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Objectives: The objectives of this study were to explore inter-study heterogeneity in the pharmacokinetics (PK)
of orally administered rifampicin, to derive summary estimates of rifampicin PK parameters at standard dosages
and to compare these with summary estimates for higher dosages.

Methods: A systematic search was performed for studies of rifampicin PK published in the English language up
to May 2017. Data describing the Cmax and AUC were extracted. Meta-analysis provided summary estimates
for PK parameter estimates at standard rifampicin dosages. Heterogeneity was assessed by estimation of the
I2 statistic and visual inspection of forest plots. Summary AUC estimates at standard and higher dosages were
compared graphically and contextualized using preclinical pharmacodynamic (PD) data.

Results: Substantial heterogeneity in PK parameters was evident and upheld in meta-regression. Treatment
duration had a significant impact on the summary estimates for rifampicin PK parameters, with Cmax 8.98 mg/L
(SEM 2.19) after a single dose and 5.79 mg/L (SEM 2.14) at steady-state dosing, and AUC 72.56 mg�h/L
(SEM 2.60) and 38.73 mg�h/L (SEM 4.33) after single and steady-state dosing, respectively. Rifampicin dosages of
at least 25 mg/kg are required to achieve plasma PK/PD targets defined in preclinical studies.

Conclusions: Vast inter-study heterogeneity exists in rifampicin PK parameter estimates. This is not explained by
the available modifying variables. The recommended dosage of rifampicin should be increased to improve effi-
cacy. This study provides an important point of reference for understanding rifampicin PK at standard dosages
as efforts to explore higher dosing strategies continue in this field.

Introduction

When it was introduced as part of combination therapy for TB in the
1960s, rifampicin revolutionized treatment and shortened the dur-
ation of therapy from 18 to 9 months. This would subsequently be
shortened further to 6 months with the addition of pyrazinamide.1

Despite experience gained over the past five decades, the optimal
dosage of rifampicin has not been established definitively. The cur-
rent recommendation of 10 mg/kg in guidelines from the WHO has

not changed since the introduction of rifampicin, at which time it
was based on toxicological and financial concerns, with limited
pharmacokinetic (PK) data available.2,3

For therapeutic drug monitoring (TDM) of rifampicin in TB treat-
ment, a Cmax of 8–24 mg/L (free plus bound drug) was suggested
in the 1990s. This recommendation was based on a review of
observed PK parameters and on expert opinion. Data from patients
infected with HIV were not included.4,5 There was no pharmacody-
namic (PD) component to the target, as MIC data were lacking in
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patient samples at that time. In the ensuing 20 year period, this
original reference range was accepted as the target for rifampicin
Cmax in numerous studies addressing the utility of TDM for rifampi-
cin.6–11 Treatment response is slow if rifampicin concentrations fall
below this range.12,13

More sophisticated PK/PD analyses have since been performed
on data from murine and human studies and there is a growing
consensus that current dosages of rifampicin are inadequate; drug
exposure appears scarcely to reach the upstroke of the dose–
response curve.14 Accordingly, the target range of Cmax for rifampi-
cin TDM has been revised to emphasize the need to exceed 8 mg/L,
rather than focus on an upper limit.15 At steady-state, drug expos-
ure is thought to increase more than proportionally in response to
modest dose increases.16 Increased dosages of rifampicin correl-
ate with day 2 early bactericidal activity in a near-linear fashion in
TB patients.17 There is an accumulating body of evidence demon-
strating the safety and efficacy of higher-than-standard rifampicin
doses in in vitro, animal and human studies and the adoption of
this approach holds great appeal as a strategy to shorten TB treat-
ment.18–23

Dose fractionation experiments have demonstrated that the
PK/PD index most closely linked to rifampicin microbial kill is AUC/
MIC, a finding corroborated by hollow-fibre models, which have
additionally shown that Cmax/MIC is more closely linked to the sup-
pression of resistance and the post-antibiotic effect.20,21 In TB
patients, the 0–24 h AUC has a greater value than Cmax or clinical
features in predicting long-term clinical outcome.24

Scientific comparison of the findings of clinical trials investigat-
ing high rifampicin dosages requires an understanding of the PK
parameters achieved with currently used dosages, so that the im-
pact of dose escalation can be appreciated. For this reason, we
conducted a systematic review and meta-analysis of published
data describing rifampicin PK. As Cmax/MIC and AUC/MIC are the
PK/PD indices best characterized, we focused on these PK parame-
ters. The objectives of this study were: (i) to explore the inter-study
heterogeneity in rifampicin PK; (ii) to derive summary estimates of
rifampicin PK parameters at standard dosages; (iii) to compare
these with summary estimates for higher-than-standard rifampi-
cin dosages; and (iv) to contextualize these PK estimates using the
available PD data.

Methods

Search strategy and selection criteria

Studies were identified in accordance with the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.25 PubMed,
Scopus and MEDLINE electronic databases were searched. In PubMed and
Scopus, titles and abstracts were searched using the terms ‘rifampicin’ OR
‘rifampin’ OR ‘antituberculous’ OR ‘antimycobacterial’ AND ‘pharmacokinet-
ics’, to identify studies reported in the English language up to May 2017. The
MEDLINE database was searched using the keywords ‘pharmacokinetic*’
OR ‘bioequivalence’ AND title words ‘rifampicin’ OR tubercul*’. Two
reviewers (K. E. S. and G. D.) screened titles and abstracts for relevance and
appraised full texts for inclusion in the meta-analysis using pre-specified se-
lection criteria. Key articles were identified by consensus between K. E. S.
and G. D. Prospective clinical studies were included if they collected PK data
from adult patients with Mycobacterium tuberculosis infection and/or
healthy adult volunteers receiving orally administered rifampicin.

Patients who received rifampicin for indications other than TB were
excluded, because physiological fluctuations associated with different

disease states are known to interfere with PK.26 Studies that collected data
relating to paediatric populations were excluded, as were non-human stud-
ies, abstracts, reviews and correspondence. Papers reporting PK parameters
derived from modelling analyses were excluded for several reasons: vari-
ability in modelling methods has the potential to introduce additional het-
erogeneity; over-parameterization of models can lead to statistical
shrinkage and loss of data variability; and datasets are often reported in
both modelling and non-compartmental analyses (NCAs), which would risk
reporting some data in duplicate. Finally, studies assessing the impact of ri-
fampicin on the PK of another drug, rather than reporting the PK of rifampi-
cin itself, were excluded.

Assessment of quality of studies
No validated tool exists to assess methodological rigour in PK studies. The
priority is that samples are collected from subjects representative of target
populations receiving dosage regimens of interest and relevance, rather
than subjects who are randomized to one or other intervention. We consid-
ered this in our selection of studies, as well as ensuring that authors clearly
described the pharmaceutical product, bioanalytical methods and statistic-
al tools used.

Data extraction
A data extraction form was designed and one reviewer (K. E. S.) extracted
data from the included studies on the following items in addition to rifampi-
cin PK parameters: study design; study population; sex; age; body weight;
HIV status; treatment regimen; duration of treatment; rifampicin dose;
whether rifampicin was administered as a separate drug or in a fixed-dose
combination; whether dosing was daily or intermittent; PK sampling times;
assay method; and data analysis method. These variables were selected
a priori as it was felt that they were the factors most likely to impact rifam-
picin PK. Rifampicin was considered to be at steady-state if it had been
administered for �7 days to allow for saturation of first-pass metabolism
and the establishment of metabolic autoinduction.

Data synthesis
In many of the studies, more than one group of participants was compared,
e.g. HIV-positive and HIV-negative participants.27 In others, more than one
treatment was compared, e.g. in a crossover trial comparing separate
drug formulations with fixed-dose combinations.28 These groups were
analysed in the same way that data were presented in the papers; that
is, separate study arms were analysed separately rather than mean val-
ues being calculated for each study. This meant that some studies
contributed two or more sets of PK parameters to the meta-analysis.
To enable comparison of PK parameters across all studies, data were
collected as means and standard deviations. Where summary statistics
were not published in this format, authors were contacted to request
that they share either raw data or results of an NCA of their data. If data
were summarized as median and range or IQR and raw data or NCA
results were unobtainable from the authors, we estimated the mean
and standard deviation from the summary statistics provided using pre-
viously described methods.29

As the Cmax of rifampicin occurs around 2 h after ingestion and half-life
is of the order of 2.5–4 h,30 concentrations remaining in plasma after 24 h
from ingestion will be negligible. This was supported by the lack of a statis-
tically significant difference between the estimates of AUC produced from
the 0–24 h time interval and the 0–48 h time interval and those calculated
from the 0–infinity (1) interval. The AUC0–24, AUC0–48 and AUC0–1 results
were therefore combined into a single measure of AUC and only these esti-
mates were included in the final analysis to minimize design-related
heterogeneity. Hereafter, any reference to AUC refers to the combined
AUC0–24, AUC0–48 and AUC0–1 estimates. Although rifampicin is 80%–90%
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protein bound and the active portion is believed to be unbound drug, stud-
ies reported total drug PK parameters; this analysis used the same.15,30

Summary measures
Data were analysed in Microsoft Excel version 15.28 (Microsoft 2016) and
using the metafor package in R version 3.3.1.31 The main objective of the
analysis was to collate and summarize available data on the PK parameters
of rifampicin derived from subjects taking WHO-recommended dosages.
The focus of the meta-analysis was therefore on the 8–12 mg/kg dosing
bracket. A linear model was used to incorporate the following variables: HIV
status (positive or negative); TB status (positive or negative); combination
therapy [limited to patients taking rifampicin monotherapy versus those
taking combination therapy with isoniazid, pyrazinamide and ethambutol
(RHZE)]; intermittent dosing; diabetes status; and treatment duration.
A restricted maximum likelihood mixed-effects model was used to perform
a meta-analysis of Cmax and AUC estimates, with application of the
DerSimonian–Laird estimator of residual heterogeneity. This approach fits a
random-effects model. Standard errors of the study-specific estimates are
adjusted to incorporate a measure of the heterogeneity among the effects
of independent variables observed in different studies.32 The degree to
which demographic and clinical variables accounted for inter-study
heterogeneity was assessed using meta-regression. Heterogeneity of PK
estimates overall and within subgroups was assessed by estimation of the
I2 statistic and visual inspection of forest plots.

A second objective was to explore the effect of higher-than-
recommended doses of rifampicin on drug exposure. The .12 mg/kg group
of studies was split into more specific dosing subgroups and the mean and
standard error derived from meta-analysis in standard weight-based dos-
ing categories was compared with the summary statistics extracted from
studies of higher rifampicin dosages. As the number of studies at higher
dosages was small, we were unable to incorporate dose escalation as a
variable in the meta-regression, so graphical comparison of summary sta-
tistics from studies at standard and higher dosages was performed instead.

Results

The search retrieved 3075 titles, of which 70 studies were deemed
eligible, containing 179 distinct study arms (Figure S1, available as
Supplementary data at JAC Online). The characteristics of the stud-
ies are summarized in Table S1. The cohorts contained a total
of 3477 study participants. HPLC was used to measure rifampicin
levels in 66 of the 70 studies. The remaining studies used
spectrophotometry33–35 or a plate diffusion assay.36 These three
studies were retained in the meta-analysis because their exclusion
did not significantly impact overall PK parameter estimates.

By far the most common weight-based dosing category in the
included studies was 8–12 mg/kg (118 of 163 study arms for which
dosing information was extracted, 72%), in line with WHO rifampi-
cin dosing guidelines. Unless explicitly stated, results presented
hereafter pertain to those studies in which patients received this
recommended dose.

Cmax data were highly heterogeneous and influenced by
treatment duration

Cmax was highly heterogeneous between studies, with an I2 statis-
tic of 95.36% (95% CI 95.13%–97.15%). Meta-regression of Cmax

estimates with a multivariate model including all variables found
two modifiers to have a statistically significant impact on Cmax:
duration of treatment and TB status. The effect on inter-study vari-
ability was minor, however: I2"91.36% (95% CI 90.50%–94.77%)

after meta-regression. The population summary estimates for
Cmax after univariate analysis were 11.51 mg/L (SEM 0.38) after sin-
gle dosing and 7.04 mg/L (SEM 0.58) after steady-state dosing
(P"0.001) (Figure S2). In multivariate analysis, the difference in
Cmax estimate according to dosing duration was upheld. Single
dosing (n"1139 in 66 study arms) resulted in an adjusted mean
Cmax of 8.98 mg/L (SEM 1.34) and steady-state dosing (n"904 in
42 study arms) resulted in an adjusted Cmax of 5.79 mg/L (SEM
0.90) (P"0.001). The adjusted summary estimate of Cmax for
healthy volunteers (n"946 in 60 study arms) as compared with
TB patients (n"1075 in 46 study arms) was 8.98 mg/L (SEM 1.34)
in healthy volunteers and 6.39 mg/L (SEM 0.85) in TB patients
(P"0.01). Notably, the majority of healthy volunteer cohorts were
studied after a single dose of rifampicin (109/120 healthy volun-
teer cohorts, 91%) and most TB patients were studied after
steady-state dosing (53/63 TB patient cohorts, 84%). When multi-
variate analysis was limited to subjects dosed at steady-state, TB
status had a negligible and non-significant modifying effect on
Cmax: healthy volunteers 7.08 mg/L (SEM 1.21); TB patients
7.04 mg/L (SEM 1.28) (P"0.98). No other modifying variables had
a significant impact on the adjusted Cmax estimate (Table S2).

Only treatment duration had a consistently significant
impact on AUC in univariate analysis

In keeping with the findings in relation to the Cmax estimate, inter-
study variability in the AUC estimate was extreme, with an I2 stat-
istic of 99.53% (95% CI 99.28%–99.60%) in the meta-analysis
before inclusion of modifying variables. In univariate analysis, the
effect of steady-state dosing was to approximately halve the
mean AUC estimate, from 72.56 (SEM 2.60) to 38.73 mg�h/L (SEM
4.33) (P , 0.0001) (Table 1 and Figure 1). Univariate analysis indi-
cated significant associations between the AUC estimate and
three additional covariates: HIV status, TB status and whether ri-
fampicin was dosed in monotherapy or in combination (Table 1).
However, steady-state dosing was disproportionately represented
compared with single dosing in both HIV-positive patients and TB
patients (100% and 82% of HIV-positive and TB patients, respect-
ively, were studied at steady-state). Once these analyses were
repeated with data limited to steady-state dosing, neither HIV sta-
tus nor TB status had a significant impact on the AUC estimate
(Figure 2a and b). Similarly, when the analysis was limited to those
who underwent steady-state dosing, combination therapy made
no significant difference to the AUC estimate: AUC 39.54 (SEM
3.83) versus 36.73 mg�h/L (SEM 4.88) for rifampicin monotherapy
versus RHZE combination therapy (P"0.57).

Significance of effect of treatment duration on AUC was
upheld in meta-regression, but vast heterogeneity
remained

When all modifying variables were incorporated into a mixed-
effects meta-regression model, the impact on inter-study hetero-
geneity was negligible (I2"98.69%, 95% CI 98.38%–99.14%).
Only treatment duration had a significant impact on AUC: adjusted
AUC 56.26 mg�h/L (SEM 13.90) after a single dose and 20.94 mg�h/L
(SEM 6.49) after steady-state dosing (Table 2). After multivariate
meta-regression analysis, combination therapy with RHZE no
longer had a significant impact on AUC. A diagnosis of diabetes
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had a negligible, although statistically significant, modifying ef-
fect on the AUC estimate (Table 2).

Current rifampicin dosages for TB are unlikely to be
sufficient for PK/PD target attainment

There appeared to be a slightly greater than proportional increase
in AUC with increasing dosage (Table 3 and Figure 3a), although
additional data from ongoing trials will help to clarify this. In seek-
ing to relate these reported drug exposures to measures of clinical
outcome, we used published PK/PD indices associated with effi-
cacy in murine studies21 and MIC data from human clinical WT
M. tuberculosis isolates.37 These murine studies report that an
AUC/MIC of 271 is required for a 1 log cfu reduction in vivo.21 The ri-
fampicin WT MIC distribution ranges from 0.03 to 0.5 mg/L, with a
median of 0.25 mg/L and proposed epidemiological cut-off value
(ECOFF) of 0.5 mg/L.37 Taking the median WT MIC of 0.25 mg/L,
doses of 13 mg/kg appear sufficient to achieve the AUC/MIC target
of 271. Taking the ECOFF MIC of 0.5 mg/L, however, available data
indicate that a rifampicin dose of �25 mg/kg is required to attain
this PK/PD target associated with a 1 log cfu reduction (Figure 3b).

Discussion

This meta-analysis, to our knowledge the most comprehensive to
have been conducted on rifampicin PK, has demonstrated vast
inter-study heterogeneity in PK parameter estimates. Having col-
lated data collected globally, spanning 35 years and with the inclu-
sion of HIV status, TB status, combination therapy, intermittent

dosing, diabetes status and treatment duration as modifying vari-
ables, we have been unable to explain this heterogeneity. The vast
heterogeneity within and between studies has made it impossible
to assess the degree to which physiological differences between
individual patients impacts upon rifampicin PK or PK variability, as
has been reported with other antimicrobials.38,39

The summary estimates of Cmax and AUC will serve as useful
reference points for clinicians and academics concerned with the
dosing of rifampicin for TB. At standard, WHO-recommended
doses, mean rifampicin Cmax and AUC are both significantly
reduced in patients dosed at steady-state: Cmax 8.98 versus
5.79 mg/L and AUC 72.56 versus 38.73 mg�h/L after a single dose
and steady-state dosing, respectively. These decreases in PK
parameters are expected due to extensive, saturable first-pass
metabolism and well-characterized autoinduction of metabolism,
resulting in enhanced clearance after repeated doses.30,40,41

Whilst there was a trend towards HIV positivity being associated
with lower rifampicin AUC, this did not hold up in meta-regression
analysis, which may explain the conflicting results of previous
investigations into the effect of HIV positivity on rifampicin
exposure.5,27,42–44 The case of AUC in TB patients versus healthy
volunteers was similar in that the significance of the association
was lost in meta-regression analysis.

With increasing dose, there is a greater than proportional in-
crease in AUC. This is encouraging for the community that is seek-
ing to increase rifampicin exposure. Taking 38.73 mg�h/L as the
mean rifampicin AUC at steady-state dosing of 8–12 mg/kg and
the ECOFF MIC of 0.5 mg/L37 gives an AUC/MIC ratio of 77, far

Table 1. Univariate analysis of variables influencing estimated rifampicin AUC

Variable and category Number of study arms Number of patients AUC estimate (mg�h/L) 95% CI SEM P

Duration of therapy

single dose 58 1053 72.56 66.39–78.74 2.60 ,0.0001

steady-state dosing (.1 week) 34 846 38.73 33.82–42.67 4.33

HIV status

HIV negative 14 236 56.66 47.37–65.96 4.08

HIV positive 9 126 37.16 27.08–47.23 6.56 0.003a

mixed HIV population 14 569 41.36 34.82–47.90 5.77 0.005a

TB status

TB patients 36 947 46.14 39.39–52.89 5.29 ,0.0001

healthy volunteers 56 952 69.41 62.17–76.66 3.31

Drug combination

rifampicin monotherapy 11 122 63.21 54.53–71.89 4.43 0.0478

RHZE 39 842 51.70 40.29–63.11 5.82

Diabetes status

no diabetes 12 227 84.56 73.70–95.42 5.54 0.44

diabetes 2 42 73.17 44.46–101.88 14.65

Dosing frequency

daily dosing 87 1617 61.52 55.62–67.42 3.01 0.35

intermittent dosing 3 189 46.01 13.69–78.33 16.49

Univariate analysis indicated significant differences in estimated AUC depending on treatment duration, HIV status, TB status and combination
therapy.
Steady-state refers to dosing for�7 days to allow for saturation of first-pass metabolism and the establishment of metabolic autoinduction.
P values indicate significance of difference between pooled AUC estimates within each study variable.
aP value for difference from HIV-negative population.
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below the optimal PK/PD index suggested by Jayaram et al.21 from
murine data (prior to reference). Taking the MIC value from the
very lower end of the WT range (0.03 mg/L) gives a ratio of 1291.
The discrepancy between these ratios may explain in part why
some patients develop rifampicin resistance on currently recom-
mended doses while others are successfully treated with the
same dose. The PK variability demonstrated herein is likely also to
contribute to this phenomenon. Of note, this PK/PD index indicates
the potency of a single drug used in isolation and does not reflect
the efficacy of rifampicin used in clinical settings and in combin-
ation with other agents. There are also likely to be microbiological
and host immune factors that influence treatment success. Our
calculations nevertheless highlight the inadequacy of current ri-
fampicin doses and the need for these to increase.

This analysis is limited by the fact that many studies summar-
ized their results as median and range or IQR and, as stated, where
raw data could not be obtained from authors of those studies
means and standard errors were estimated using a previously
described method.29 This may have introduced inaccuracies. Our
categorization of studies according to weight-based dosing was
necessarily crude and in some cases based on the average weight
of the study population in question. In addition, we were not able
to consider the impact of covariates that were not consistently
measured on heterogeneity in PK estimates. These included
co-medications and associated drug–drug interactions, specific

formulations of rifampicin that have been demonstrated to exhibit
altered PK,33,45,46 and patient ethnicity.

We acknowledge that the heterogeneity amongst the included
studies, likely caused in part by these and other design and report-
ing factors, is extreme. Nevertheless, we believe that our largely
descriptive analysis has value in highlighting the importance of
these factors, in addition to the widely recognized role
of inter-individual variability, in terms of their impact on the PK of
rifampicin.47,48 The extreme residual inter-study variability not
accounted for by our meta-regression analysis may thus represent
significant true biological variability between study populations,
which should be further explored. In addition, the degree of PK
variability that is attributable to protein-bound versus unbound ri-
fampicin is not known. Future studies that directly assess these
factors would be valuable, as would studies that employ mathem-
atical PK models to quantify rifampicin PK variability. Monte Carlo
simulation of rifampicin exposure based upon the AUC distribu-
tions presented in this meta-analysis would enable exploration of
various dosing regimens. If these simulations could incorporate
predictions of toxicity and drug resistance, they would support risk
reduction of novel regimens before they enter clinical use.

This meta-analysis has collated and quantitatively summarized
the existing literature on the PK of rifampicin, which is believed to
be the key driver of PD and ultimately treatment outcome. It pro-
vides an important point of reference for understanding rifampicin
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Figure 1. Forest plot displaying estimated rifampicin AUC after univariate analysis according to dosing duration. In univariate analysis, the effect of
steady-state dosing was to approximately halve the estimated rifampicin AUC (P , 0.0001).
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Figure 2. (a) Forest plot displaying estimated rifampicin AUC after univariate analysis according to HIV status; data are limited to steady-state dos-
ing. Once data were limited to steady-state dosing, HIV status no longer had a significant impact on rifampicin AUC estimate. P values for comparison
were .0.05. (b) Forest plot displaying estimated rifampicin AUC after univariate analysis according to TB status; data are limited to steady-state dos-
ing. Once data were limited to steady-state dosing, TB status no longer had a significant impact on the rifampicin AUC estimate. P value for compari-
son was .0.05.
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efficacy at current dosages as exploration of higher dosages
continues.
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Table 2. Meta-regression of variables influencing estimated rifampicin
AUC

Variable and category

Adjusted
AUC estimate

(mg�h/L) 95% CI SEM P

Duration of therapy

single dose 56.26 29.01–83.50 13.90 ,0.0001

steady-state dosing

(.1 week)

20.94 8.28–33.60 6.49 ,0.0001

HIV status

HIV negative 53.16 41.63–64.68 5.85 0.60

HIV positive 48.13 33.26–63.61 7.74 0.31

mixed HIV population 54.53 37.08–71.98 8.90 0.85

TB status

TB patients 56.26 43.22–69.29 6.65 0.10

healthy volunteers 67.09 54.11–80.07 6.62 0.10

Drug combination

rifampicin monotherapy 87.71 59.48–113.93 13.89 0.72

RHZE 72.19 50.91–101.47 12.90 0.67

Diabetes status

no diabetes 109.97 61.03–158.91 24.97 0.03

diabetes 113.30 59.03–167.55 27.68 0.04

Dosing frequency

daily dosing 54.94 24.42–85.46 15.57 0.93

intermittent dosing 39.02 17.01–60.95 11.18 0.12

Meta-regression of all available variables found that treatment duration
alone had a substantial and significant impact on estimated rifampicin AUC.
Steady-state refers to dosing for �7 days to allow for saturation of first-
pass metabolism and the establishment of metabolic autoinduction.
P values indicate significance of difference between pooled AUC esti-
mates and overall population estimate.

Table 3. Rifampicin AUC at steady-state: meta-analysed standard dose
compared with higher dosages

Rifampicin
dose (mg/kg)

Number of
subjects

Mean AUC
(mg�h/L) SEM References

8–12 846 38.2 4.3 a

13 23 79.7 5.4 16

15 55 46.4 3.4 49

17 11 100.1 11.0 50

20 113 95.2 3.8 23,49–51

25 15 140.5 11.2 23

30 15 204.8 22.6 23

35 35 194.6 12.3 23,51

With increasing dose, there is a greater than proportional increase in
AUC. Data are displayed in Figure 3(a).
Steady-state refers to dosing for �7 days to allow for saturation of first-
pass metabolism and the establishment of metabolic autoinduction.
aAll references in meta-analysis (see Table S1).
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Figure 3. (a) Impact of increasing dose on rifampicin AUC. With increas-
ing dose, there appears to be a greater than proportional increase in
AUC. Error bars show SEM. Data are displayed in Table 3. (b) Impact of
increasing dose on rifampicin AUC/MIC. Taking the ECOFF MIC of 0.5 mg/L,
available data indicate that a rifampicin dose of �25 mg/kg is required to
attain the PK/PD target associated with a 1 log cfu reduction (an AUC/MIC
of 271).
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