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Traditional two-dimensional (2D) cell culture systems have contributed tremendously to our
understanding of cancer biology but have significant limitations in mimicking in vivo con-
ditions such as the tumor microenvironment. In vitro, three-dimensional (3D) cell culture
models represent a more accurate, intermediate platform between simplified 2D culture
models and complex and expensive in vivo models. 3D in vitro models can overcome 2D
in vitro limitations caused by the oversupply of nutrients, and unphysiological cell–cell and
cell–material interactions, and allow for dynamic interactions between cells, stroma, and
extracellular matrix. In addition, 3D cultures allow for the development of concentration gra-
dients, including oxygen, metabolites, and growth factors, with chemical gradients playing
an integral role in many cellular functions ranging from development to signaling in normal
epithelia and cancer environments in vivo. Currently, the most common matrices used for
3D culture are biologically derived materials such as matrigel and collagen. However, in
recent years, more defined, synthetic materials have become available as scaffolds for 3D
culture with the advantage of forming well-defined, designed, tunable materials to control
matrix charge, stiffness, porosity, nanostructure, degradability, and adhesion properties,
in addition to other material and biological properties. One important area of synthetic
materials currently available for 3D cell culture is short sequence, self-assembling peptide
hydrogels. In addition to the review of recent work toward the control of material, struc-
ture, and mechanical properties, we will also discuss the biochemical functionalization of
peptide hydrogels and how this functionalization, coupled with desired hydrogel material
characteristics, affects tumor cell behavior in 3D culture.

Keywords: three-dimensional cell culture, hydrogel, functionalization, cancer, matrix

INTRODUCTION
HISTORY OF CANCER MODELS
Over the past decades, fundamental biological research and trans-
lational and clinical studies have tremendously increased our
understanding of cancer, transforming it from a poorly under-
stood and mostly deadly disease into one with ever evolving
therapeutic options and increasing survival rates. While a large
variety of cancer models is available, spanning from cells cultured
in a monolayer (1, 2), to cells cultured within a complex substrate,
to animal models (3), and, ultimately, human cancer tissues and
clinical trials (4),much of our understanding of cancer has resulted
from research on cultured cells utilizing various cell models (5, 6).
As each model has its own set of advantages and disadvantages, the
best choice often becomes a tradeoff between simplicity of setup
vs. clinical transfer of results to human patients (7).

The growing range of cancer model options available today was
not available at the turn of the 19th to the 20th century. One of

Abbreviations: 2D, two-dimensional; 3D, three-dimensional; ECM, extracellular
matrix; Fmoc-FF, fluorenylmethoxycarbonyl-diphenylalanine; Fmoc-RDG, fluo-
renylmethoxycarbonyl arginine–glycine–aspartic acid; HA, hyaluronic acid; PEG,
polyethylene glycol.

the earliest tumor models created was designed by Carl Jensen
(8), where he transplanted mouse sarcomas into healthy mice and
measured tumor growth to estimate the vitality of the transplanted
cancer. This type of tumor transplantation would continue as the
primary animal model until the 1980s, with the creation of trans-
genic mice and the ability to readily develop in vivo cancer models
with specific gene mutations (9). In addition to the early animal
cancer models, stable cancer cell lines were first developed starting
in the 1950s with Hela cells being the most commonly used and
oldest cancer cell line available (10). These immortalized cell lines
allowed for prolonged, controlled cellular studies when cultured in
glass Petri dishes or, more recently, on tissue culture polystyrene.
However, while monolayer cultures undoubtedly have played and
still play a crucial role in cancer research, there remains a vast jump
in complexity from two-dimensional (2D) cell cultures to animal
models often resulting in clear differences between experimental
findings and clinical reality (11).

Beginning in the early 1980s, researchers began to address the
large differences between 2D cell culture and the in vivo environ-
ment by adding more intricacy to 2D cell culture with testing the
effects of new substrate materials on cells in culture (12–14). It is
now well accepted that 2D cultures can show large differences in
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cell phenotype by controlling the cell culture scaffold. For example,
on 2D hyaluronic acid (HA) scaffolds, changing the elasticity of the
matrix through crosslinking or adding collagen ligands affected the
organization of the actin cytoskeleton (15). Another study showed
that matrix stiffness controlled stem cell differentiation and lamin
levels (16). Hydrophobicity of the scaffold was shown to control
adhesion of cells to the matrix and ultimately what phenotypes the
cells display (17). Additional complexity can be added by growing
cells in vitro in three-dimensional (3D) matrices. Culturing cells
within a 3D substrate is a relatively new culture method that seeks
to combine the simplicity of in vitro cell culture with creating
results more relevant to a 3D in vivo environment while also help-
ing to minimize the costs and variability associated with animal
models (18). This will be of particular interest in the development
of new lead compounds for cancer therapy by high-throughput
screening (HTS) of small molecule libraries. While HTS remains
a promising step in cancer drug development, its value has been
limited as prediction of the clinical success of new drug candidates
proved to be difficult (19). One of the reasons for this lack of reli-
ability to predict in vivo efficacy has often been ascribed to the fact
that most HTS screenings are done using traditional 2D cultures
of cancer cells. While 2D cultures are convenient and can easily be
automated, new 3D matrices are well suited to provide more physi-
ological and thus predictive platforms for HTS and drug discovery
in cancer.

ADVANTAGES OF 3D CELL CULTURES
When comparing 2D and 3D cell cultures at a cursory level, it
should seem clear that 3D cell constructs are more true to in vivo
conditions as tissues and tumors are 3D structures of extracellular
matrix (ECM) and multiple cell types that interact in a complex
manner rather than being a simple monolayer or a series of stacked
cellular monolayers (20, 21). In a 3D environment, cells respond
differently to stimuli as compared to 2D monolayers because of
multiple variables in the environment surrounding the cells (22)
and the material that constitutes the scaffold (e.g., protein, syn-
thetic polymer, or a combination of the two) has a large impact
through its properties such as density (23), porosity (24), and
stiffness (25, 26). Chemical functionalities in 3D scaffolds can also
affect cell behavior and the density of attachment ligands controls
the amount of focal adhesions in a cell. While in monolayers, these
focal adhesions are limited to the interactions of the basal mem-
brane with the surface of the tissue culture dish; these interactions
encompass the entire cell surface in a 3D matrix (27, 28). Such
cell–matrix interactions often result in differences in cell mor-
phology within a 3D matrix. For example, in gelatin hydrogels,
cell alignment and elongation can be controlled (29).

Another significant difference between 2D and 3D environ-
ments is the availability of small molecules such as glucose, amino
acids, and other growth factors that are usually added to cul-
ture medium and that of oxygen. In 2D monolayers, usually all
cells have direct access to these nutrients; while in 3D cultures,
the availability of small molecules depends on diffusion rates and
local environments within the scaffold (30). This results in con-
centration gradients throughout the matrix that can more closely
mimic a tissue environment with cells encapsulated further from
the media having decreased exposure to additives and oxygen

(31). Such chemical gradients can be responsible for various cell
responses including differentiation and oxygen gradients are par-
ticularly important in tumor development (32). 3D cultures also
allow for the formation of spheroids that are instrumental to many
cancer cell studies including breast cancer (33). Such spheroids
have been shown to have an LD50 value much closer to in vivo
values, which may explain the lack of in vivo efficacy often found
in drug development that relies on 2D monolayers (34).

In vivo cells exist in a complex aqueous 3D environment encom-
passing primarily proteins and polysaccharides. The cells interact
with their environment by binding to these proteins thereby acti-
vating signaling pathways that crosstalk with growth factor signal-
ing cascades to integrate environmental cues. For example, matrix
signals contribute to the integrin-mediated control of mesendo-
derm differentiation in which specific matrix glycans govern cell
fate (35). Cancer cells are adept at altering their microenviron-
ment to promote tumor growth and metastasis. In the case of
thyroid cancer harboring the BRAF mutation, the mutation pro-
motes upregulation of genes associated with ECM remodeling,
resulting in a more aggressive cancer (36, 37). Each facet of the
microenvironment helps to control and direct cell fate (38, 39),
and consideration of the optimal scaffold for 3D cell culture is of
paramount importance as it will directly affect the phenotype and
behavior of cells in culture. An exciting new application will be the
modeling of tumor angiogenesis and evaluation of the angiogenic
capability of tumor cells in 3D (40). While there are various matrix
supports available to recreate complex culture environments due
to their unique ability to recapitulate a realistic in vivo environ-
ment, hydrogels have been the overwhelming choice for use in 3D
cell culture.

HYDROGELS AS 3D CELL CULTURE SCAFFOLDS
A hydrogel is a dilute polymer or supramolecular network with
given structure and network properties obtained by intermole-
cular crosslinks in the case of a polymer molecular network or
by interfibrillar crosslinks in the case of supramolecular fibrillar
hydrogel networks (41, 42). A hydrogel is mostly water, usually
defined as over 95% by volume, but the material displays solid-
like material properties in the quiescent state (43). Hydrogels are
ideal materials to use as 3D cell culture scaffold because of the
similarities in material properties and, when properly designed,
the similarities in biological properties to the ECM (43). A com-
mon example of a hydrogel is gelatin, a protein mixture derived
from cleaving collagen that is used in many different processes;
including cooking, photography, and pharmaceuticals. For use in
cell culture, there are multiple types of gelatin depending on the
collagen source, which have different mechanical properties (44).
When comparing porcine and piscine gelatin, there are similari-
ties due to their base collagen being alike but the different ratios
of amino acids result in piscine gelatin being weaker rheologically
and having a lower melting temperature (45).

For the purpose of this review, hydrogels will be categorized
by their source, biologically or synthesized, and by their mater-
ial, naturally occurring or by human design. Natural hydrogels
are those that are found in nature, and are taken from a biological
source, and include collagen, matrigel, which constitute ECM pro-
teins and alginate that originates from cell walls of algae. Due to
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their natural source, they are usually biocompatible. On the other
hand, they are complex and ill-defined scaffolds that are difficult
to tune mechanically.

There are multiple types of synthetically produced hydrogel
scaffolds including non-natural polymers like polyethylene glycol
(PEG) (46) and natural polymers like the polysaccharide HA (47–
49). Unnatural synthesized polymer hydrogels have the advantage
that they are usually easy to tune by controlling material aspects
either through synthesis or crosslinking. They are also compar-
atively inexpensive and the material is reproducible and shows
consistent results. However, the lack of biological moieties may be
a shortcoming when attempting to reproduce natural EMC but
biological peptides often can be cross-linked to the scaffold to
improve functionality (50, 51). Like synthetic polymers, natural
synthesized polymers share advantages in regard to material tun-
ability and batch-to-batch consistency with reproducible results
(52–54). Natural synthesized hydrogels can also be highly bio-
compatible because of the biological nature of the base material
requiring less frequently functionalization as biological moieties
are part of the primary chain. Unfortunately, the material cost can
be high depending on the type of synthesis required.

CURRENT STANDARD NATURAL CELL CULTURE HYDROGELS
Hydrogel materials made from natural proteins, for example colla-
gen and matrigel, are a common choice as 3D cell culture scaffolds
due to their biocompatibility, adhesive properties, and inclusion of
growth factors, often resulting in cellular phenotypes typically seen
in vivo, including spheroid formation, controlled differentiation,
and directed growth.

COLLAGEN
Collagen is a fibrillar protein made of three alpha helices coiled
together into a triple helix. It is the most abundant protein in
humans and provides for structure and function in the ECM,
making it a logical choice as an in vitro cell culture scaffold
(55–57). Cells attach to collagen through integrins thereby acti-
vating cell signaling pathways that control cell survival (58), cell
growth, and differentiation (59). The cellular phenotype of cells
grown in collagen may differ vastly from monolayer cultures. For
example, Madin-Darby canine kidney (MDCK) cells grow in 2D
cultures as tight monolayers but form spheroids in collagen (60).
Changes in collagen nanostructure can control morphology and
the osteogenic potential of cells in culture (61), while changes
in collagen stiffness can alter fibroblast proliferation (58). Col-
lagen has also been seen to improve survival outcomes for cell
transplants into rats (58).

MATRIGEL
Matrigel is a collection of proteins and growth factors extruded
from Englebreth–Holm Swarm mouse tumors (13). It is mainly
made of the proteins collagen, laminin, and enactin, but also
includes multiple growth factors like basic fibroblast growth factor,
epidermal growth factor, insulin like growth factor, transform-
ing growth factor beta, platelet derived growth factor, and nerve
growth factor (62). Because it is produced from excreted ECM
and has been minimally processed, Matrigel is a good mimic of
in vivo cellular conditions to study cellular phenotypes (63, 64).

For example, breast cancer cells cultured on matrigel are more
susceptible to drug treatment compared to monolayer cultures
(11), and macrophages can be induced to express endothelial
lineage markers in an angiogenic environment with matrigel (65).

While naturally derived collagen and matrigel hydrogel mate-
rials show success for many cell culture conditions, there is signifi-
cant room for improvement of the materials for 3D culture. Some
of the limitations of biologically derived materials result from the
manufacturing process from live tissue, resulting in a complex,
chemically not well-defined scaffold consisting of more than 1800
proteins (62, 66). The presence of multiple growth factors together
with batch-to-batch variability of the purified scaffold may inter-
fere with biological studies of signaling pathways or pharmaco-
logical investigations on drug-induced effects (67). To overcome
this obstacle, growth factor-reduced matrigel has been developed
for applications requiring a more highly defined basement mem-
brane preparation, whereas high concentration matrigel appears
to be better suited for in vivo applications. A study comparing the
two scaffolds using patients’ degenerative disk cells found that
cells grown on top of either scaffold displayed similar pheno-
types, but the proliferation rate was higher for cells grown on
the reduced growth factor scaffold (68). However, an ill-defined
hydrogel material cannot be approved for human implantation
leading to road blocks in translating basic research into clini-
cal applications. Thus, there is clearly a need for new materials
with the biological functionality of naturally occurring ECM and
the capability of designing specificity in biological and material
properties (69). Synthetic hydrogel materials are ideally suited to
address these limitations.

ESTABLISHED AND UPCOMING SYNTHETIC PEPTIDE
HYDROGELS
The evolving field of small peptide-based hydrogel materials allows
for material definition and design applicable for future clini-
cal biomedical efforts and provides new scaffolds for 3D cell
culture to address important questions in cell biology, drug deliv-
ery/discovery, and tissue engineering. The molecules, while diverse
in primary structure, have a similar, general design. The pep-
tides tend to be amphiphilic, relying on intramolecular folding
and intra- and intermolecular physical interactions, controlled by
pH and salt, for gelation through intermolecular assembly. Most
final hydrogel materials also have a nanofibrillar structure. One
major advantage of using synthetic peptides is the ease by which
alterations can be introduced into the hydrogel scaffold by amino
acid substitution/addition (both natural and non-natural), exten-
sion/shortening of the peptide sequence, or functional epitope
addition at the termini of peptide chains or as side chains to a
peptide sequence (70–73). Thus, the peptides described in the fol-
lowing chapter in fact represent a family of peptides with a basic
structure, and if applicable, additional functional alterations. Each
section will examine different short sequence amino acid hydrogels
families, their unique characteristics, advantages and disadvan-
tages, and potential as a 3D cell culture scaffold. The peptides
being presented have been around for varying amounts of time.
The older more established peptides have been used to culture
a variety of cell lines including cancer cells and have undergone
several functional alterations to improve culture conditions. The
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more recently developed peptides are not as well characterized and
some were originally developed as a drug delivery vehicle and are
only now being discovered as suitable 3D culture scaffolds. Despite
the fact that some of these hydrogels have not yet been used for the
culture of cancer cells, we decided to include these peptides in this
review. They should not be overlooked as they show great promise
for future applications in cancer research, including modeling of
the tumor microenvironment, enrichment of cancer stem cells
and drug discovery. For example, while HTS remains a promising
initial step in building new classes of lead compounds, and partic-
ularly in cell line models for cancer, its value is limited in predicting
clinical effectiveness. One of the reasons for this lack of reliabil-
ity to predict in vivo efficacy has often been ascribed to the fact
that most HTS screenings were done using traditional 2D cultures
of cancer cells. While 2D cultures are convenient and can eas-
ily be automated, compelling evidence suggests that cells cultured
in non-physiological 2D conditions differ from cells grown in the
more in vivo like 3D systems. Thus, a 3D culture model is expected
to be a better platform for drug discovery and is likely more predic-
tive of efficacy of potential drugs for future preclinical studies and
clinical trials. Collagen or matrigel are commonly used 3D matri-
ces that provide an in vivo like environment. However, due to their
natural origin, the batch-to-batch variation is considered a major
hindrance to obtain reproducible results. Natural matrices also
limit the possibility of mimicking different tissue environments as
they only have limited capabilities for their chemical and mechan-
ical properties to be modified. Synthetic peptide hydrogels can
overcome these limitations and can provide an optimized biolog-
ically active cell environment with tunable porosity, permeability,
and mechanical stability. Synthetic matrices not only offer more
defined properties than matrices obtained from natural resources
but also allow for controlling of adhesive moieties (e.g., function-
alization with RGDS peptides), controlled inclusion of proteolytic
sites, and defined mechanical properties such as material stiffness
and pore size to enhance nutrient exchange and improve cell pro-
liferation. While HTS screening in 3D cultures is still in its infancy,
it is one of the most promising applications of synthetic peptide
hydrogels.

EAK16 AND RADA16
EAK16 is an amphiphilic peptide and was one of the earliest pep-
tide hydrogels used for cell culture (74). Its amino acid sequence,
AEAEAKAKAEAEAKAK (Figure 1), was discovered in yeast (75),
and subsequently a second peptide designated RADA16 was devel-
oped based on reproduction of the molecular interactions that

FIGURE 1 |The EAK16 sequence. Reprinted with permission from
Ref. (81). Copyright 2004 Biophysical Society.

cause EAK16 to gel. These gels initially were utilized as a sub-
strate for 2D cultures and have been used for quite a variety of
cell types including HIT-T15, CEF, HFF, HepG2, MG63, Hela,
HEK293, 3T3, PC12, and SH-SY5Y cells (76). A typical proto-
col for a culture setup includes mixing of the peptide solution
with culture medium and allowing the mixture to dry overnight.
Plating the cells on top of the substrate enables standard cell cul-
ture procedures, proliferation assays, and fluorescence microscopy
(76). EAK16 was subsequently also developed into a true 3D cul-
ture model, where a cell/sucrose suspension was mixed directly
with the peptide solution creating a cell encapsulated gel (77).
RADA16 was used for a 3D ovarian cancer model to study cell
invasion and drug resistance. When compared to 2D cultures,
the RADA16 cell system showed stronger resistance to anticancer
agents, curcumin and paclitaxel (73). In a different study, RADA16
was used as a vehicle to deliver Schwann cells to rat spinal cord
injuries, and the RADA16 group showed the biggest improvement
in mobility as measured by the Basso Beattie and Bresnahan test
(78). A similar study used RADA16 functionalized with IKVAV,
a sequence derived from laminin, to deliver neural stem cells
to traumatic brain injury in rats. Greater cell proliferation was
shown using RADA16 and the ability to direct cell differenti-
ation fate with the functionalized matrix caused more mature
neurons to form (79). While these are promising results, the
major disadvantage of EAK16 and RADA16 are their mechan-
ical properties. The stiffness is very low compared to natural
tissue resulting in a lack of appropriate rheology. Groups have
attempted to increase stiffness by adding functional groups with
some success. A notable example was the addition of GPGGY to
RADA16, an amino acid sequence inspired by a protein in spider
silk (80).

Fmoc-FF AND Fmoc-RDG
Fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF) and flu-
orenylmethoxycarbonyl arginine–glycine–aspartic acid (Fmoc-
RDG) form hydrogels based on aromatic interactions (82–84) and
have been successful as a scaffold for cell culture (85, 86). The
hydrogel is a relatively simple gelator relying on a few peptides
and Fmoc groups and is formed by pi–pi staking between the
Fmoc groups, thereby forming 3 nm fibrils which interact laterally
to create “flat ribbons.” RGD groups were added to increase cell
attachment (Figure 2, in red) and these gels produce a viable 3D
encapsulated cell culture with HDFa cells. As such, the scaffolds are
suitable for assessment by various methods including fluorescence
microscopy and the MTS assay (84). The cell gel constructs are
formed by dissolving the peptide in DMSO followed by dilution
in an aqueous solution at pH 10 (Fmoc-FF) or pH 3 (Fmoc-RGD),
followed by adjustment of the pH to physiological conditions. The
solutions can then be mixed with cells in culture medium (87). The
gel forms quickly <1 min and has a G′ of around 780 Pa with the
final stiffness of the gel being primarily dependent on the final
pH (88). Within this system, addition of amino acids other than
RGD were tested as well resulting in hydrogel constructs that were
more suitable for some cell lines than others. For example, Fmoc-
Lysine, Fmoc-Glutamic acid, or Fmoc-Serine constructs were able
to grow human dermal fibroblasts but only Fmoc-Serine allowed
for the growth of chondrocytes and 3T3 cells (89). Other stacking
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FIGURE 2 |The fibrillar structure of Fmoc-FF and Fmoc-RGD. Reprinted
with permission from Ref. (84). Copyright 2009 Elsevier Ltd.

groups, naphthalene and benzyloxycarbonyl, in place of the Fmoc
group have been shown to create fibrils that support chondrocyte
growth (90). Changes to the sequence included different combi-
nations of phenylalanine and RGD in order to avoid mixing of
different peptides (91). Recently, work has been done to improve
the biocompatibility of the gelation process by using glutathione
to cleave a sulfide bond on the pregelator that would allow the
peptide to gel avoiding the use of DMSO (92). Another group
altered and improved gelation by halogenating the phenyl ring on
phenylalanine, a scaffold that could be used to culture 3T3 cells
after adding RGD to the system (72). Yet, other groups have added
different amino acids to improve cell attachment and confirmed
the importance of the RGD group (93). While Fmoc groups are
not normally found in the ECM, these gels exhibit decent stiff-
ness and appropriate rheology and have proven suitable as 3D cell
culture scaffold.

h9e
h9e is a peptide hydrogel initially designed for drug delivery of
a H1N1 vaccine (94) (Figure 3). It was designed by rationally
combining functional native domains from the spider flagelli-
form silk protein and the trans-membrane segment of human
muscle l-type calcium channel, resulting in a peptide with the
sequence FLIVIGSIIGPGGDGPGGD (95, 96). h9e can produce
a viable matrix for 3D encapsulation of MCF-7 cells (97), and
has the unique property of displaying shear flow only when gela-
tion is induced in the presence of calcium but not when calcium
is absent. Calcium also increases the speed of gelation (98). To
produce a matrix for cell encapsulation, the lyophilized peptide
is dissolved into sodium bicarbonate and then added to cells in
culture medium. Within 15 min, the mixture can solidify into a
gel with a final stiffness of 500 Pa (97). The gel has no apparent
negative effect on cell viability but cells divide slower as compared
to 2D, an effect not uncommon in 3D culture constructs. Inter-
estingly, 3D encapsulated cells displayed increased sensitivity to
cisplatin compared to 2D cultures and the matrix is suitable for
a variety of analytical methods including Western blotting, fluo-
rescence microscopy, and trypan blue staining upon isolating the
cells from the gel.

FIGURE 3 |The peptide interactions that form a fibril. Reprinted with
permission from Ref. (98). Copyright 2012 Biophysical Society.

FEFK AND FEFKEFK
FEFK and FEFKEFK form a hydrogel upon a unique enzymatic
interaction with a metalloproteinase (99) (Figure 4). FEFK is a
short chain peptide that does not form a gel on its own but in the
presence of the metalloproteinase thermolysine, the peptide is bro-
ken down and rebuilt into longer chains that do gel (100). This is a
different gel strategy compared to most peptide gels which depend
on pH, ionic salts, or light (101). The final makeup of the gel is
determined by the initial concentration of FEFK, and the mechan-
ical properties are determined by the initial enzyme concentration
(102). Gelation can also be controlled by the temperature used
to initiate the reaction (103, 104). To prepare the cell–gel con-
structs, FEFK is dissolved in PBS, loaded into a syringe, and the
enzyme is added. After incubation for 5 min, cells can be added
and the solution is injected in a well, requiring frequent media
change in the initial 1 h of incubation to remove the enzyme. The
gel takes about 10 min for gelation and finishes around 2000 Pa
(105, 106). The hydrogel construct has been used for successful
culture of fibroblasts and osteoblasts and no negative effects of the
enzyme used for gelation were observed although about 40% of
the enzyme remained within the gel at day 7 (105). Multiple cell
viability studies report biocompatibility of the gel but the most in
depth biological investigation was on the ability of osteoblasts to
mineralize the gel showing increased calcium phosphate deposits
and an increase in gel stiffness as the cells deposit calcium and
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FIGURE 4 | Interaction between FEFK and enzyme. Reprinted with permission from Ref. (102). Copyright 2013 American Chemical Society.

FIGURE 5 | MAX1 and MAX8 fibril formation. Reprinted with permission from Ref. (114). Copyright 2007 National Academy of Sciences.

extracellular proteins, indicating bone formation (106). The cell–
hydrogel constructs can be used for live dead staining and isolation
of cells from the gel. Additional studies have shown that the pep-
tide can be functionalized with polymers without affecting the
gel (107).

K(SL)3RG(SL)3KGRGDS
K(SL)3RG(SL)3KGRGDS is an amphiphilic peptide with a non-
polar middle surrounded by charged side regions, called a multi
domain peptide (108). It forms beta sheets in aqueous solution by
dimerizing to protect the non-polar core (109). The fibers had a
diameter of 6 nm, expressed RGD for cell binding, and were sus-
ceptible to cleavage by cells (110). To form the cell–gel construct,
the peptide was dissolved in water with sucrose and cells in PBS
were added to the peptide solution starting the gelling process. To
visualize cells, samples can be embedded and microtomed before
being processed for microscopy (111). Cell viability assays revealed
that addition of the RGD sequence slightly improved viability,
but interestingly the viability was much more influenced by the
location of the serines within the peptide sequence. In addition,
incorporation of growth factors into the gel to improve culture
conditions showed that addition of FGF improved the prolifera-
tion of fibroblasts but TGF-β had the opposite effect (111). While
studies in cancer cells are still lacking, using such a construct den-
tal pulp stem cells were successfully cultured and the cells were
able to break down the gel and build up their own ECM, demon-
strating the capability to create an engineered dental pulp (111).
Using this peptide as base, studies were performed to see how
changing the non-polar core to amphiphilic rings would affect
gelation. While the basic nanofibrous morphology was retained

in all cases, particular core residues resulted in switching from
antiparallel hydrogen bonding to parallel bonding. In some cases,
this resulted in more brittle fibers but fibrils always formed (112).
When the serines in the serine leucine repeats were changed to
threonine, the hydrogel still formed and encapsulated cells prolif-
erated and broke down the scaffold, but the cells on the threonine
scaffold grew much slower, especially if RGD was missing (113).

MAX1
MAX1 is an amphiphilic peptide with the sequence VKVKVKVK-
VDPPT-KVEVKVKV (54) (Figure 5). Gelation is triggered by a
combination of salt concentration, pH, and temperature (114).
These factors lead to charge screening which causes the peptide
to fold into a beta hairpin, the hairpins then associate into fibrils
forming the network through physical bonds (115). MAX1 gela-
tion takes approximately 30 min to complete, which results in a
heterogeneous cell distribution because the cells are able to sink
through the gel. In order to ensure a homogenous cell distribution
MAX8 was created by substituting a glutamic acid for a lysine,
speeding up the gelation time to 1 min (114). To form a cell–gel
construct, cells in serum-free medium are added to peptide dis-
solved in Hepes buffer and the construct is allowed to gelate before
serum-containing medium is added to the culture. Using such a
construct, mesenchymal stem cells, DAOY, Panc-1, and MG63 cells
have been successfully cultured encapsulated within the gel (116,
117) (and our unpublished observations). The cell–hydrogel con-
structs can be assessed by fluorescence microscopy and MTT assays
have been successfully performed. The fibrils have a 3.2 nm× 2 nm
cross section (115) and the stiffness is around 1000 Pa, which can
be controlled by changing the weight percent of the peptide and
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the speed of gelation which controls the number of branch points
(118). MAX1 and MAX8 are shear thinning material allowing for
gel injection while protecting its cargo (119). Thus, MAX8 can be
used to deliver cells for therapy via syringe injecting while at the
same time protecting the cells from shear forces (117). Further-
more, these hydrogels can be used for sustained delivery of active
compounds including drugs. Studies have shown that encapsu-
lated compounds may be protected from inactivation resulting in
a consistent drug release over increased periods of time (119, 120)
and in vivo biocompatibility has been demonstrated (116) (and
our unpublished observations). The result is a highly customiz-
able physical gel that shear thins and reheals. Gelation is triggered
by physiological conditions allowing for easy culture setup without
requiring the addition of harmful chemicals or organic reagents.
It is mechanically robust with control over the storage modulus
and a range of 500–10,000 Pa, thereby providing a very versatile
3D culture scaffold.

CONCLUSION
The field of 3D cell culture is rapidly expanding due to new tech-
niques and technologies that allow for this more complex culture
system. It has resulted in new cell models that allow for the investi-
gation of cellular phenotypes previously only seen in vivo. Much of
the success is owed to the biocompatibility and bioactivity of nat-
ural materials and many current synthetic materials are designed
by examining those found in nature. And while there is and will
be a place for natural cell scaffolds in cellular investigation, it does
not mean that the field needs to stop there. The advantages offered
to cell culture by synthetic peptide scaffolds are great and will
allow for in depth study of how cells interact with their envi-
ronment and how the environment interacts with the cells. The
biocompatibility and chemically defined nature of the materials
results in a positive growth environment without the uncontrolled
effects of unknown growth factors and proteins present. The syn-
thetic nature of material synthesis allows for a consistent material
without batch-to-batch variation, and it makes it simple to make
variations on the scaffold as the researcher sees fit. All of these
variables come together to give a cell culture system where the
researcher has total control of the cellular environment and can
trust that the results they are seeing are because of the changes they
made. Having reliable, more in vivo like culture systems opens up
a plethora of new possibilities in cancer research, from mimicking
ECM environment to designing multi-cellular, tumor-like systems
to developing culture systems that favor tumor stem cells. It is only
a matter of time that the use of such complex platforms in drug
discovery will result in novel lead compounds to support our quest
to find a cure for the most aggressive and deadly cancers.
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