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The classic coefficient of variation (CV) is the ratio of the standard deviation to the mean

and can be used to compare normally distributed data with respect to their variability,

this measure has been widely used in many fields. In the Social Sciences, the CV is

used to evaluate demographic heterogeneity and social aggregates such as race, sex,

education and others. Data of this nature are usually not normally distributed, and the

distributional characteristics can vary widely. In this sense, more accurate and robust

estimator variations of the classic CV are needed to give a more realistic picture of the

behavior of collected data. In this work, we empirically evaluate five measures of relative

variability, including the classic CV, of finite sample sizes via Monte Carlo simulations. Our

purpose is to give an insight into the behavior of these estimators, as their performance

has not previously been systematically investigated. To represent different behaviors

of the data, we considered some statistical distributions—which are frequently used

to model data across various research fields. To enable comparisons, we consider

parameters of these distributions that lead to a similar range of values for the CV. Our

results indicate that CV estimators based on robust statistics of scale and location are

more accurate and give the highest measure of efficiency. Finally, we study the stability

of a robust CV estimator in psychological and genetic data and compare the results with

the traditional CV.

Keywords: coefficient of variation, coefficient of dispersion, relative standard deviation, statistical simulation,

robust statistics, inference, measures of relative variability

1. INTRODUCTION

The coefficient of variation (CV) is a standardized, dimensionless measure of dispersion relative
to a data set’s average [1]. It enables the comparison of several datasets [2] with different units of
measurement [3, p. 84]. Karl Pearson was likely one of the first researchers to propose this measure
of relative statistical dispersion [4, pp. 276–277]:

“In dealing with the comparative variation of men and women (or, indeed, very often of the two sexes

of any animal), we have constantly to bear in mind that relative size influences not only the means

but the deviations from the means. When dealing with absolute measurements, it is, of course, idle

to compare the variation of the larger male organ directly with the variation of the smaller female

organ. [. . .] we may take as a measure of variation the ratio of standard deviation to mean, or what

is more convenient, this quantity multiplied by 100. We shall, accordingly, define V, the coefficient of

variation, as the percentage variation in the mean, the standard deviation being treated as the total

variation in the mean. [. . .] Of course, it does not follow because we have defined in this manner our

“coefficient of variation,” that is coefficient is really a significant quantity in the comparison [. . .]; it

may be only a convenient mathematical expression, but I believe there is evidence to show that it is a

more reliable test of “efficiency” [. . .] than absolute variation.”
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Based on Pearson’s idea, the classic version of the CV is often
expressed as a percentage. It is defined as the ratio of the standard
deviation σ to the mean µ (or its absolute value, |µ|)1. In this
way, the coefficient of variation should be computed only for data
measured on a ratio scale [5], as these are the measurements that
can only take non-negative values. The coefficient of variation
may not have any meaning for data on an interval scale [6] or in
data sets with discrete scales involving a true zero point and equal
intervals (count data) such as Likert data. In such situations, data
do not have the property that originally motivated the use of the
coefficient of variation [7, pp. 44]: “big things tend to vary much
and small things little” (see also [8]). On the other hand, bounded
data, such as rates and proportions often exhibit heterogeneity
in variance (i.e., the variety tends to be higher for data values in
the middle range than for those toward the boundaries, given the
dependency between location and scale [9]), and the CV cannot
be interpreted directly. The usual practice is to transform the data
so that the transformed response assumes values in the real line
and then apply the classic CV. This practice, however, leads to
abnormal CV values.

The classic version of the CV has been used in different areas.
For example, it has been used in engineering as a normalized
measure of dispersion for quality control [10], in biochemistry
as a threshold to select cells per well (see Figure 1C in [11]),
in medical physics as an estimator of PET cardiac image noise
[12], in biology as a measure to compare the robustness of
different biological traits [13], and in neuroscience as a method
for analysing synaptic plasticity [14] and variability in interspike
intervals [15]. In psychology, specifically, the classic CV has
been used in psychopathology and speech pathology as a way
of distinguishing between a healthy control group and people
suffering from a psychological or pathological disorder [16],
and as a way of comparing age patterns of simple and four-
choice reaction time (RT) tasks in older adults [17]. Yet,
the CV is still under-utilized and not extensively taught in
psychology [18–20], particularly in experimental psychology.
In social science, Bedeian and Mossholder [21] discussed the
theoretical underpinnings most commonly used to explain
demographic diversity. They questioned if the CV should be
used to index the relative internal variability of work groups,
such as top-management teams, task groups, boards of directors,
departments, and other social aggregates. Srensen et al. [22]
evaluated the use of the coefficient of variation as a measure
of demographic heterogeneity in the construct of organizational
demography research. Empirical analyses suggested that using
the coefficient of variation may lead to incorrect conclusions
about the effects of heterogeneity.

Generally speaking, a sample with a standard deviation larger
than the mean will produce CVs > 1 (see [23]). CVs≈ 0 suggest
that there is a high precision of the sample’s central tendency;

1In this paper, it is understood that the classic CV is ameasure of relative variability

(MRV) defined as σ/µ, which are parameters of scale and location of normally

distributed data. We consider variations of this classic MRV—those cases in which

the estimators in the numerator and the denominator are other than the classic

sample dispersion and mean estimators. For simplicity, though, we tend to refer to

the MRVs considered here merely as CVs.

i.e., the variability of the location parameter is very low. The CV
is also known as the relative standard deviation (RSD), which is
the result of multiplying the absolute value of the CV by 100; its
interpretation, however, is similar to that of the classic CV.

There are various methods available for estimating the CV.
McKay [24] and David [25] provided a method for point
estimation and construction of a confidence interval (CI) for
normal coefficient of variation that was later modified by Vangel
[26]. Zeigler [27] compared several estimators of a common
coefficient of variation shared by k populations in large and
equal sample sizes. Inference for the coefficient of variation in
normal distributions was studied by Forkman [28] and Forkman
and Verrill [29]. Díaz-Francés and Rubio [30] explored the
CV in the estimation of the ratio of means, such that CV
values smaller than a certain threshold help to justify normality
assumptions of the ratio of two normal random variables.
Note that this is an area where robust estimation [31] of the
relative variability (of the variable in the denominator) may
prove useful. Also, Mahmoudvand and Hassani [32] introduced
approximate, unbiased estimators for the population coefficient
of variation, in a normal distribution. Hoseini and Mohammadi
[33] proposed two approaches—the central limit theorem and
generalized variable—to estimate the coefficient of variation
in uniform distributions. Consulin et al. [34] and Albatineh
et al. [35] evaluated the performance of different parametric
and nonparametric estimators for the population coefficient of
variation considering ranked set sampling (RSS) under different
distributional assumptions on data. Bayes estimation for the
coefficient of variation in shifted exponential distributions was
studied by Liang [36].

Robust estimation of location and scale [31] can be used to
construct CV estimators. One proposal is to use a ratio of the
mean absolute deviation from themedian (MnAD) to themedian
(Mdn), known as the coefficient of dispersion (CD) [37, pp. 22].
Another proposal is to use a ratio of the difference between the
interquartile range and the sum of the 1st and 3rd quartiles,
which is known as the coefficient of quartile variation (CQV)
[38]. The CQV is a robust version of the studentised range
defined as q = (x(n) − x(1))/S, where x(i) is the ith order statistic
and S is the sample standard deviation [39–41]. Incidentally, q is
a related statistic used in the construction of multiple comparison
methods (e.g., Tukey’s honest significance test). A conceivable
robust version of the CD could be the ratio of themedian absolute
deviation (MAD) to the Mdn, two well-known robust measures
of scale and location, respectively [42]. Note that the CD and
CQV estimators depend entirely on the estimation of location
and the quartiles themselves, which in turn can be influenced by
how the quantiles and means are estimated [43, 44], the support
of the target distribution, especially for doubly-bounded supports
such as [0,1] and the trade-off between efficiency and resistance
of the statistics used for its construction [45, 46].

The goal of the current study is to compare the performance
of some CV estimators based on the classic approach to the CV
estimator. Here robust location and scale estimation are used.
We investigate the estimation problem by varying distributional
parameters under several statistical distributions commonly used
to model data in several research fields. The rest of the paper
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is organized as follows: section 2 introduces the notations,
definitions and the CV estimators used in the study; section 3
presents the simulation study and results; section 4 reports a
discussion of empirical applications; and section 5 presents some
concluding comments.

2. DEFINITIONS AND BACKGROUND

Let X1, . . . ,Xn be independently and identically distributed
observations of a random variable having an unknown,
cumulative distribution function (CDF) FX(x). From the random
variable X, we can obtain µ = E(X), the location parameter
and σ =

√
Var(X), the scale parameter; i.e., the mean and

the standard deviation. This work focuses on the population
parameter θ = σ/µ, namely the CV. Based on the definition of
population CV (θ), we note that the CV is a unit-free measure
that quantifies the degree of variability relative to the mean. It
can be used in comparing two distributions of different types with
respect to their variability.

Let θ̂ be an estimator of θ the population CV. For example, a
natural estimator of θ is

θ̂ =
σ̂

µ̂
=

S

X
=

√
(n− 1)−1∑n

i=1(Xi − X)2
∑n

i=1 Xi/n
, (1)

where X and S are the sample mean and sample deviation [4]2.
In order to obtain a non-zero standard deviation, we assume
that at least two of the collected data points are distinct and
X 6= 0. It is known that inference procedures are hypersensitive
to minor violations when a population with normal distribution
is assumed [44, 49]. For example, working with CVs when the
expected value of the estimator S/X is infinite [50, p. 75] or when
there is large asymmetry and heavy tails could hinder differences
in variance [51, 52]. For example, the Cauchy distribution is
clearly symmetric and heavy-tailed [53], but the moment-based
definitions of skewness and kurtosis are undefined (its expected
value and its variance are undefined). As the method of moment
estimation fails and Bayesian estimation is very unstable, the
estimation of the traditional CV becomes unfeasible,and hence
it is necessary to establish robust and efficient estimators in terms
of finite samples [54]. On the other hand, classic inference, such
as confidence intervals for the CV, are not robust to counteract
violations of the normality assumption [26]. Fortunately, some
nonparametric and robust estimators are available to deal with
such situations. Next, some basic results and notations are
put forward.

The population quantile distribution function (QDF) Q(p)
returns the value x such that F(x) : = Pr(X ≤ x) = p is defined
as Q(p) : = F(p)−1 = inf

{
x ∈ R : p ≤ F(x)

}
, where 0 < p < 1.

Accordingly, the empirical quantile function (EQF) is given by
Q̂(p) : = Fn(p)

−1 = inf
{
x ∈ R : p ≤ Fn(x)

}
, where Fn(x) is the

empirical distribution function Fn(x) = n−1
∑n

i=1 I(Xi ≤ x),
and IA is the indicator of event A. By its definition, Fn(x) = 0
whenever x < X(1), and Fn(x) = 1 whenever x ≥ X(n). Note

2Note the CV has been used in the context of pairwise comparisons and hypothesis

testing [28, 47], see also [48, Form. 2, p. 326].

that EQF is simply a stair function that places the constant value
k/n for all x-values in the interval [X(k),X(k+1)), where x(1) ≤
x(2) ≤ · · · ≤ x(n−1) ≤ x(n) are the order statistics of the sample.
In this sense, an empirical estimator of the pth quantile [55, 56]
can be obtained by linear interpolation of the order statistics, that
is, Q̂(p) = x(k) + t(x(k+1) − x(k)) = (1 − t)x(k) + tx(k+1), with
k ∈ {1, 2, . . . , n}, t ∈ [0, 1) and (n − 1)p + 1 = k + t. Note
that the pth quantile type 7 and type 8 are obtained when
k = ⌊(n − 1)p + 1⌋ and k = ⌊(n + 1/3)p + 1/3⌋, respectively.
Here, the function ⌊·⌋ is the integer part of the desired rank [43].

We denote Q1 = Q(0.25), Q2 = Q(0.5) and Q3 = Q(0.75)
the population quartiles of a distribution. In particular, Q2 is the
population median and can be estimated by the sample median,
Mdn = Q̂2 = Q̂(0.5) = Fn(0.5)

−1. Here, Mdn is the 0.5th
quantile type 1 [43], which assumes the value x(k+1) if n =
2k + 1 (an odd integer) and x(k) if n = 2k (an even integer).
Also, Mdn is an estimator of location that is robust, as it has a
high breakdown3. In the R software [59] type 7 is the default
quantile to evaluate Q̂2 [43]. For a scale estimator, we look at
the interquartile range, IQR = Q̂3 − Q̂1, as an estimator that is
less sensitive to outliers than the standard deviation [60]. In this
work, Q̂1 and Q̂3 are calculated by using type 7 or type 8
quantiles [38].

In L1-norm, the counterpart of the population standard
deviation is the mean absolute deviation, denoted by δ1 = E(|X−
µ|) and by considering Q2 instead of µ, we have the mean
absolute deviation about the population median δ2 = E(|X −
Q2|). Note that this measure is still based on expectations (or
“averages”). Based on the sample median (or “middle value”), we
can define themedian absolute deviation as λ = Median(X−Q2),
which is a robust measure [61–63]. A scale estimator of δ2 is the
sample mean of deviations around the sample median (called the
sample mean absolute deviation around the median, MnAD). It
is also known as the coefficient of dispersion, CD [37, 44, p. 22],
given by

MnAD =
1

n

n∑

i=1

|xi − Q̂2|. (2)

This estimator also has a breakdown point of 0. A robust scale
estimator of λ is the median absolute deviation about the median
(MAD), given by

MAD = 1.4826 ·Median{|x− Q̂2|}, (3)

and its finite, sample breakdown point is approximately 0.5
[61, 64, 65].

3. THE ESTIMATORS OF RELATIVE
VARIABILITY

Statistical analysis of the classic estimator of the population
CV given by the ratio θ̂ = S/X is typically based on the
assumption that sufficient moments from a random variable X of

3The breakdown value is the smallest fraction of contamination that can cause the

estimator to take on values far from its value on the uncontaminated data [57, 58].
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TABLE 1 | Estimators of relative variability considered in this study.

Name Estimator References

Classic estimator θ̂Classic =
σ̂

µ̂
=

S

X
[4]

Coefficient of quartile

variation (CQV7)

θ̂CQV7
=

Q̂3 − Q̂1

Q̂3 + Q̂1

Q̂1 and Q̂3 based on

type 7 quantiles. [38]

CQV with type 8

quartiles (CQV8)

θ̂CQV8
=

Q̂3 − Q̂1

Q̂3 + Q̂1

Q̂1 and Q̂3 based on

type 8 quantiles. This

study

Coefficient of

dispersion (CD) based

on the MnAD (CVMnAD)

θ̂MnAD =
MnAD

Mdn
[37]; see also [71]

CD based on the MAD

(CVMAD )

θ̂MAD =
MAD

Mdn
This study

the population of interest exist [66]. Typically, for small sample
sizes, the ratio of estimators, such as the estimator θ̂ , are biased
[55]. Under normally distributed data, the exact distribution of θ̂
is available [26, 67, 68]; however, in many practical situations, the
data are non-normally distributed or the existence of moments
of random variable X is not always ensured, and thus the ratio
of estimators should be used with caution [69]. Based on the
idea of the classic version of the CV, it is possible to construct
robust ratio estimators by using robust estimators of location and
scale [31]. We use the interquartile range IQR, MnAD and MAD
as point estimators of scale. On the other hand, the combined
quantile [70] given by (Q̂3 + Q̂1) and the Mnd can be used as
point estimators of location. Table 1 summarizes the estimators
of the population parameter θ = σ/µ, considered herein.

4. SIMULATION STUDY

We carried out a Monte Carlo simulation study to analyse the
efficiency and robustness of the proposed estimators and to
compare them with the Classic CV estimator.

4.1. Design of Experiments
The main objective is to recommend a good estimator for a
population CV via simulations in order to overcome problems
of the analytical intractability under a theoretical comparison
approach. We consider different distributions that represent
a wide variety of probabilistic patterns of data and various
degrees of non-normality obtained in different applications (i.e.,
uniform, normal, Binomial, Poisson, Exponential, Chi-square,
Beta, Gamma, Ex-Gaussian).

In the context of the design and analysis of Monte Carlo
experiments [72–74], we adopted a space-filling design composed
of B = 10, 000 multidimensional input points representing
sample sizes, distribution model (depending on parameters) and
estimators of the population CV. To control the population CV of
all distributions and make the properties of the estimators given
in Table 1 comparable, we adopted a reparameterization of these
distributions as a possible observed range of the population CV
in the unit interval, i.e., θ ∈ (0, 1).

To select an estimator among the estimators under study,
we proceeded as follows: for each simulation (Monte Carlo
iteration), we randomly drew a total of n observations from
the given distribution fX in Table 2. We then used the sample
values to calculate the different estimators given in Table 1. The
estimates obtained were subsequently contrasted with the true
population value using the mean squared error (MSE) as the
scoring metric, since it is widely used in practice and is a good
measure to evaluate the trade-off in terms of bias and variance of
the estimator4. Other alternatives to the MSE metric include the
relative bias, concordance coefficient, relative maximum absolute
error, Pearson correlation, and mean absolute error [75–78].
Although it is outside the scope of this paper to discuss these
alternatives, it is indeed a discussion needed in future work.

Let E = {CQV7,CQV8,CVMAD,CVMnAD} be the set of names
that define the alternative estimators to the classic CV estimator
given in Table 1. To assess the accuracy of θ̂j with respect to the
classic estimator of CV, we used the ratio

γj =
MSEj

MSEClassic
, j ∈ E , (4)

where the estimate of MSE was given by

MSEj = MSE(θ̂j) =
1

B

B∑

i=1

(θ̂ij − θ)2, (5)

and where θ̂ij was the jth estimator evaluated in the ith sample
for i = 1 . . .B, and Bwas the size of the Monte Carlo experiment.
We shall say that the jth estimator was better than an alternative
to the classic estimator of the CV if γj < 1. In this sense, γj
can be seen as a measure of efficiency [79]. We can rescale γ to
log10(γ ) which represents a measure’s information or weight of
evidence [80] given in ban or dig (short for decimal digit). In
this sense, higher values of log10(γ ) indicate that the content of
information, in the sense used by Hartley [81], Shannon [82], and
MacKay [83], of a particular CV estimator is less than that of the
classic estimator of the population CV. When log10(γ ) = 0, it
indicates that a particular CV performs like the population’s CV,
and small values of log10(γ ) suggest that a particular CV is more
informative that the population’s CV.

We implemented in R [59] the following procedure for the
Monte Carlo simulation study:

1. Select a distribution fX from Table 2.
2. Draw a sample of size n from fX , where θ is the parameter of

interest (population CV).
3. Calculate the estimators for the CV, as shown in Table 1.
4. Repeat steps 2 and 3, B times.

4 Suppose θ̂ is an estimator for an unknown parameter θ . Then the mean squared

error (MSE) θ̂ is defined as MSE(θ̂) = Var(θ̂) + [B(θ̂)]2, where B(θ̂) = E(θ̂) − θ

and Var(θ̂) = E[(θ̂ − θ)2] are the bias and the variance term of the estimator,

respectively. If two estimators θ̂1 and θ̂2 of θ are given, the estimator θ̂2 is said

to be superior to θ̂1 with respect to the MSE criterion, if and only if MSE(θ̂1) −
MSE(θ̂2) ≥ 0. Note that the MSE is a special case of a non-negative function called

“loss function” that generally increases as the distance between θ̂ and θ increases.

If θ is real-valued (as is the population CV), the most widely used loss function is

defined as L(θ̂ , θ) = (θ̂ − θ)2, which is the squared error loss.
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TABLE 2 | Probability parametric distributions considered in this study.

Distribution fX Parameters θ =
√
V (X)

E(X)
Support

Normal
1

√
2πσ

e
−
(x − µ)2

2σ2 µ, σ σ/µ R

Uniform (b− a)−1 a,b
(b− a)

√
3(a+ b)

[a,b]

Binomial

(
m

x

)
px (1− p)m−x m,p

√
mp(1− p)

mp
{0, 1, . . . ,m}

Poisson
λx e−x

x!
λ λ−1/2

N ∪ {0}

Exponential λe−λx λ 1 R
+

Shifted-Exponential
1

λ
e
−
(x − β)

λ β, λ
λ

β + λ
R
+

χ2
ν

1

2ν/2Ŵ(ν/2)
x

ν

2
−1

e
−
x

2 ν
√
2ν−1/2

R
+

Beta
Ŵ(α + β)

Ŵ(α)Ŵ(β)
xα−1 × (1− x)β−1 α,β

√
β(α + β)√

α(α + β + 1)
[0, 1]

Gamma
1

Ŵ(α)βα
xα−1e

−
x

β α,β β−1/2
R
+

Ex-Gaussian
1

ν
√
2π

e

σ2

2ν2
−
x − µ

ν ×
∫ [(x−µ)/σ ]−σ/ν

−∞
e
−
y2

2 dy µ, σ , ν

√
σ2 + ν2

(µ + ν)
R

Lognormal
1

x
√
2πβ

e
−

(ln x − α)2

2β2
α,β

√
eβ2 − 1 R

+

5. Evaluate the MSE, γ and rescale to log10(γ ).

A similar experimental design to the Monte Carlo scheme was
described by Vélez and Correa [79], Marmolejo-Ramos et al. [84]
and Vélez et al. [85]. The number of simulation runs B is equal
to 10,000. The samples of size n = {10, 25, 50, 100, 200} were
generated from each distribution in Table 25.

4.2. Identification of Simulation Scenarios
We use the normal distribution denoted by N (µ, σ 2)
as the baseline. For this distribution, we set µ =
{0.1, 0.4, 0.7, 1, 5, 15, 30} and σ = {0.1, 0.3, 0.6, 1, 3, 5} and
used the sample sizes mentioned above. In this way, θ takes
values in the interval (0, 1). The total number of scenarios
under evaluation was 210. The values of µ and σ 2 were
chosen to guarantee that no observations would fall outside the
(µ − 2σ ,µ + 2σ ) limits and so the sample estimators of the
CVs in Table 1 would always be positive. Let us recall that, for
normally distributed data, approximately 95% of the distribution
falls within two standard deviations around the mean.

To evaluate the efficiency of the estimators given in Table 1,
we considered scaled-contaminated normal distributions
(variance inflation), CN (µ, σ ,α, λ). More precisely, the
following finite mixture model CN was used to simulate data
that contain outliers:

CNX(x) = (1− α)8((x− µ)/σ )+ α8((x− µ)/
√

λσ ). (6)

Here, we considered the level of contamination α =
{5%, 10%, 15%, 20%} and λ = 3. Note that for α = 0% in

5The R code used in this simulation study is available in the following repository:

https://github.com/Raydonal/Performance-CV

Equation (6) we obtained the Normal distribution N (µ, σ 2). By
using combinations ofµ and σ , and keeping α and λ fixed, a total
of 140 simulation scenarios were evaluated in each case.

The robustness of the estimators given inTable 1was analyzed
by considering symmetric contaminated normal distributions,
HN t(µ, σ ,α, ν), close to the Normal(µ, σ 2) but with heavier-
than-normal tails [86]. The following contaminated model HN t
was used for creating outliers and modeling data sets that exhibit
heavy tails:

HN tX(x) = (1− α)8((x− µ)/σ )+ αtν(x), (7)

where tν(·) is the Student’s t-distribution with ν degrees of
freedom [87]. Again, we considered the level of contamination
α = {5%, 10%, 15%, 20%} and ν = 2.5. Note that for α = 0%
in Equation (7) we obtained the Normal distribution N (µ, σ 2).
By combinations of µ, σ , α and fixed ν in the contaminated
distribution with heavy tails, a total of 140 simulation scenarios
were evaluated.

To evaluate the flexibility of the estimators in Table 1,
we computed accuracy measures for a determinate choice of
distributions from Table 2. We reparameterized the distributions
in this table in terms of µ and σ of the normal distribution
N (µ, σ 2) so that they assumed the θ values close to the baseline
distribution. This made the estimators comparable.

We generated samples for the Uniform distribution with the
set parameters a = µ − σ

√
3 and b = µ + σ

√
3; thus the

mean is µ and the variance is σ 2. The values of µ and σ used the
same values of the baseline distribution. A total of 210 simulation
scenarios were studied.

In the Binomial distribution, we impose the restriction 0 <

σ 2/µ < 1 to the probability of successes p = 1 − (σ 2/µ). The
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number of trials m = ⌊µ/p⌋make up a total of 3,950 simulation
scenarios (combinations of p and m). Here, the function ⌊·⌋ is
the integer part of the desired rank. The mean and standard
deviation aremp and

√
mp(1− p), respectively. In particular, for

p = 0.5 (the value that maximizes the variance) it follows that
θ =

√
mp(1− p)/mp = 1/

√
m. Note that, independently of p,

whenm → ∞, the population CV, θ , tends to zero.
When working with the Poisson(λ) distribution, we

considered λ = µ2/σ 2. The normal distribution can also
be used to approximate the Poisson distribution for large
values of λ. Because values of λ > 20 produce suitable normal
approximations, we did not consider larger scenarios. Note that
for large values of λ, θ converges to zero. We therefore evaluated
105 simulation scenarios obtained by combinations of µ and σ

and imposed the condition 0 < λ−1/2 < 1.
Among all the distributions considered in this study, the

Exponential(λ) distribution is particularly interesting because,
regardless of λ, the value of the classic CV is always equal to 1.

In fact, the mean and standard deviations are 1/λ and
√
1/λ2,

respectively. Therefore, the mean and standard deviations are
completely tied together and the interpretation of the CV
as a “percentage-like” is eroded. In practice the exponential
distribution is used as a baseline and, when CV < 1 (such as
for an Erlang distribution), distributions are considered low-
variance, while distributions with CV > 1 (such as a hyper-
exponential distribution) are considered high-variance [88]. We
set λ = µ/σ and used the same sample sizes mentioned above to
compare the different estimators of the CV across a total of 175
simulation scenarios obtained by combinations of µ and σ with
the condition 0 < σ/µ < 1.

The Shifted Exponential (β , λ) distribution, where β ∈ R is
the threshold parameter such that β < x, and the scale parameter
λ > 0, is widely used in applied statistics; principally in reliability
(see [89–91]). When β = 0 we have the Exponential distribution
and in that case we can evaluate “spread” effects. The mean and
standard deviations are µ = β + λ and σ = λ, respectively.
We used the same sample sizes mentioned above to compare the
different estimators of the CV across a total of 915 simulation
scenarios obtained using combinations of µ and σ with the
condition 0 < σ/µ < 1.

In order to evaluate the effect of the sample size and the
parameter ν (degrees of freedom) on the estimators of the CV
when the data came from a χ2

ν distribution, n was varied as
previously described and ν = ⌊2µ2/σ 2⌋. By imposing the
condition 0 < σ/µ < 1, we carried out a total of 105 simulation
scenarios (combinations of µ and σ ).

For the Beta(α,β) distribution, we set the parameters α =
µ((µ(1 − µ)/σ 2) − 1) and β = (1 − µ)((µ(1 − µ)/σ 2) − 1).
The mean and variance of the Beta(α,β) distribution were given
by α/(α + β) and αβ/{(α + β)2(α + β + 1)} respectively. This
showed that θ = β1/2{α(α + β + 1)}−1/2. Letting α = β ,
the expression for the mode simplifies to 1/2, showing that for
α = β > 1, the mode (anti-mode when α = β < 1) is at the
center of the distribution and the θ = 1/

√
2β + 1 is a decreasing

function of β . By reparameterization of this distribution in terms
of µ and σ we have a mean µ and dispersion σ . Thus, the
variance measures the dispersion relative to how far the mean
is from 0 or 1 (i.e., distance from the support bounds), so the

variance already contains the information in a CV measure: the
CV measures the dispersion relative to the odds. Combinations
of µ and σ and imposing the restrictions α > 0, β > 0 and
0 < θ < 1 resulted in 655 scenarios.

A similar approach was used for the Gamma(α,β)
distribution. In this case α = µ2/σ 2, β = µ/σ 2, and the
mean, variance and classic CV were given by αβ−1, αβ−2 and
θ = β−1/2 respectively. Note that θ is a function of scale
parameters only. In the case of the Gamma distribution, the
CV interpretation as a measure of dispersion relative to central
tendency is inadequate; however, the CV can be interpreted as
a precision of measurement [92] or relative risk [93]. Again,
combinations of µ and σ and imposing the restriction α > 0,
β > 0 and 0 < θ < 1 resulted in 4,680 scenarios.

The Ex-Gaussian distribution, also called the exponentially
modified Gaussian (EMG), is defined by the parameters µ, σ ,
and ν. The Ex-Gaussian distribution is typically used to model
reaction time (RT) data [94–96]. Its shape resembles a normal
distribution [97–99] but with a heavy right tail. The Ex-Gaussian
model assumes that an RT distribution can be approximated
by convolution of a normal and an exponential function. The
parameters µ and σ are the mean and the standard deviation
of a Normal distribution, while ν is a decay rate (exponent
relaxation time) and reflects extremes in performance [100, 101].
To generate observations from this distribution, we followed the
strategy described byMarmolejo-Ramos et al. [84]. In the present
study, µ = {0.1− ν, 0.4− ν, 0.7− ν, 1− ν, 5− ν, 15− ν, 30− ν},
σ 2 = {0.12−ν2, 0.32−ν2, 0.62−ν2, 12−ν2, 32−ν2, 52−ν2}, where
ν = {0.7, 7, 14} represent small, middle and highly exponent
relaxation-time behaviors. Under the restriction 0 < θ < 1, a
total of 315 simulated scenarios were evaluated.

The Lognormal distribution has been widely employed in
sciences [102]; in particular, it is used to fit empirical reaction
times (RTs) and has the status of a baseline distribution in RT

research [103]. In this distribution, µ = exp
(
α + β2

2

)
∈ R and

0 < σ = [exp(β2)− 1] exp(2α + β2) are the mean and standard
deviation of the variable’s natural logarithm. In the case of the
Lognormal distribution, the CV is independent of the mean.
Here, combinations of µ and σ resulted in 3,045 scenarios.

4.3. Results
In this section, we describe the simulation studies designed
to compare the proposed estimators of the population CV.
Figures 1–12 present scatter plots (with jitter) of the accuracy
metric log10(γ ) vs. the true value of the population coefficient
of variation θ ∈ (0, 1), by combining different sample sizes.
The blue, red, green, brown, and orange points represent the
sample sizes 10, 25, 50 (small sample sizes) and 100, 200 (large
sample size) respectively. The red horizontal line represents the
benchmark of equal accuracy between the classic estimator and
an alternative estimator.

These plots of the performance of the estimators can be
interpreted as follows. Higher positive values of log10(γ ) indicate
that the MSE of a particular CV estimator distribution is higher
than that of the classic estimator. This, in turn, implies that the
estimator is not a good alternative to estimate the CV when the
data come from those distributions. Negative values of log10(γ )
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FIGURE 1 | Scatter plots comparing the log10(γ ) accuracy metric as a function of θ ∈ (0, 1) produced for each estimator and sample size under the Normal(µ, σ2)

distribution.

indicate that the proposed estimator is more efficient than the
classic estimator and can be considered as an optimal estimator of
the population CV. Values of log10(γ ) that closely approximate to
zero indicate that the alternative estimator has a similar behavior
to the classic estimator of the population CV.

Figure 1 shows the results of the log10(γ ) accuracy metric for
the Normal(µ, σ 2) distribution. The plots in Figure 1 indicate an
increase of the estimators’ MSE as the sample size increases. Also,
the accuracy obtained by the CQV7,CQV8,CVMnAD increases
(values closer to zero) when θ tends to 1. On the other hand,
the performance of the CVMnAD is less sensitive to changes of
θ and the log10(γ )CVMAD slightly increases with n. The values
of log10(γ ) for the CQV7 estimator increase as the sample size
increases, with a minimum value of log10(γ )min = −1.07 when
n = 10, µ = 0.1, and σ = 0.1, and a maximum value of
log10(γ )max = 1.65 when n = 200, µ = 5.0, and σ =
0.3. In practical terms, this result implies that as n increases,
the CQV7 will produce higher MSE values than the classic CV
estimator. In other words, this finding plays against using the
CQV7 estimator instead of the classic CV estimator when the
data comes from a N (µ, σ 2) distribution, especially when the
sample size is large. A similar result was obtained for the CQV8

estimator (log10(γ )min = 0.01 at n = 10, µ = 0.4 and σ = 0.3;
log10(γ )max = 2.46 at n = 10, µ = 5.0 and σ = 5.0).

Our findings suggest that the CVMAD estimator performs
better than the CVMnAD. In particular, our results indicate a
more consistent behavior of the former estimator over the latter.
Close inspection shows that log10(γ )CVMAD ∈ (0.28, 2.49) and
log10(γ )CVMnAD ∈ (0.13, 2.25), from which it can be concluded
that the MAD-based estimator is a better choice.

Despite the advantages of using the normal distribution in
many applications, the normality assumption is too restrictive
for modeling real data sets, which usually exhibit asymmetry or
tails heavier than the normal tails; hence, we chose the scaled-
contaminated normal given in Equation 6 to represent symmetric
contaminated normal distributions, close to the normal, but
with tails heavier than normal. We believe that this approach,
frequently reported in the literature [104–106], is sufficient to
keep track of the robustness of the estimators considered in
this study.

Table 3 presents the median values of the log10(γ ) accuracy
metric of the scaled-contaminated normal distribution for all

sample sizes. An inspection of this table reveals that for
non-contaminated samples (α = 0%) all estimators performed
efficiently (see also Figure 1). As in the normal distribution
case, each estimator improved when θ tends to the value of
1. The MSE of the CQV7,CQV8,CVMnAD estimators increased
as sample size increased. The performance of the CVMnAD was
more stable under changes in θ and sample sizes (see plots
in Figure 2). Under contamination, the alternative estimators
produced higher MSE values than the classic CV estimator;
however, the values decreased when the level of contamination
α increased; i.e., the performance of all estimators improved
slightly. This information is presented in Figure 1 (α = 0%
of contamination) and Figure 2 (with contamination). Note,
for example, 16.29% = (1 − (1.13/1.35)) · 100, 15.90% =
(1 − (1.11/1.32)) · 100, 13.68% = (1 − (0.82/0.95)) · 100, and
45% = (1 − (0.23/0.42)) · 100, an increase in accuracy of
the CQV7,CQV8,CVMnAD, and CVMAD estimators under 10%
contamination when the sample size is n = 100, respectively.
We observe in Figure 2 that between the alternative estimators,
the CVMAD is the most robust and efficient estimator as the tail-
weight of the underlying distribution increases. The simulation
results led us to suggest the use of the CVMAD estimator as a good
alternative to the classic CV estimator.

Table 4 presents the median values of the log10(γ ) accuracy
metric of the contaminated normal distribution with heavy tails
for all sample sizes. Visual inspection of this table reveals that,
for α = 0% and α = 5% of contamination with heavy tails, all
estimators performed in a similar way to a scaled-contaminated
normal distribution. As in the normal distribution case, each
estimator improved when θ tended to the value of 1. Generally,
the MSE of the CQV7,CQV8,CVMAD estimators increased as
sample size increased. For large values of contamination (α =
10%, 15%, and 20%) theCQV7,CQV8 produced the smallestMSE
values; however, their behavior was rather unstable.

Like the result in the scaled-contaminated normal distribution
case, the performance of the CVMAD was more stable under
changes in θ and the sample sizes (see Figure 3). Under
heavy-tails contamination, the alternative estimators produce
smaller MSE values than the classic CV estimator; however, the
values increased when the level of contamination α increased;
i.e., the performance of all estimators improved slightly. This
information is presented in Figure 3. That figure also indicated
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FIGURE 2 | Scatter plots comparing the log10(γ ) accuracy metric as a function of θ ∈ (0, 1) produced for each estimator and sample size under the

scaled-contaminated normal distribution CN (µ, σ ,α, λ) distribution. Each horizontal panel represents a level of contamination, respectively: (A) α = 5%, (B) α = 10%,

(C) α = 15%, and (D) α = 20%. Here, µ, σ , and λ are defined in section Identification of Simulation Scenarios.

that between the alternative estimators, the CVMAD is the most
robust and stable estimator as the heavy-tail-weight of the
underlying distribution increases. These results suggest the use
of the CVMAD estimator as a good alternative to the classic CV
estimator in the presence of heavy-tail observations in the sample
(Table 4 summarizes the key results).

Figure 4 displays our findings for the Uniform distribution.
Note that the values of the log10(γ ) accuracy metric decreased
when θ increased, and also that the larger the sample size,
the higher the MSE. Compared with the classic estimator
of the CV, the CVMnAD estimator seems to be a plausible
alternative, with higher relative efficiency than the baseline,
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FIGURE 3 | Scatter plots comparing the log10(γ ) accuracy metric as a function of θ ∈ (0, 1) produced for each estimator and sample size under the contaminated

normal distribution HN t(µ, σ ,α, ν) with heavy tails. Each horizontal panel represents a level of contamination, respectively: (A) α = 5%, (B) α = 10%, (C) α = 15%,

and (D) α = 20%. Here, µ, σ , and ν are defined in section Identification of Simulation Scenarios.

regardless of n, followed by the CQV8, CQV7 and CVMAD

estimators. In fact, for n = 100, the median values of the
log10(γ ) accuracy metric of the CVs were CQV7 = 1.122,
CQV8 = 1.071, CVMAD = 1.565, and CVMnAD = 1.004.
Note there was a slight difference in performance between the
CQV7 and CQV8 estimators of the CV, which highlights the

importance of carefully selecting the type of quantile estimator
to be used. A close inspection shows that log10(γ )CQV7 ∈
(0.14, 3.03), log10(γ )CQV8 ∈ (0.11, 1.35), log10(γ )CVMAD ∈
(0.57, 5.31), and log10(γ )CVMnAD ∈ (0.34, 5.29). From this it can
be concluded that the CVMAD estimator is not necessarily a
reasonable choice.
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FIGURE 4 | Scatter plots comparing the log10(γ ) accuracy metric as a function of θ ∈ (0, 1) produced for each estimator and sample size under the reparametrized

Uniform distribution.

FIGURE 5 | Scatter plots comparing the log10(γ ) accuracy metric as a function of θ ∈ (0, 1) produced for each estimator and sample size under the reparametrized

Binomial distribution.

FIGURE 6 | Scatter plots comparing the log10(γ ) accuracy metric as a function of θ ∈ (0, 1) produced for each estimator and sample size under the reparametrized

Poisson distribution.

Table 5 presents the median values of the log10(γ ) accuracy
metric of the Binomial distribution. This table reveals that the
CQV7 and CQV8 estimators of the CV present the highest values
among all evaluated estimators.

Figure 5 shows that in the case of the Binomial distribution
the CVMnAD estimator was more stable and showed the lowest
values of log10(γ ) regardless of m and p. The plots also reveal
that there were some combinations of m and p for which
log10(γ ) was negative; i.e., in some situations, the alternative
estimators were more efficient than the classic estimator of the

CV for this distribution. However, there is not a clear pattern
for this behavior. For example, for n = 200 there were the
following cases: m = 2 = 9, p = 0.1, log10(γ )CV7 =
−28.27; m = 9, p = 0.1, log10(γ )CV8 = −28.27; and
m = 90, p = 0.97, log10(γ )CVMAD = −1.46. For n = 10,
the following estimation was observed: m = 2, p = 0.64,
log10(γ )CVMnAD = −0.15.

From Figure 6 with the Poisson distribution, note that
the CQV7 and CQV8 estimators behaved similarly in terms
of the log10(γ ) accuracy metric for almost all sample sizes
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FIGURE 7 | Scatter plots comparing the log10(γ ) accuracy metric as a function of θ ∈ (0, 1) produced for each estimator and sample size under the reparametrized

Exponential distribution.

FIGURE 8 | Scatter plots comparing the log10(γ ) accuracy metric as a function of θ ∈ (0, 1) produced for each estimator and sample size under the

Shifted-Exponential distribution.

FIGURE 9 | Scatter plots comparing the log10(γ ) accuracy metric as a function of θ ∈ (0, 1) produced for each estimator and sample size under the reparametrized

Chi-square distribution.

independently of θ and showed higher values than the CVMnAD.
The CVMAD estimator exhibited a behavior completely different
from the CQV7, CQV8, and CVMnAD estimators. For this
estimator, we observed an association between increases in the
values of θ and higher MSEs. In terms of the median values of
the log10(γ ) accuracy metric, Table 6 reveals that the CVMAD

estimator presented the smallest accuracy metric values when
the sample size became greater than 10. In practical terms,
this implies that the median-based estimators evaluated herein
perform better than the CQV7 and CQV8 estimators.

Figure 7 reveals our findings for the Exponential
distribution. Recall that if the number of arrivals in a
time interval of length T follows a Poisson process with
mean rate λ, then the corresponding interarrival time
follows an Exponential distribution.Values for T of the
Poisson distribution were similar to those observed for the
Exponential distribution. While the CQV7 and CQV8 estimators
performed poorly, the CVMAD and CVMnAD estimators had
a better performance. That is log10(γ )CV7 ∈ (0.52, 1.42),
log10(γ )CV8 ∈ (0.39, 1.41), log10(γ )CVMAD ∈ (0.00, 0.11),
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FIGURE 10 | Scatter plots comparing the log10(γ ) accuracy metric as a function of θ ∈ (0, 1) produced for each estimator and sample size under the reparametrized

Beta distribution.

FIGURE 11 | Scatter plots comparing the log10(γ ) accuracy metric as a function of θ ∈ (0, 1) produced for each estimator and sample size under the reparametrized

Gamma distribution.

FIGURE 12 | Scatter plots comparing the log10(γ ) accuracy metric as a function of θ ∈ (0, 1) produced for each estimator and sample size under the reparametrized

Ex-Gaussian distribution.

and log10(γ )CVMnAD ∈ (0.33, 0.64). This result indicates that
the CVMAD estimator is a feasible alternative to the classic
estimator of the CV, especially with all sample sizes. In practical
terms, this implies that compared with that of the classic
estimator of the CV, the MSE of the CVMAD estimator is
relatively low.

The behavior of the CV estimates for the Shifted-Exponential
distribution is represented in Figure 8. The effect of the shift is
to produce a large distortion on the MSE leading to a nonlinear
form in relation to the values of θ for all estimators in the different

sample sizes. We observed an inflection point when θ = 0.1.
For θ < 0.1 the MSE of the estimators’ decreasing and smallest
values were obtained when n = 200,µ = 5.1, σ = 0.1. In
fact, CQV7 = −1.36, CQV8 = −1.35, CVMAD = −1.00, and
CVMnAD = −1.04. When θ > 0.1 the MSE increased in θ with
the larger value for the CVMnAD = −0.07 when n = 10,µ =
33, σ = 0.3. Note that the highest values were obtained when
θ ≈ 0 or θ ≈ 1. In this situation, we obtained a degenerate
distribution at 0 when λ ≈ 0 and in the Exponential distribution
when β = 0.
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TABLE 3 | Median values of log10(γ ) accuracy metric across θ produced for each

estimator and sample sizes under the scaled-contaminated normal distribution

CN (µ, σ ,α, λ).

n Estimator Level of contamination α

0% 5% 10% 15% 20%

10 CQV7 0.57 0.63 0.63 0.63 0.62

CQV8 0.43 0.49 0.50 0.50 0.49

CVMAD 0.34 0.34 0.33 0.31 0.30

CVMnAD 0.27 0.34 0.36 0.37 0.37

25 CQV7 0.85 0.89 0.86 0.82 0.78

CQV8 0.76 0.81 0.78 0.75 0.72

CVMAD 0.41 0.39 0.34 0.30 0.27

CVMnAD 0.49 0.56 0.57 0.55 0.52

50 CQV7 1.08 1.09 1.01 0.93 0.87

CQV8 1.04 1.05 0.97 0.89 0.84

CVMAD 0.41 0.36 0.28 0.23 0.20

CVMnAD 0.70 0.76 0.71 0.65 0.61

100 CQV7 1.35 1.29 1.13 1.01 0.93

CQV8 1.32 1.27 1.11 0.99 0.92

CVMAD 0.42 0.33 0.23 0.17 0.14

CVMnAD 0.95 0.95 0.82 0.73 0.67

200 CQV7 1.63 1.46 1.21 1.05 0.97

CQV8 1.61 1.45 1.20 1.04 0.96

CVMAD 0.42 0.28 0.16 0.10 0.08

CVMnAD 1.22 1.12 0.91 0.77 0.71

Minimum values by the level of contamination α are shown in bold.

Figure 9 presents the behavior of the estimators when
samples of size n are drawn from a χ2

ν distribution. From
the reparameterization of this distribution in terms of µ and
σ , we have an inverse relationship between θ and ν; that is,
we observe that the values of the log10(γ ) accuracy metric
decreases when θ increases (or similarly, when ν decreases) and
also that a large sample size is associated with a high MSE.
Here, the CQV7 and CQV8 estimators behave similarly but
perform poorly when compared with the CVMAD and CVMnAD

estimators. Detailed analysis of the results from estimators of
the CV revealed that log10(γ )CV7 ∈ (0.54, 1.65), log10(γ )CV8 ∈
(0.40, 1.64), log10(γ )CVMAD ∈ (0.02, 0.44), and log10(γ )CVMnAD ∈
(0.26, 1.24). Overall, our findings indicate that the CVMAD is a
good alternative to the classic CV estimator for this particular
distribution.

Figure 10 depicts the values of the log10(γ ) accuracy metric
as a function of θ ∈ (0, 1) for the Beta distribution and the CV
estimators. Three regions in each plot are clearly distinguishable,
as the alternative estimators of the population CV behave
differently. When 0 < θ ≤ 0.33, we have α > β ; and for
this case, the Beta distribution has a negative skew. We observe
that in almost all cases, the values of the log10(γ ) accuracy
metric increase when θ increases. When 0.89 ≤ θ < 1, we
have α < β , and for this case, the Beta distribution has a

TABLE 4 | Median values of log10(γ ) accuracy metric across θ produced for each

estimator and sample sizes under the contaminated normal distribution

HN t(µ, σ ,α, ν) with heavy tails.

n Estimator Level of contamination α

0% 5% 10% 15% 20%

10 CQV7 0.57 0.57 −2.78 −2.59 −3.30

CQV8 0.43 0.38 −2.94 −2.65 −2.13

CVMAD 0.34 0.38 −2.67 −2.44 −2.64

CVMnAD 0.27 0.26 −1.15 −1.16 −0.93

25 CQV7 0.85 −2.27 −2.84 −3.57 −3.39

CQV8 0.76 -2.37 -2.95 −3.65 −3.41

CVMAD 0.41 −2.57 −2.99 −3.39 −2.91

CVMnAD 0.49 −1.53 −1.21 −1.04 −0.82

50 CQV7 1.08 −2.33 −3.02 −3.59 −3.96

CQV8 1.04 −2.39 −3.09 −3.68 −3.95

CVMAD 0.41 −2.87 −3.13 −3.35 −3.26

CVMnAD 0.70 −1.53 −1.17 −1.00 −0.84

100 CQV7 1.35 −2.07 −2.78 −3.67 −3.82

CQV8 1.32 −2.10 −2.82 −3.73 −3.78

CVMAD 0.42 −2.71 −2.97 −3.35 −2.78

CVMnAD 0.95 −1.46 −1.13 −1.00 −0.87

200 CQV7 1.63 -2.13 -2.62 -3.58 -4.09

CQV8 1.62 -2.14 -2.65 -3.61 -4.12

CVMAD 0.42 -2.91 -2.84 -3.18 -3.15

CVMnAD 1.22 -1.45 -1.15 -0.98 -0.84

Minimum values by the level of contamination α are shown in bold.

TABLE 5 | Median values of log10(γ ) accuracy metric across θ produced for each

estimator and sample sizes under the Binomial distribution.

Estimator

n CV7 CV8 CVMAD CVMnAD

10 0.54 0.44 0.41 0.27

25 0.86 0.77 0.66 0.50

50 1.09 1.05 0.87 0.72

100 1.36 1.33 1.18 0.97

200 1.64 1.62 1.47 1.25

Minimum values are shown in bold.

positive skew.We observe that the values of the log10(γ ) accuracy
metric decrease in almost all cases when θ increases. When
0.5 ≤ θ ≤ 0.54, we have α ∼= β ; i.e., the Beta distribution is
approximately symmetrical. In that case the CQV7 and CQV8

estimators behave similarly. On the other hand, in this region,
the CVMAD produced the highest values of MSE. Those findings
suggest that the alternative estimators of the population CV are
considerably affected by α and β . Table 7 presents the median
values of the log10(γ ) accuracy metric of the Beta distribution.
It reveals that the MAD- and MnAD-based estimators are the
better choices.
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TABLE 6 | Median values of log10(γ ) accuracy metric across θ produced for each

estimator and sample sizes under Poisson distribution.

Estimator

n CV7 CV8 CVMAD CVMnAD

10 0.59 0.45 0.35 0.27

25 0.87 0.78 0.44 0.50

50 1.10 1.05 0.46 0.71

100 1.37 1.34 0.49 0.96

200 1.65 1.64 0.53 1.24

Minimum values are shown in bold.

TABLE 7 | Median values of log10(γ ) accuracy metric across θ produced for each

estimator and sample sizes under Beta distribution.

Estimator

n CV7 CV8 CVMAD CVMnAD

10 0.31 0.21 0.19 0.08

25 0.56 0.50 0.35 0.28

50 0.79 0.76 0.49 0.49

100 1.05 1.03 0.67 0.74

200 1.33 1.32 0.91 1.01

Minimum values are shown in bold.

The results for the Gamma distribution are shown in
Figure 11. As expected, the results are similar to what was found
in the Chi-square distribution, as that distribution is a special case
of the Gamma distribution. Reparameterization of the Gamma
distribution in terms ofµ and σ resulted in a positive relationship
between θ and the log10(γ ) accuracy metric; i.e., the accuracy
increased when θ increased and a positive relationship existed
between sample size and MSE. The CQV7 and CQV8 estimators
performed equally poorly. This result implies that the CQV-based
estimators do not perform as well as the classic estimator when
n increases. Detailed analysis of the results from estimators of
the CV revealed that log10(γ )CV7 ∈ (0.52, 1.66), log10(γ )CV8 ∈
(0.38, 1.65), log10(γ )CVMAD ∈ (0.00, 0.45), and log10(γ )CVMnAD ∈
(0.24, 1.25). Overall, our findings indicate that the behavior of
estimators is close to the Chi-square case and that the CVMAD

can be a good alternative to the classic estimator of the CV for
this particular distribution.

Figure 12 shows the values of the log10(γ ) accuracy metric
for the Ex-Gaussian distribution. Although in almost every case
none of the evaluated estimators showed an equivalent or better
performance than the classic estimator of the CV, some aspects
do deserve to be described. Firstly, the values of the log10(γ )
accuracy metric for the CQV7 and CQV8 estimators, as observed
in the previous distributions, increase as a function of n. In
general, log10(γ )CQV7 ∈ (0, 1.64) and log10(γ )CQV8 ∈ (0, 1.62).
However, we found only one case where the CQV7 and CQV8

estimators are more efficient than the classic estimator whenµ =
4.3, σ = 4.9, ν = 0.7, n = 10 such that log10(γ )CQV7 = −1.34,
and log10(γ )CQV78 = −2.10 respectively. Generally, the MSE of
these two estimators is higher than that of the classic estimator
of the CV, making them, in practice, less feasible alternatives to

TABLE 8 | Median values of log10(γ ) accuracy metric across θ produced for each

estimator and sample sizes under the Ex-Gaussian distribution.

Estimator

n CV7 CV8 CVMAD CVMnAD

10 0.52 0.39 0.22 0.22

25 0.75 0.69 0.27 0.33

50 0.97 0.94 0.33 0.47

100 1.23 1.21 0.40 0.68

200 1.51 1.50 0.48 0.94

Minimum values are shown in bold.

the classic CV. Altogether, these results indicate how similar the
performances of the CQV-based estimators are, and that they do
not represent a suitable choice, to replace the classic CV estimator
for this particular distribution.

Table 8 presents the median values of the log10(γ ) accuracy
metric of the Ex-Gaussian distribution. This table reveals that
the MAD estimator is the best choice. There are cases where the
CVMAD performs slightly better than the classic estimator of the
CV. For example, when µ = 0.3, σ = 0.7, ν = 1, n = 200, we
have log10(γ )CVMAD = −0.027, from which it can be concluded
that the CVMAD estimator is a reasonable choice.

Finally, the results for the Lognormal distribution are shown
in Figure 13. Although our results indicate that only theCVMnAD

estimators provided values of γ ≤ 1, there are several aspects
worth highlighting. First, the CQV7 and CQV8 estimators have
the poorest performance among the four estimators under
evaluation. Second, γ rapidly increases with n for the CQV7

and CQV8 estimators, but the same does not seem to occur for
the CVMAD or CVMnAD estimators. In the plot of the CVMnAD

estimator, note a behavior completely different to the CQV7,
CQV8, and CVMAD estimators. For this estimator, we observed a
negative tendency in relation to the values of θ producing smaller
MSEs than the other estimators when θ increases. On the other
hand, the CVMAD estimator present a slow positive tendency
in relation to the values of θ producing higher MSEs when θ

increases. Table 9 presents the median values of the log10(γ )
accuracy metric of the Lognormal distribution. This table reveals
that the MnAD estimator is the best choice.

Through the simulations, we demonstrate that the proposed
estimators can expand the existing methods for estimating the
CV population and thus can enrich the literature. Specifically,
some accepted estimators in the literature of the CV population
have serious limitations and are less satisfactory in practice
because they do not fully incorporate the distributional behavior
of the data, and thus we conclude that our estimator CVMAD

is the most stable and robust in almost all the scenarios
considered herein.

5. EXAMPLES

The simulation results in the previous section indicate that,
overall, the CVMAD gives a good performance. The applicability
of this measure is examined by re-analysing two real data sets:
one data set from the field of psychology and one from the field
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FIGURE 13 | Scatter plots comparing the log10(γ ) accuracy metric as a function of θ ∈ (0, 1) produced for each estimator and sample size under the Lognormal

distribution.

TABLE 9 | Median values of log10(γ ) accuracy metric across θ produced for each

estimator and sample sizes under the Lognormal distribution.

Estimator

n CV7 CV8 CVMAD CVMnAD

10 0.74 0.65 0.19 0.12

25 0.93 0.88 0.23 0.20

50 1.08 1.03 0.26 0.24

100 1.26 1.23 0.28 0.25

200 1.30 1.29 0.28 0.26

Minimum values are shown in bold.

of genomics. Both examples represent cases in which data do not
resemble Gaussian shapes and thus preclude the use of the classic
Pearson version of the CV.

5.1. Age and Gender Differences in
Reaction Time in Adulthood
Der and Deary [17] analyzed simple reaction times (SRTs) of
7,130 male and female adult participants whose ages ranged
between 18 and 82 years. In the SRT task, participants underwent
20 test trials and the mean and standard deviation (SD)
were estimated for each participant across trials. With that
information, classic CVs were estimated for each participant.
It is important to note that in the original data set [107, 108],
reanalyzed by Der and Deary [17], only the mean RT and SD
per participant were given (i.e., the raw results for the 20 trials
each participant underwent were summarized via these sample
estimators of location and scale). A more accurate reanalysis
of such data could have been performed if the raw data were
available. However, this is not the case, as the original data set
was obtained in that way between 1984 and 1985 [17]6. Analyses
of the CVs with respect to age showed a curvilinear trend, no
gender (gender) effects, and a slowing of SRTs (y) after the age

6The distribution of RTs rarely resembles a normal distribution. Instead, positively-

skewed distributions, e.g., the Ex-Gaussian, fit RT data more appropriately [99].

It is possible that estimating the mean and the SD as parameters of location and

scale for RT data can lead to biased results as the mean and SD are optimal

for normally-distributed data. Thus, when dealing with non-normal distributions,

robust estimators of location and scale are preferred.

(age) of 50. Figure 14A represents the mean CV per age group
originally reported in the upper left panel of Figure 3 in Der and
Deary [17].

Figure 14B shows the point estimatives of the CV by use of the
CVMAD estimator per age group. Standard errors were estimated
via nonparametric bootstrap [109] using B = 1, 000 samples
with replacement. (This method is used when the statistic’s
distribution is unknown). Using a linear regression model, a
likelihood ratio test confirmed a quadratic (curvilinear) trend
(F = 102.66, p = 1.3× 10−14) and that females had, on average,

a higher CVMAD than males (β̂ = 0.0134, σ̂β̂ = 0.0065, p =
0.0428). A structural change analysis using the Chow test [110],
implemented in the strucchange [111] add-on package for
R, was used to further examine the data via the sctest()
function:

R> sctest(y ~gender + age, data = dataset,
type = "Chow")

The results indicated that the CVMAD increased after 60 years,
regardless of gender (red line, Figure 14C). We used the false
discovery rate method (FDR) [112, 113] to correct our results for
multiple testing using the p.adjust() function implemented
in R. After FDR correction, we found that that the CVMAD

increased after the age of 66, regardless of gender (green line,
Figure 14C). These analyses by no means undermine those
originally reported by Der and Deary [17]; instead, they offer an
extension of the original analyses by using robust CV estimators.

5.2. Age of Onset in Alzheimer’s Disease
Alzheimer’s disease (AD) is clinically characterized by learning
disabilities, cognitive decline and memory loss that are sufficient
to interfere with the everyday activities and performance of
individuals [114–118]. As of 2010, more than 36 million people
worldwide had AD or a related dementia [114]. Without new
medicines to prevent, delay or stop the disease, this figure is
projected to dramatically increase to approximately 116 million
dementia cases by 2050 [119].

Recently, Vélez et al. [120] clinically and genetically
characterized 93 individuals with familial AD from the world’s
largest pedigree in which a single-base mutation in the Presenilin
1 (PSEN1) gene causes AD, namely the E280A mutation
[121–124]. One of the most intriguing characteristics of this
pedigree is the high variability (strong evidence that the data
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FIGURE 14 | Mean and standard error for the simple RT classic CV, by gender, as a function of age when the (A) classic and (B) CVMAD estimators of the CV are

used. The plot (C) shows − log10(P) for the structural change test as a function of age. Here, the value P indicates the p-value obtained by performing the test. Raw

and FDR-corrected p-values are shown in red and green, respectively. Values above the gray horizontal line are significant at 5%.

are not necessarily normally distributed) in the age of onset
(AOO) of the disease, which ranges from early thirties to late
seventies [123]. Vélez et al. [120] found strong evidence that
mutations in the apolipoprotein E (APOE) gene modify AOO in
carriers of the E280A mutation. In particular, the presence of
the APOE*E2 allele in patients with PSEN1 E280A AD increases
AOO by approximately 8.2 years when no other genetic variants
or demographic information are controlled for.

Figure 1d reported by Vélez et al. [120] clearly indicates
that the presence/absence of the APOE*E2 allele on ADAOO
data are non-normally distributed; and in this case, a robust
measure of the CV for comparing those groups may be more
appropriate, and thus we used the CVMAD proposed herein.
The sample-based CVMAD is 11.04% (n = 86) when the
APOE*E2 allele is absent, and 10.4% (n = 7) when it
is present. The difference between these estimates (0.636) is
negligible. (This result was also confirmed via a non-parametric
bootstrap using the CVMAD as the statistic of interest [p =
0.317]). Comparison with the original findings showed that
this conclusion is in line with that initially reached, where the
variance of the AOO amongAPOE*E2 allele groups did not differ
(p = 0.453, Vélez et al. [120]).

6. DISCUSSION

The aim of this study was to compare the performance of a
selected set of CVs across several statistical distributions. Our
results indicated that, overall, the CV estimated by the ratio of
the median absolute deviation to the median (i.e., the CVMAD

estimator) provided a suitable performance when compared to
the classic estimator. We hypothesize that this is the case, because
the MAD and median are robust estimators of location and scale
(for details see [37, 44, 61, 65]).

As shown in Table 10, the smallest median values of the
log10(γ ) accuracy metric were obtained by the CVMAD and
CVMnAD estimators under different sample sizes and each
distribution in Table 2. Based on these results, we recommend
the MAD-based estimators as alternative estimators of the
population CV.

TABLE 10 | Median values of log10(γ ) accuracy metric across θ produced for

each estimator and sample sizes by distribution.

n Estimator Distribution

N Binom Unif Pois Beta Exp Ŵ χ2
ν Sh-Exp ExG LogN

10 CQV7 0.57 0.54 0.68 0.59 0.31 0.54 0.59 0.59 −0.37 0.52 0.74

CQV8 0.43 0.44 0.52 0.44 0.21 0.41 0.45 0.45 −0.29 0.39 0.65

CVMAD 0.34 0.42 0.65 0.36 0.19 0.10 0.34 0.35 −0.20 0.22 0.19

CVMnAD 0.27 0.27 0.41 0.27 0.08 0.61 0.27 0.27 −0.17 0.22 0.12

25 CQV7 0.85 0.86 0.84 0.87 0.56 0.71 0.87 0.87 −0.60 0.75 0.93

CQV8 0.76 0.77 0.71 0.78 0.50 0.64 0.77 0.78 −0.54 0.69 0.88

CVMAD 0.41 0.66 1.01 0.44 0.35 0.07 0.41 0.41 −0.34 0.27 0.23

CVMnAD 0.49 0.50 0.62 0.50 0.28 0.50 0.49 0.50 −0.33 0.33 0.20

50 CQV7 1.08 1.09 0.95 1.10 0.79 0.91 1.10 1.10 −0.80 0.97 1.08

CQV8 1.04 1.05 0.88 1.05 0.76 0.87 1.05 1.05 −0.77 0.94 1.03

CVMAD 0.41 0.87 1.27 0.46 0.49 0.02 0.41 0.40 −0.50 0.33 0.26

CVMnAD 0.70 0.72 0.78 0.71 0.49 0.41 0.71 0.70 −0.51 0.47 0.24

100 CQV7 1.35 1.36 1.12 1.37 1.05 1.15 1.36 1.35 −1.01 1.23 1.26

CQV8 1.32 1.33 1.07 1.34 1.03 1.13 1.34 1.33 −0.99 1.21 1.23

CVMAD 0.42 1.18 1.56 0.49 0.67 0.02 0.42 0.42 −0.69 0.40 0.28

CVMnAD 0.95 0.97 1.00 0.96 0.74 0.37 0.95 0.94 −0.72 0.68 0.25

200 CQV7 1.63 1.64 1.33 1.65 1.33 1.41 1.64 1.64 −1.16 1.51 1.30

CQV8 1.61 1.62 1.30 1.64 1.32 1.40 1.63 1.62 −1.15 1.50 1.29

CVMAD 0.42 1.47 1.86 0.53 0.91 0.04 0.42 0.42 −0.83 0.48 0.28

CVMnAD 1.22 1.25 1.26 1.24 1.01 0.34 1.23 1.22 −0.87 0.94 0.26

Minimum values by distribution are shown in bold.

N ,Normal; Binom, Binomial; Unif, Uniform; Ŵ,Gamma; Sh-Exp, Shifted-Exponential;
ExG, Ex-Gaussian; LogN , Lognormal.

The methods studied here are by no means exhaustive;
indeed, further variations could be conceived by using other
estimators of location and scale. For example, it has been
shown that the Harrell-Davis version of the median outperforms
the classic median estimator [79, 125], the 20% trimmed
mean tends to work well in many practical situations [126],
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and estimators of the mode have been shown to be highly
efficient [127]. As for estimators of scale, in addition to
those already in use (i.e., the SD, MAD, MnAD and IQR),
estimators such as the percentage bend midvariance, the
biweight midvariance or the τ measure of variation could be
used [44]. For example, by using a mode estimator, say the
Venter [128], another estimator of the CV could be proposed,
such as MoAD/MoV, where MoAD is the (Venter) mode
absolute deviation from the (Venter) mode, and MoV is the
(Venter) mode7.

Probability distributions with positive and negative support
can arise in the case of electroencephalogram (EEG) data. Such
data could be modeled via the Johnson distribution [129]. This
distribution is characterized by the parameter vector (µ, σ , ν, τ )
where µ, σ , ν, and τ are the location, scale, skewness, and
kurtosis, respectively. Preliminary results show that the median-
based estimators of the CV give negative values of the log10(γ )
accuracy metric when random samples of size n = 50
from a negatively-skewed Johnson distribution with parameters
(µ, σ , ν, τ ) = (2, 2,−1, 1) were simulated. The estimation and
suitable interpretations of the CV in asymmetric truncated
(e.g., truncated reaction times), bounded discrete (e.g., M-point
Likert ratings), contaminated, heavy-tailed and finite mixture
distributions should be comprehensibly discussed and evaluated
in upcoming in silico studies.

7Various robust estimators of location and scale are already implemented in the R
packages robustbase, modeest, and WRS2. The DescTools package offers

some tools for winsorizing, mean trimming, robust standardization, among others

(e.g., 95% CIs around the median, the Hodges-Lehmann estimator of location, the

Huber M-estimator of location, etc.).

In summary, our results confirmed that (i) the type of quantile
used to construct the CQV7 and CQV8 affects the performance
of the estimators, and (ii) the MAD-based version of the CV
performs better than the other estimators evaluated herein.
Although Hyndman and Fan [43] provide a theoretical basis for
the selection of quartile estimations, a thorough simulation study
is still needed. We are working on this front. The preliminary
results suggest that it is only in the case of the normal, continuous
distributions that all quartiles fail to provide accurate estimates
as the sample size decreases. This is, in fact, an expected result
given that the smaller the sample size, the less reasonable the
estimations are likely to be. Out of the quantiles’ estimators for
continuous distributions (i.e., type 4 to type 9; see [43], for
more details), the type 6 quantile estimator seems to provide
the most accurate results.
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