
Review Article

Photocatalysis and Bandgap Engineering
Using ZnO Nanocomposites

Muhammad Ali Johar,1 Rana Arslan Afzal,1

Abdulrahman Ali Alazba,1 and Umair Manzoor1,2

1Alamoudi Water Research Chair, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
2Centre forMicro&NanoDevices, Department of Physics, COMSATS Institute of Information Technology, 44000 Islamabad, Pakistan

Correspondence should be addressed to Umair Manzoor; umanzoor@ksu.edu.sa

Received 20 August 2015; Revised 12 October 2015; Accepted 13 October 2015

Academic Editor: Filippo Giannazzo

Copyright © 2015 Muhammad Ali Johar et al. �is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Nanocomposites have a great potential to work as e�cient, multifunctional materials for energy conversion and photoelectro-
chemical reactions. Nanocomposites may reveal more improved photocatalysis by implying the improvements of their electronic
and structural properties than pure photocatalyst. �is paper presents the recent work carried out on photoelectrochemical
reactions using the composite materials of ZnO with CdS, ZnO with SnO2, ZnO with TiO2, ZnO with Ag2S, and ZnO with
graphene and graphene oxide.�e photocatalytic e�ciencymainly depends upon the light harvesting span of amaterial, lifetime of
photogenerated electron-hole pair, and reactive sites available in the photocatalyst. We reviewed the UV-Vis absorption spectrum
of nanocomposite and photodegradation reported by the same material and how photodegradation depends upon the factors
described above. Finally the improvement in the absorption band edge of nanocomposite material is discussed.

1. Introduction

A humongous amount of water pollutants is discharged into
the environment by the industries on daily basis which causes
many he	y problems for humans, amphibious environments,
and microorganisms [1–11]. �e main sources of the water
pollutants are fertilizers [12–14], microorganisms [15–18],
application of pesticides and chemicals to soils [19–25],
sewage [26–29] andwastewater [30–32], septic tanks [33–36],
underground storage and tube leakages [37], atmospheric
deposition [38–41], industrial waste which usually contains
sulphur [42], asbestos, lead, mercury, nitrates and phos-
phates, oils, textile dyes, and so forth. �ese water pollutants
cause the death of aquatic animals [43–49], disruption of
food chains, di�erent human diseases [50–59], destruction of
ecosystems, and so on.

To decontaminate the contaminated water, researchers
have taken many steps and have suggested many pollu-
tants remediation techniques. One method is to treat the
wastewater on site by the treatment plants, as it has a great

potential [60–63]. �ere are a variety of water treatment
processes like chemical, physical, and biological techniques,
but each has its limitations for the application, cost, and
e�ectiveness point of view. �e pollutants are being trans-
ferred to solid phase from liquid phase by physical techniques
like adsorption, precipitation, or air stripping; hence the
pollutants are not destroyed. Chemical oxidationmay be slow
tomoderate in the rate and selective or rapid but nonselective,
hence generating oxidant cost. When the feed is inhibitory
or toxic to bioculture, the limitation of biological oxidation
takes place. Rest of the techniques are limited due to oxidative
potential, economics, or tendency to farm harmful byprod-
ucts [64, 65]. Due to these limitations theremay be o�ered an
e�ective particular process which may be the combination of
the available techniques in such a way to exploit their indi-
vidual strength, thus an appropriate solution obtained within
the economic constraints. Nowadays the most appropriate
techniques for the water treatment are advanced oxidation
processes (AOPs) which have very fewer limitations [66–
70]. Among AOPs, heterogeneous photocatalysis is a tertiary
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Figure 1: Stick and ball representation of di�erent ZnO crystal structures: (a) cubic rocksalt, (b) cubic zinc blende, and (c) hexagonal wurtzite.
�e shaded gray and black spheres denote Zn and O atoms, respectively [96].

water treatment process and has attracted the interest of
researchers due to its ability to completely decompose the
target pollutants [71–73].

�ere is a great potential for the mitigation of the
toxic chemicals from the polluted water by photocatalytic
degradation using nanostructured semiconductors [74, 75].
Currently, the hot issue among themost important challenges
faced by science researchers for clean energy, pollutant-free
water and air is designing new materials for the maximal
harvesting of solar radiation. An extensive work has been
carried out on ZnO and TiO2 for the application of photo-
catalysis and photovoltaic cells due to their advantage of high
stability against photocorrosion, suitable bandgap, and good
photovoltaic and photocatalysis e�ciencies [76–82].

�e photocatalytic behavior of the nanocomposites varies
with morphologies [83–93]. For ZnO, the di�erence in
photocatalytic behavior occurs due to polar planes, surface
areas, and oxygen vacancies. Xu et al. synthesized di�erent
morphologies of ZnO by solvothermal method and used
them as photocatalyst for the degradation of phenol [83].
�ey suggested thatNPs andnano�owers exhibited enhanced
photodegradation results compared to nanorods, nanotubes,
nano�owers, and hour-glass-like ZnO spheres. Liu et al.
prepared TiO2 nanostructures with di�erent morphologies
like NPs, nanorods, and microspheres via hydrothermal
route and applied them for the photodegradation of phenol
[87].�ey observed excellent photodegradation results when
nanorods were used as photocatalyst.

Although ZnO has been studied since 1935, new tech-
niques and advance equipment make it possible to explore
its remarkable properties [94]. ZnO is now considered to
be the future material for various optoelectronics devices
and sensors and as a catalyst. �e characteristic of ZnO as
photocatalyst becomes more prominent due to the enhanced
photocatalytic e�ciency of ZnO in the pure and doped forms

and as a physical mixture. �e �gure of merits of doped
and undoped ZnO nanomaterials is high carrier mobility,
environmental sustainability, high photocatalytic e�ciency,
facile, simple tailoring of structures, nontoxicity, low cost for
massive synthesis, and so forth.

2. ZnO Properties and Crystal Structure

ZnO occurs as a white powder. ZnO is an amphoteric oxide.
ZnO is II-VI compound semiconductor whose iconicity lies
at the borderline between ionic and covalent semiconductors.
ZnO has three crystal structures, cubic zinc blende, cubic
rocksalt, and hexagonal wurtzite, as shown in Figure 1.
Hexagonal wurtzite structure is most common as it is most
stable at ambient conditions; rocksalt can be formed at
relatively high pressure, approximately 10GPa, and a large
volume decreases about 17% [95], while zinc blende can
only be synthesized from cubic substrates [96]. Wurtzite and
hexagonal ZnO have two crystal lattice parameters, � =
3.2495 Å and � = 5.2069 Å, and �/� ratio is 1.60. A wide
range of novel structures has been grown of ZnO by changing
growth conditions. �e main objective of this review is to
appraise the recent research of one-dimensional ZnO hier-
archical nanostructures used in photodegradation of water
pollutants.

3. Photocatalysis

Photocatalysis was �rst reported in 1839 [97]. However, boom
took place in the �eld of heterogeneous photocatalysis a	er
an article reported by Fujishima and Honda in 1972. �ey
reported photo-assisted catalysis of water on irradiation on
TiO2 with photons of energy greater than the bandgap of
TiO2 semiconductor [98]. Figure 2 illustrates the underlying
science of photocatalysis of a pure semiconductor. As the
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Figure 2: Schematics of principle of photocatalysis.

photon with an equivalent or more energy hits the surface of
the semiconductor, an electron jumps from the conduction
band to valance band, thus creating an electron-hole pair.
�ese photo-induced electrons and holes move separately to
the surface of the semiconductor and react with O2 and

∙OH
involved in the dye solutions. �is leads to the formation of
hydroxyl radicals (∙OH), superoxide radical anions (∙O2), and
hydroperoxyl radicals (∙OOH) [99].

Several scenarios have been implemented to improve
the harvesting spectrum to improve photo-assisted catalysis
[100–109]. One of them is to synthesize 1D nanostruc-
tures. Researchers have fabricated di�erent morphologies
of nanostructures like NPs, NWs, nanoneedles, nanobelts,
nanocombs, and �ower-like nanostructures as shown in
Figure 3. Doping of transitionmetal has limited success [110–
117]. �e addition of second metal oxide has also been used
to enhance the light harvesting spectrum of ZnO.

3.1. Photocatalysis by Pure ZnO Nanostructures. ZnO is a
promising material for the degradation of water pollutants.
Lu et al. synthesized ZnO dense nanosheets-built network
and applied it for the degradation ofmethyl orange [118].�ey
observed high photocatalytic activity due to high surface
to volume ratio. Wang et al. synthesized ZnO NPs, NWs,
and nanorods in the ionic solution at low temperature
[119]. �ey used them for the photodegradation of RhB and
showed size/shape dependent photocatalytic activity. Yan et
al. grew �lms of ZnO nanoneedles, NPs, and �ower-like
structures and used them for decomposition of methyl blue
under the principle of photocatalysis [120]. �e e�ciency of
photocatalysis depends upon harvested region of the solar
spectrum by ZnO nanostructures and the lifetime of the
generated electron-hole pair. As ZnO is a wide bandgap
semiconductor and its bandgap is in UV region, thus it can
only harvest UV region. UV light is just 5% of the solar

spectrum [121]. To improve e�ciency, the �rst step is to
harvest larger spectrum of sunlight so that more electron-
hole pairs can be generated. �e second step is to improve
e�ciency of photon to electron conversion. �e third step is
to increase the lifetime of photogenerated electron-hole pair.

3.2. Photocatalysis by ZnO Nanocomposite. A narrow
bandgap metal oxide is doped in ZnO which increases the
range of a sensitization process (SP). Primarily SP is limited
by the relative positions of the conduction bands of the wide
and narrow bandgap semiconductors and also by the nature
of the interfaces in the system [122, 123]. �e former factor
can be controlled by tuning bandgap of sensitizer and also
by choosing the appropriate material [124]. In order to ease
the facile electron transfer the creation of heterojunction
or favorable interface is still a challenge. Currently, a lot
of researchers have reported their attempts to create the
e�cient heterojunctions for CdS-ZnO [125–127], thus
improving e�ciency. One way to improve the photocatalytic
e�ciency of the photovoltaic cell is to synthesize the one-
dimensional (1D) nanomaterials of ZnO. One-dimensional
nanomaterials have better crystallinity and may provide the
more direct path for the transfer of electron and will decrease
the charge recombination, thus increasing the e�ciency
[79–82, 128, 129]. Another possibility to enhance e�ciency is
to increase the photon to electron ratio of photocatalyst and
one can achieve this by introducing the light scattering by
light scatterers into photocatalyst. Cao et al. described a new
technique to improve photoconversion e�ciency by using
ZnO submicrometer spheres as photocatalyst �lm. For light
scattering they used polydisperse ZnO aggregates, while
to achieve the higher adsorption of dye molecules in the
photocatalyst �lm the increased surface area and necessary
mesoporous structure were provided by the compositive
monocrystalline ZnO [130, 131].
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Figure 3: Electron microscopy images of common morphologies of ZnO 1D nanostructures reported in literature. (a) Nanorods with sharp
tips [229]. (b) Nanobelt. �e inset clearly shows a rectangular belt-shape width [230]. (c) Nanocombs with secondary arms [229]. (d)
More complex mixed morphologies [231] and (e) long nanowires [232]. Interestingly some of these morphologies may be considered as
2D structures but conventionally they come under 1D category [233].

Bulk ZnO is wide bandgap semiconductor, thus a low
e�cient harvester of sunlight which is the disadvantage
of ZnO for the use of visible light. To increase the e�-
ciency of wide bandgap semiconductors for the visible light
harvesting, di�erent narrow bandgap semiconductors have
been introduced as photosensitizers like InAs [132], CdS
[133–135], CdSe [136–140], InP [141], PbS, and so forth.
�e nanoheterostructures which are also called combined
nanocrystals show improved property which is distinct from
that of any component in them. �e mutual transfer of
photogenerated charge carriers of nanomaterials of di�erent
semiconductors can enhance the photocatalytic e�ciency
[142–144]. On the basis of electron transfer process for two
or more desirable semiconductors where photogenerated
electrons can �ow from one semiconductor with a higher
CBM to the other with a lower CBM, is of great importance
in better realization of photocatalytic degradation of organic

pollutants [145–147]. It has many advantages like the oxida-
tion and reduction processes taking place at di�erent sites.
�ere are also some particular advantages of using the narrow
bandgap semiconductors: due to the quantum size e�ect
one can harvest the required bandwidth of optical spectrum
by tailoring the particle size; one can achieve the longer
charge carrier separation by decreasing electron-hole pair
recombination due to charge injection from narrow bandgap
semiconductor to wide bandgap semiconductor [148].

Our work is focused on the review of photocatalytic
properties of composite nanostructures of ZnO with CdS
[81, 126, 127, 145, 148–166], TiO2 [167–177], SnO [178], SnO2
[179–194], CdSe [195], In2O3 [196], PbS, GaAs, Gas, CuO
[197, 198], WO3 [199], graphene [200–215], Ag2S [216–218],
and so forth. �e absorption band edge comparision of UV-
Vis results of di�erent ZnO nanocomposites are given in
Table 1.
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Table 1: Composites described here for light harvesting and photocatalytic activity.

Composite Nanocomposite type
Year of

publication
UV-Vis absorption
range/edge (nm)

Reference Remarks

ZnO/CdS Nanospheres August 2011 480 [148]

ZnO-CdS Core-shell nanorods August 2010 540 [150]

CdS@ZnO Nanourchins December 2012 512 [151]
Enhanced e�ciency due to speci�c
morphology which increased reactive area.

CdS-ZnO
CdS NPs on ZnO
disk and CdS NPs
on ZnO nanorods

August 2011 550 [153]

Metallic features of both polar surfaces
provide more feasible path for charge transfer
between ZnO and CdS, thus enhancing PC
performance.

ZnO/CdS
ZnO/CdS core-shell

nanorods
October 2012 480 [154]

CdS3 showed superior absorption; the
photocatalytic e�ciency was better due to
ZnO and CdS3 favorable synergetic e�ect.

ZnO/CdS
Flower-like ZnO
modi�ed by CdS

NPs
July 2011 500 [155]

ZnO/CdS nanoheterostructures exhibit
superior PC activities due to increased
photoresponding range and increased charge
separation rate.

ZnO/CdS CdS NPs/ZnO NWs March 2009 550 [156]

ZnO-CdS@Cd

Rod-like Cd core
and a ZnO-CdS
heterostructural

shell

December 2012 570 [157]

ZnO/TiO2
Composite
nano�bers

February 2010 386.5 [168]

Superior PC activity of ZnO/TiO2 composite
nano�bers. �e reason behind that was
superior light harvesting capacity and better
quantum e�ciency.

ZnO/TiO2
Nanoscale coupled

oxides
June 2010 460 [176]

Better UV-Vis absorption for ZnO/TiO2
approximately band edge at 460 nm.
Enhanced photocatalytic activity for coupled
ZnO/TiO2 due to bonded heterostructures,
thus increasing quantum e�ciency.

ZnO-SnO2

Nanoporous
ZnO-SnO2

heterojunction
June 2012 390 [182]

Nanoporous heterojunction of ZnO-SnO2
exhibited excellent photocatalytic behavior
although UV-Vis band edge was not higher
than ZnO.

ZnO/SnO2 Nano�bers May 2010 396 [189]

Mesoporous ZnO/SnO2 nano�bers were
synthesized with Sn % content from 25, 33,
and 50% and then calcinated at di�erent
temperatures. UV-Vis absorption
spectroscopy was done and band edges were
at about 390 nm. Photodegradation was better
for the sample with molar ratio of Zn : Sn 2 : 1
and calcinated at 500∘C.

ZnO-SnO2

Hollow spheres and
hierarchical
nanosheets

November 2007 390 [190]

Higher photocatalytic e�ciency due to
increased life time of photogenerated
electron-hole pair and also the nanosheets
provided the favorable condition for the
transfer of electron-hole to the surface.

Mn-ZnO/graphene NPs April 2014 600 [205]

Enhanced photocatalysis was observed for 3%
Mn-ZnO/graphene nanocomposite and
UV-Vis DRS showed better results for
Mn-ZnO/graphene.

(GO/ZnO)
GO/ZnO nanorods

hybrid
November 2014 600 [206]

�e synergic e�ect between GO and ZnO was
responsible for an improved photogenerated
carrier separation. 3% GO/ZnO showed
superior photocatalytic activity.
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Table 1: Continued.

Composite Nanocomposite type
Year of

publication
UV-Vis absorption
range/edge (nm)

Reference Remarks

ZnO/Ag2S Core-shell nanorods August 2014 700 [216]

�e absorption peak also shi	ed to 470 nm
from 374 nm, while overall absorbance
spectrum was broadened up to 700 nm.�e
photodegradation results were also much
better than ZnO nanorods.

ZnO/Ag2S CSNPs August 2015 550 [217]

Visible region exhibits the main peak around
550 nm. A huge di�erence in e�ciency of
photocatalytic degradation was observed and
ZnO/Ag2S CSNPs showed tremendous
results.

ZnO/Ag2S NPs June 2012 500 [218]

Photodegradation experiment was carried out
under sunlight with nearly constant �ux. NPs
of ZnO/Ag2S showed better performance
than bare ZnO NPs, commercial ZnO, P25,
and TiO2 Merck.

�e most explored composite material with ZnO for
photocatalysis is CdS. CdS has been used as sensitizer. A	er
CdS sensitization, there was clear absorption of visible light.
With the increase of CdS loading (from 10% to 40%), there
was continuous red shi	 of absorption edges.�e results indi-
cated that, with CdS as photosensitizer for Ba0.9Zn0.1TiO3,
there was better harvesting of solar light [151]. A clear
absorption of visible light by using CdS as sensitizer was
reported by Zou et al. [133]. One can see in Figure 4(a) that
UV-Vis absorption spectrum of CdS is covering most of the
region, which is the reason to use CdS as sensitizer ZnO
photocatalyst.

3.2.1. ZnO/CdS Nanocomposite Photocatalysis. Bandgap of
bulkCdS is 2.40 eV at room temperature. CdShas higher elec-
tron a�nity than ZnO. �e bandgap diagram of CdS-ZnO
composite is shown in Figure 4(e). According to Anderson’s
model, between CdS and ZnO a type II model is formed. As
the visible light is radiated on the CdS-ZnO composite, the
electron is generated in the conduction band of CdS and it
jumps to the conduction band of ZnO by ballistic di�usion
[219]. �e time required for electron to be transferred from
conduction band of CdS to conduction band of ZnO is 18
picoseconds which is less than the lifetime of electron in CdS
[220].

Shen et al. synthesized ZnO/CdS hierarchical nano-
spheres. �ey �rst synthesized ZnO nanospheres by hydrol-
ysis of zinc salt under ultrasound irradiation. �en CdS
nanocrystals were grown on ZnO nanospheres selectively.
UV-Vis absorption spectroscopy of ZnO nanomaterials sug-
gested that the peak at around 370 nm for both �lms was
due to the bandgap of ZnO nanostructures as shown in
Figure 4(b) [148]. An extra peak at around 420 nm was also
observed by Shen et al. for ZnO nanospheres �lm; its cause
was the light scattering which was due to large secondary col-
loidal spheres. As Figure 4(c) depicts, a red shi	 from 370 nm
(curve (B), ZnO) to 480 nm (curves (D)–(F))was observed by
increasing the dipping time, and the absorption intensity was
increased gradually. �e science behind this phenomenon is

the quantization size e�ect which caused the longer wave-
length due to large particle size. Hence the light absorption
and charge separation were signi�cantly enhanced [148].

As compared to pure ZnO, the optical absorption
edges of the ZnO-CdS core-shell nanorods are extended
into visible light range at about 540 nm approximately as
shown in Figure 4(d). It was found that the absorption edge
of hydrothermally synthesized (ZnO)x-(CdS)y core-shell
nanorods is not sensitive to the increased amount of CdS a	er
the ratio of CdS to ZnO is larger than 0.2 : 1 [150]. Barpuzary
et al. synthesized CdS@Al2O3 and CdS@ZnO nanourchins-
like structure by hydrothermal route using autoclave. �ey
grew CdS NWs on oxide core and found enhanced photo-
catalytic results. �ere were two sharp absorption steps for
CdS@ZnO photocatalyst: one at ca. 380 nm is for ZnO and
the other at ca. 512 nm is for CdS. �e apparent quantum
yield (AQY) of 8% for CdS NWs has been enhanced up
to 11% and 15% by growing hierarchically over Al2O3 and
ZnO, respectively [151]. Wang et al. fabricated the CdS
NPs on ZnO disks and CdS NPs on ZnO nanorods by
hydrothermal technique. �e percentage of polar facets of
ZnO was controlled by the concentration of NaOH. Both

the polar surfaces (0001) and (0001) behaved like metals
while rest of the surfaces behaved like semiconductors.�ese
metallic facets provided a more feasible path for the transfer
of charges between ZnO and CdS. �is feature contributed
mainly to enhancing the photocatalytic activity by shi	ing
the absorption edge to 550 nm [153]. Khanchandani et al.
prepared CdS coated ZnO nanorods by surface function-
alization route. �ey fabricated ZnO nanorods of 100 nm
and CdS as shell with variable shell thickness (10–30 nm).
UV-Vis spectrum shows that a	er CdS coating the band
edge had a red shi	. �e sample with CdS coating of 30 nm
(CdS3) showed more superior absorption, which may lead to
enhanced visible light degradation e�ciency [154].

Li and Wang synthesized �ower-like heterostructures of
ZnO/CdS by a facile two-step precipitation method. �e
�ower-like nanostructures of ZnO were modi�ed by CdS
NPs and successfully applied them in the photocatalytic
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Figure 4: (a) UV-Vis absorbance spectra of as-prepared photocatalyst [133]. (b) UV-Vis absorption spectra of ZnO nanospheres and ZnO
nanoparticle �lms. (c) UV-Vis absorption spectra of the ITO/ZnO electrode dipped in the reaction solution for di�erent times [148]. (d)
UV-Vis absorption spectra of ZnO, the ZnO-CdS core-shell nanorods ((ZnO)1-(CdS)x, � = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6, are denoted as 101,
102, 103, 104, 105, and 106, resp.), and CdS [150]. (e) ZnO/CdS electron transfer process. (f) ZnO precursor. (Inset: the bandgap of ZnO/CdS
nanoheterostructure is estimated from the absorption edge [155].)
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degradation of RhB [155]. �ey suggested that the char-
acteristic absorption of RhB at 553 nm decreased rapidly
with extension of the exposure time. �e peak completely
disappeared a	er about 90 minutes showing e�cient and
enhanced results for the ZnO/CdS nanoheterostructures. For
ZnO/CdS nanoheterostructures, the photoresponse range
was extended and more light energy was utilized than
pure ZnO under the simulated sunlight irradiation. UV-
Vis absorption spectroscopy showed enhanced absorp-
tion with ZnO/CdS nanoheterostructures absorption up
to 500 nm approximately as in Figure 4(f). More impor-
tantly, the enhanced photocatalytic e�ciency of ZnO/CdS
nanoheterostructures is mainly due to the inhibition of
electron-hole pair recombination by a charge transfer process
in ZnO-CdS heterostructures [155]. Tak et al. fabricated CdS
NPs/ZnO NWs heterostructures array; ZnO NWs arrays
were vertically aligned. �ey reported that a bare ZnO
nanowire array absorbed only the light of the wavelength
less than 400 nm. However, CdS NPs deposition increased
the light absorption limit up to 550 nm. �ey investigated
photoelectrochemical cell performances of CdS NPs/ZnO
NWs photoanodes prepared at di�erent deposition condi-
tions. It was also suggested that enhanced photocurrent of the
CdS NP/ZnO NW heterostructures was due to their higher
visible light absorption capability and charge carrier transfer
e�ciency [156]. Wang et al. synthesized a rod-like ZnO-
CdS@Cd heterostructure in which Cd was core and ZnO-
CdS was heterostructural shell.�ey were grown by chemical
method which consisted of two steps: replacement and
sulfurization reactions. �e absorption edge was increased
to 570 nm and photocatalytic activity was improved due
to Z-Scheme and the shortened charge carrier transport
length in thin ZnO-CdS heterostructural shell and due to
e�cient charge carrier transport channel provided by Cd
[157].

3.2.2. ZnO/TiO2 Nanocomposite Photocatalysis. Bandgap of
TiO2 is 3.2 eV. As there is a strong e�ect of optical properties
on photocatalytic performance, the relationship between
bandgap energy, particle size, and performance is well
described for TiO2 [121]. ZnO-TiO2 nanocomposite is a
potential material for high e�ciency photocatalyst because
TiO2 has high reactivity and ZnO has large binding energy.
TiO2 is also preferred due to its resistance to photocorrosion
and low toxicity [221]. �ey both have lower prices as well.

Liu et al. fabricated composite nano�bers of TiO2/ZnOby
electrospinning. UV-Vis absorption spectroscopy proved that
the ZnO/TiO2 composite nanostructures were superior with
respect to light harvesting range. �ey fabricated ZnO/TiO2
composite nanostructures with di�erent weight percentages
of ZnO. TiO2/ZnO-2 15.8% showed better UV-Vis results and
also in the photocatalytic degradation of RhB as shown in
Figures 5(a) and 5(b).�e reason behind this is the increased
quantum e�ciency of the system due to coupling e�ect of
TiO2 and ZnO in grain-like composite NPs. Because of this,
e�cient charge separation increased the lifetime of electron-
hole pair and reduced its recombination in the composite
nano�bers [168].

ZnO NPs doped TiO2 nano�bers were synthesized by
electrospinning followed be hydrothermal process. As shown
in Figure 5(c) that ZnO-TiO2 hierarchical nanostructures
eliminated the methyl red blue less than 90min and RhB
before 105min, even the other nanostructures did not remove
any pollutant even a	er 3 hours. Again the incorporation of
ZnO NPs in TiO2 nano�bers enhanced the photocatalytic
activity to a certain extent [170]. ZnO-TiO2 nanocompos-
ites were prepared by distribution of TiO2 NPs over ZnO
nanorods and their original structure was well preserved as
reported by Chen et al. [173]. �e higher donor density for
the nanocomposite electrode was also reported in the same
article. Coupled ZnO-TiO2 nanocomposite was used for the
photocatalytic degradation of active methylene blue as model
reaction. It was clear that the photocatalytic degradation
results of coupled nanocomposite were better than individual
ZnO nanorods or TiO2 NPs [173]. Zhang et al. synthesized
ZnO/TiO2 photocatalyst by two-step method, the homoge-
neous hydrolysis and low temperature crystallization [176].
UV-Vis absorption results revealed that ZnO/TiO2 coupled
oxides are better light harvesting photocatalysts than ZnO
and TiO2 individually as shown in Figure 5(d). Degradation
of MO was evaluated by photocatalysis and MO was easily
degraded under UV irradiation by using coupled ZnO/TiO2
and highest photocatalytic activity was observed, which is
shown in Figure 5(e). �e reason behind enhanced photo-
catalytic activity of coupled ZnO/TiO2 was bonded surface
heterostructure which increased lifetime of photogenerated
electron-hole pair, thus increasing quantum e�ciency [176].
Rakkesh and Balakumar synthesized ZnO/TiO2 core-shell
nanostructures by wet chemical method [222]. Core-shell
nanostructures exhibited excellent optical properties and
their spectrum was up to visible light wavelength. �ey
used them for the degradation of acridine orange under
sunlight irradiation. ZnO/TiO2 core-shell nanostructures
showed higher photocatalytic activity than ZnO and TiO2
nanostructures.

3.2.3. ZnO/SnO2 Nanocomposites Photocatalysis. SnO2 is a
wide direct bandgap semiconductor and its bandgap at room
temperature is 3.7 eV [223]. It is a rutile structure and six
oxygen atoms surround one tin atom in an octahedral way.
�e conduction band of ZnO is higher than the conduction
band of SnO2, so the conduction band of SnO2 acts like a sink
for the photogenerated electrons [178]. Holes will be injected
in opposite direction. �e recombination rate will be slow;
thus more carriers will be available to produce free radicals
by interfacial charge transfer [178].

Zhang et al. synthesized one-dimensional ZnO-SnO2
nano�bers by combining sol-gel process and electrospinning
technique. In Figure 6(a) UV-Vis absorption spectra are
shown for SnO2, ZnO, andZnO-SnO2 nano�bers.�eoverall
absorption spectrum for ZnO-SnO2 was better than the rest
of the two.�e reason for high photocatalytic activity was the
heterojunction between ZnO and SnO2 which could enhance
the separation of photogenerated electrons and holes. �e
material is also recyclable as the recycles photocatalytic
activity is shown in Figure 6(b) [180]. Uddin et al. fabricated
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nanoporous ZnO-SnO2 heterojunction by two-step method:
�rst, the fabrication of nanosized SnO2 particles by homoge-
neous precipitation along with hydrothermal treatment and,
second, their reaction with zinc acetate followed by calcina-
tion at 500∘C. UV-Vis di�used re�ectance showed average
results and band edge for ZnO-SnO2 was at 390 nm as shown
in Figure 6(c), but good photocatalytic activity was observed
for the same heterojunction due to enhanced separation of
photogenerated electrons and holes as shown in Figure 6(d).
So it is potential material for photocatalytic applications
[182]. Zheng et al. fabricated SnO2/ZnO heterojunction
photocatalyst by simple two-step solvothermal method. �e
samples of ZnO/SnO2, SnO2, and ZnO were prepared and
were applied for the photodegradation of methyl orange.�e
photocatalytic activity of nanostructured ZnO/SnO2 hetero-
junction photocatalyst was found to be superior than others
and even better than the standard Degussa P25 as exhibited
by the graphs shown in Figure 6(e). Two main reasons were
reported by the author for enhanced photodegradation ofMB
by nanostructured ZnO/SnO2 heterojunction photocatalyst.
�e �rst was the higher Brunauer-Emmett-Teller (BET)
surface area. �e second was the improvement of separation
of photogenerated electron-hole pair due to promotion of
interfacial charge transfer kinetics between SnO2 and ZnO
semiconductors by the SnO2-ZnO heterojunction [183].

Liu et al. synthesized mesoporous ZnO/SnO2 composite
nano�bers by electrospinning technique. Samples were calci-
nated at 700∘C and most superior absorbance was exhibited
by Zn2SnO4 (ZS) with 50% Sn content with absorption edge
at 396.3 nm, followed by Zn2SnO4 (Z2S) of Sn content 33%
with absorption edge of 393.2 nm.�e ZnO/SnO2 composite
nano�bers showed higher photocatalytic activity than pure
ZnO and SnO2 nano�bers. �is was attributed to its high
surface areas, high e�ciency in the light utilization, and high
e�cient separation of photogenerated electron-hole pairs
(shown in the following section). For the same Sn content,
as the calcinations temperature increases the photocatalytic
activity decreases. �e reason for lower photocatalytic activ-
ity was the reduction in the surface area of ZnO/SnO2
nano�bers. Also, SnO2 content ratio is important because if
the SnO2mole percent decreases from 25% the photocatalytic
activity will decrease. If the mole percent approaches 50% the
photocatalytic activity will also decrease further because ZnO
active sites will be surrounded by SnO2, which may behave
like isolation between ZnO and oxygen-containing species
[189]. ZnO-SnO2 hollow spheres and hierarchical nanosheets
were successfully synthesized, using hydrothermal method.
Although the absorption band edge of ZnO-SnO2 nanostruc-
tures was at 390 nm, less than ZnO, ZnO-SnO2 nanostruc-
tures showed superior photocatalytic degradation e�ciency
compared to ZnO nanorods or SnO2 nanomaterials alone.
�e reasons described for the higher photocatalytic activity
were the increased lifetime of photogenerated electron-hole
pair and also the nanosheets were in favor for the transfer of
electrons and holes generated inside the crystal to the surface
[190].

Li and Liu synthesized core-shell and coupled particles
of ZnO/SnO2 via successive precipitation and coprecipitation
methods, respectively [224]. �ey applied both of them for

the photodegradation of MO. �e photocatalytic activity of
core-shell particles was higher and the reported reason by the
authors was the increase of charge separation e�ciency [224].
Core-shell micropyramids of ZnO/SnO2 have also enhanced
optical properties [225].

3.2.4. ZnO/Graphene Nanocomposites Photocatalysis. Gra-
phene consists of two-dimensional sheets of carbon atoms
and carbon atoms are arranged in a hexagonal structure.
Graphene has magni�cent electrical conductivity and good
mechanical properties [207]. �e morphology of G-ZnO
composites can enhance the photocatalytic e�ciency. G-ZnO
composite thin �lms were synthesized using the electro-
static spray deposition technique. G-ZnO thin �lms were
composite of nanoplatelets of ZnO and graphene. G-ZnO
thin �lms of di�erent weight percentage in the �lms were
annealed at di�erent temperatures. G-ZnO was used for the
photodegradation of methyl blue. G-ZnO thin �lm with 0.1%
weight percentage was annealed at 300∘C suggesting better
photocatalytic degradation of MB than rest of the samples.
�e reason described by Joshi et al. for the better performance
was the reduced charge recombination due to introduc-
tion of graphene [202]. Worajittiphon et al. synthesized
amine-functionalized graphene nanoplatelets decorated with
ZnO NPs using hydrothermal method. RhB was used to
evaluate the photocatalytic properties of nanostructures.
Enhanced UV-Vis absorption spectrum band edge was up to
400 nm as shown in Figure 7(a). Excellent photodegradation
results were observed for 5wt.% f-GNP/ZnO as suggested
in Figure 7(b). �e reason behind good photodegradation
was the increased speci�c surface area of reactive sites,
increased light harvesting span, and the increased lifetime
of photogenerated electron-hole pair or suppressed charge
carrier recombination [204].

Mn doped ZnO/graphene nanocomposites were synthe-
sized by Ahmad et al. using facile single-step solvothermal
method [205]. A red shi	 was observed in the band edge
absorption for ZnO/graphene nanocomposites as shown in
Figure 7(c), while overall better performance was observed
a	er doping of Mn in ZnO/graphene nanocomposites. To
evaluate the photodegradation e�ects of synthesized nano-
compositesMBwas used.�erewere two phases of pollutants
degradation: the �rst was the adsorption, for which the 5%
Mn-ZnO/graphene showed better performance but during
photodegradation 3% Mn-ZnO/graphene showed superior
photocatalytic activity and 90% MB was degraded within
one hour with this nanocomposite as shown in Figure 7(d).
�e responsible factors held by the author for this enhanced
photocatalysis were improved adsorption of dyes, improve-
ment in charge separation, enhanced visible light absorption,
e�cient electron transfer, the produced hydroxyl radicals,
improved adsorption of dyes, and large surface area of contact
between Mn-ZnO and graphene [205].

Dai et al. synthesized GO/ZnO nanorods hybrid via facile
hydrothermal process. UV-Vis DRS band edge for GO/ZnO
was at 391 nm and baseline extended to 600 nm due to GO
nanosheets. Methyl blue was used to evaluate the photocat-
alytic activity of nanomaterials. LEDs with wavelength of



12 Advances in Materials Science and Engineering

h� (eV)

Wavelength (nm)

300 400 500 600

A
b

so
rb

an
ce

 (
a.

u
.)

0.6

0.4

0.2

0.0

700 800

4

3

2

1

0
1.6 2.0 2.4 2.8 3.2 3.6 4.0

3.06 eV 3.25 eV

ZnO

5wt.% f-GNP/ZnO

(�
h
�
)2

(a)

Time (min)

1.0

0.8

0.6

0.4

0.2

0.0

50 60403020100

C
t/
C
0

RhB photolysis

ZnO

1wt.% f-GNP/ZnO

2wt.% f-GNP/ZnO

5wt.% f-GNP/ZnO
10wt.% f-GNP/ZnO

(b)

Wavelength (nm)

A
b

so
rb

an
ce

5% Mn-ZnO/graphene

3% Mn-ZnO/graphene
1% Mn-ZnO/graphene

ZnO/graphene

ZnO

330 360 390 420 450 480 510 540 570 600

Red shi�

(c)

Irradiation time (min)

C
/C

0
(%

)

0

20

40

60

80

100

−30 0 30 60 90 120 150 180

Photocatalytic e�ect

Adsorption

e�ect

Blank

ZnO 3% Mn-ZnO/graphene

5% Mn-ZnO/grapheneZnO/graphene

1% Mn-ZnO/graphene

(d)

Figure 7: (a) UV-Vis absorption spectra of catalysts [204], (b) photocatalytic RhB degradation [204], (c) UV-Vis absorption spectra of ZnO,
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375 nm were used for irradiation for photodegradation. 3%
GO/ZnO hybrid showed better photocatalytic activity than
rest of the composites. �e reason behind superior photocat-
alytic activity was larger surface area and low recombination
rate of photogenerated electron-hole pair [206]. Optical
properties of core-shell ZnO/graphene nanoparticles are far
better than ZnO [226]. Bu et al. synthesized graphene/ZnO
composite with quasi-core-shell structure by one-step wet
chemical method [227]. UV-Vis absorption spectroscopy
reveals that core-shell composite material exhibited peaks
in visible region and was found to be better photocatalyst
material than ZnO. �e reported reason by the authors

was the establishment of an e�ective electric �eld between
graphene coating layer and ZnO [227].

3.2.5. ZnO/Ag2S Nanocomposite Photocatalysis. Bandgap of
Ag2S is 1.1 eV [228]. Due to low bandgap energy, Ag2S can
absorb a broad solar spectrum. Band alignment diagram of
ZnO and Ag2S is shown in Figure 8(a). ZnO/Ag2S core-shell
nanocomposites comprise high e�ciency for light harvesting;
the conduction band o�set between ZnO and Ag2S is small
which promotes e�cient charge carrier separation of core-
shell interface [216]. Khanchandani et al. used ZnO/Ag2S
and ZnO/CdS core-shell nanostructures as photocatalyst
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for the degradation of MB. �e light harvesting spectrum
of ZnO/Ag2S core-shell nanostructures was better and the
absorption peak shi	ed to 470 nm from 374 nm as compared
to ZnO nanorods, which is shown in Figure 8(b). ZnO/Ag2S
core-shell nanostructures exhibited better photodegradation
results as shown in Figure 8(c). Sadollahkhani et al. synthe-
sized ZnO/Ag2S core-shell nanoparticles (CSNPs) by chemi-
cal approach at relatively low temperature around 60∘C [217].
CSNPs were photocatalyst for the degradation of Eriochrome
Black T dye. UV-Vis absorption spectroscopy showed excel-
lent results for ZnO/Ag2S CSNPs and absorption spectrum
was broadened as shown in Figure 8(d). Photodegradation
results of ZnO/Ag2S CSNPs were far better than ZnO NPs as
depicted in Figure 8(e). Subash et al. synthesized ZnO/Ag2S
nanoparticles by sol-gel method [218]. �ey applied them as
photocatalyst for the degradation of acid black 1 (AB 1). �e
experiment was carried out under sunlight and light �ux was
nearly constant. From the di�use re�ectance spectra of the
bare ZnO andZnO/Ag2SNPs, it was shown that introduction
of Ag2S decreased the bandgap of NPs. Photoluminescence
spectroscopy reveals that ZnO/Ag2S NPs also have a main
peak in visible range along with a peak lying ultraviolet
range. NPs of ZnO/Ag2S revealed excellent results of pho-
todegradation and results were better than bare ZnO NPs,
TiO2-P25, commercial ZnO, and TiO2 Merck [218], which
are shown in Figure 8(f). �e above discussion suggested
that Ag2S improves the light harvesting spectrum along with
better photocatalysis results.

4. Conclusions

ZnO nanocomposites with CdS, TiO2, SnO2, graphene, and
Ag2S have been studied for the photocatalytic activities. It
was found that ternary nanocomposites should be used for
enhanced photocatalysis as they provide e�cient hetero-
junction and better sensitization. Apparent quantum yield
should be increased by increasing lifetime of photogen-
erated electron-hole pair and reactive surface area. One
more characterization is also suggested which may provide
the lifetime of photogenerated electron-hole pair. For large
reactive surface area, the scientists and researchers should
determine the appropriate percentage of ZnO with other
compounds, which should be such an optimum point, where
light harvesting capability should be better along higher
photocatalytic activity, so dopants may also be added in
the nanocomposite to achieve the same. In this way, the
underlying science will be at its best level and ball will be
in the court of material engineers for industrial reactor. It is
essential to evaluate the recycled photocatalytic degradation
e�ciency, which is one of the most important parameters
towards the device design.
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