent-space variables
(z(1), z(2)). The red and blue points denote the set of validation images with true labels 0
and 1, respectively. The white star symbols mark the centers of these two clusters, which we
refer to as “Platonic” (in the sense that they are the ideal representatives of their respective
classes) images of the digits zero and one. By moving along the straight, white dashed line
between them, we pass through points in the latent space, which (after decoding) produce
images that smoothly interpolate between the platonic zero and the platonic one. This
variation is illustrated in the top panel of Figure 5. Motion along the white dashed line is
therefore not a symmetry transformation, since it changes the meaning of the image. It is
the motion in the orthogonal direction that we are interested in, since that is the direction
in which, while the actual image is changing, its interpretation by the classifier is not.

Figure 4. The results of the exercise described in Section 5.1 illustrated in two-dimensional latent
space. The red and blue points represent validation images with true labels of 0 and 1, respectively,
and the white stars (connected by a straight dashed line) denote the centers of these two clusters.
The heat map shows the unscaled output from the single neuron in the output layer of the ψ classifier.
The superimposed vector field visualizes the symmetry transformation (g) found by our method.
The black solid lines are three representative symmetry streamlines used for the illustrations in
Figure 5.

Once we train the neural network for g, we obtain a vector field in the latent space.
The flow of this vector field is illustrated by black arrows in Figure 4. The three black
solid lines are three representative symmetry streamlines used for the illustrations in
the bottom three panels in Figure 5. The leftmost streamline passes near the Platonic
streamline and therefore represents a series of images that are interpreted by the classifier
(ψ) as “ones” with very high probability (see the blue line in the second panel of Figure 5).
The corresponding row of decoded images in the second panel reveals that the symmetry
transformation has the effect of rotating the digit “one” counterclockwise.

The rightmost streamline in Figure 4, on the other hand, passes through the region near
the Platonic “zero” and therefore contains images that are almost surely interpreted as zeros
by the classifier, as evidenced by the red line in the last panel of Figure 5. The corresponding
row of decoded images in the last panel reveals that the symmetry transformation has
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the effect of not only rotating the digit “zero” counterclockwise but also simultaneously
stretching and enlarging the image.

Figure 5. Explorations of the latent space from Figure 4 by following the white dashed line (top
panel), the left solid black line (second panel), the middle solid black line (third panel), or the right
solid black line (fourth panel). Each panel shows the likelihood of an image being zero (red line) or
one (blue line) along the respective latent-space trajectory. At the base of each panel, we show a row
of representative images after applying the decoder (D(z)).

The middle streamline in Figure 4 passes through the boundary region between the
two category clusters and therefore generates images that are rather inconclusive according
to the classifier. This is confirmed in the third panel of Figure 5, which shows that the
likelihoods of a “zero” and “one” are comparable along that streamline (It is noteworthy
that the line is somewhat unstable because there are very few samples in this region; hence,
the generator model is less reliable here). The decoded images are confusing to interpret,
even for a human and are rotated counterclockwise in a similar fashion to the images in the
other panels.

An important feature of our scheme is the ability to find multiple non-trivial symme-
tries and vice-versa in order to determine when no additional symmetries are possible.
Since we chose a compressed representation with only two dimensions, one of which is
constrained by the oracle, we are left with a single symmetry degree of freedom. Therefore,
if we attempt to identify a second symmetry (by simultaneously training two NNs for g,



Symmetry 2023, 15, 1352 10 of 15

as explained in Section 3), the training converges to a large loss value, implying that all
desired conditions cannot be satisfied simultaneously. Specifically, invariance requires that
the flows follow the contours of equal likelihood, forcing them to align, which contradicts
the orthogonality condition. This dilemma is illustrated in Figure 6, where we repeat the
previous exercise for the case of Ng = 2. The two latent flows represented by the black and
blue arrows, respectively, represent an attempt to strike an optimal balance between these
competing and irreconcilable requirements.

Figure 6. As in Figure 4 but requiring two separate orthogonal symmetry transformations (g1 (black
arrows) and g2 (blue arrows)).

5.2. Two Categories and ` = 3 Latent Variables

In this subsection, we expand the latent space of our toy example to ` = 3 dimensions,
which, in contrast to the example presented in the previous subsection, allows us to find
a second, non-trivial, latent flow that generates a symmetry. The analysis proceeds as
before, except the autoencoder is retrained with a three-dimensional bottleneck. The final
result is presented in Figure 7, which shows the three-dimensional latent space, together
with the validation data that form two clusters of zeros and ones. Then, we superimpose
three surfaces that are level sets of the oracle (ψ) with likelihoods of “zero” of 0.9999, 0.5,
and 0.0001, respectively. A generic local symmetry transformation is tangential to these
surfaces, which is precisely the result we find when we train a NN for a single symmetry
transformation (g).

The real power of our method lies in its ability to simultaneously find multiple
orthogonal symmetry generators. When we retrain for the case of Ng = 2, we are able to
find two orthogonal vector flows, as illustrated in Figure 7 with the yellow and red arrows
(for simplicity, we only show a small number of vectors sampled from the top surface).
Note that all arrows are tangential to the level-set surface, as expected for an invariant
latent flow.

We chose this particular toy example because it represents the most complicated
situation in which there are multiple non-trivial generators that can still be easily visualized.
Once we generalize to higher dimensions in the next subsection, such a simple visualization
is not possible, but the results can be intuitively understood in a similar fashion.
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Figure 7. An illustration of the three-dimensional latent space of the example in Section 5.2. The red
and blue points represent validation images with true labels of 0 and 1, respectively. The three
surfaces show three level sets of the oracle (ψ) with likelihoods of “zero” of 0.9999, 0.5, and 0.0001,
respectively (from top to bottom). The yellow and red arrows denote vectors sampled from the two
latent flows found by our method (for simplicity, we only sample points on the upper surface).

5.3. Ten Categories and ` = 16 Latent Variables

In this subsection, we present our final example in which we consider all ten classes
of digits and use an autoencoder with an ` = 16 dimensional bottleneck. To improve
performance, we found it useful to increase the number of mapping layers (i.e., those
immediately before and after the bottleneck) from one to three. Proceeding as before,
we train a classifier (~ψ) with 10 softmax outputs and a neural network for the symmetry
transformation (g). The result is illustrated in Figure 8, where, in analogy to Figure 5, we
show a series of decoded images along a streamline of the latent flow. The center images in
Figure 8 represent the platonic digits in the dataset. From each of those ten starting points,
we follow the respective streamline for 6000 steps of ε = ±10−3. The three images to the
left and to the right of the central one are obtained after 2000, 4000, and 6000 such steps in
each direction, respectively. The images in each row are classified correctly with a predicted
probability 1.0. This validates our method for the case of a single symmetry flow.

We also simultaneously trained multiple generators and found non-trivial orthogonal
flows, even for relatively large numbers of generators (Ng ∼ 10), which hints at the
presence of non-Abelian symmetries. This study only scratches the surface of a promising
new research direction to reveal the rich symmetry structure of complex datasets, which we
leave for future work. The end goal should be a rigorous understanding of their algebraic
and topological properties.
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Figure 8. Symmetric morphing of images along streamlines of the 16-dimensional latent flow found
in Section 5.3. The images in the middle column represent the “platonic” digits in the dataset (the
cluster centers for each of the ten classes). The remaining six images in each row are obtained by
moving along or against the streamline passing through the respective platonic image.

6. Summary and Outlook

In this study, we investigated a fundamental question in data science that is commonly
encountered in many fields: what is the symmetry of a labeled dataset, and how does
one identify its group structure? For this purpose, we applied a deep learning method
that models generic symmetry transformation and its corresponding generators with a
fully connected neural network. We trained the network with a specially constructed loss
function, ensuring the desired symmetry properties, namely (i) the transformed samples
preserve the oracle output (invariance); (ii) the transformations are non-trivial (normal-
ization); (iii) in case of multiple symmetries, the learned transformations must be distinct
(orthogonality) and (iv) must form an algebra (closure).
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We leverage the fact that a non-trivial symmetry induces a corresponding flow in the
latent space learned by an autoencoder. We demonstrated the performance of our method
on the standard MNIST digit dataset, in which the oracle is provided by the 10-dimensional
vector of logits of a trained classifier. We found classes of symmetries that transform each
image from the dataset into new synthetic images while conserving the values of the logits.
We illustrated these transformations as lines of equal probability (“flows”) in the reduced
latent space (see Figures 4, 6 and 7). These results show that symmetries in the data can be
successfully searched for and identified as interpretable non-trivial transformations in the
equivalent latent space.

The proposed method uniquely combines several advantages with respect to existing
approaches in the literature.

• The method is agnostic (in the sense that we do not require any advance knowledge
of what symmetries can be expected in the data) and non-parametric (the symmetry
generators are a priori unrestricted, and their specific form is learned only during
training). In other words, rather than testing for symmetries from a predefined list of
possibilities, the symmetries are extracted directly from data.

• The symmetries are found in a reduced-dimensionality latent space, where the sim-
ple Euclidean metric is capable of capturing the relevant structure in the data (see
Section 4.1).

• The oracle is allowed to be high-dimensional (in the case of the MNIST digits example,
it is a 10-dimensional logit vector).

Future work could extend this approach to a much broader range of data and symme-
try types of interest with respect to both formal theory and applied data science. For ex-
ample, the presence of the closure term (15) can be leveraged in the study of continuous
symmetries described by Lie groups. While classical Lie groups can be defined in terms of
a single polynomial invariant [53], exceptional Lie groups require at least two invariants.
On the data science side, there are many potential uses whenever the latent representation
of the data reveals interesting structural features that are imperceptible or obscured in
terms of the original high-dimensional features.
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