University of Amsterdam

UvA-DARE (Digital Academic Repository)

Phylogenetic relationships in Monanthes (Crassulaceae) based on morphological, chloroplast and nuclear DNA variation

Mes, Th.H.M.; Wijers, G.-J.; 't Hart, H.
DOI
10.1046/j.1420-9101.1997.10020193.x
Publication date
1997
Published in
Journal of Evolutionary Biology

Link to publication

Citation for published version (APA):

Mes, T. H. M., Wijers, G-J., \& 't Hart, H. (1997). Phylogenetic relationships in Monanthes (Crassulaceae) based on morphological, chloroplast and nuclear DNA variation. Journal of Evolutionary Biology, 10, 193-216. https://doi.org/10.1046/j.1420-9101.1997.10020193.x

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

Phylogenetic relationships in Monanthes (Crassulaceae) based on morphological, chloroplast and nuclear DNA variation

T. H. M. Mes, ${ }^{1+*}$ G.-J. Wijers ${ }^{2}$ and H. 't Hart ${ }^{2}$
${ }^{1}$ Present address: Institut für Pflanzengenetik und Kulturpflanzenforschung, Abteilung Taxonomie, D-06466 Gatersleben, Germany, e-mail: mes@ipk-gatersleben.de ${ }^{2}$ Department of Botanical Ecology and Evolutionary Biology, Section of Population Genetics, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands

Key words: Monanthes; morphology; RAPDs; ITS; $\operatorname{trnL}-\operatorname{trnF}$.

Abstract

Phylogenetic relationships of all 10 recognized taxa of the genus Monanthes which is endemic to the Canary Islands and Salvage Islands, were investigated using the four data sets: morphology, sequences of the chloroplast DNA trnL (UAA) trnF (GAA) intergenic spacer, ITS2 sequences of the nuclear ribosomal region and Random Amplified Polymorphic DNAs (RAPDs). In contrast to the molecular data, the morphological data were internally inconsistent which probably resulted from parallel or convergent evolution of morphological characters. The molecular data sets indicated that the genus is not monophyletic due to inclusion of the annual M. icterica which is the putative sister taxon of Aichryson, that M. polyphylla is the sister taxon of the perennial species of the genus, that M. muralis from Hierro is of allotetraploid origin and that M. lowei, M. minima, M. brachycaulos, M. laxiflora, M. anagensis and M. muralis from La Palma are closely related. Combined ITS2 sequences, $\operatorname{trnL}-\operatorname{trnF}$ sequences and morphological data indicated that the relationships among three types of perennial growth forms, i.e. tiny rosettes, small, branched shrubs and diffuse branches shrublets, are highly dependent on the outgroup used. After deletion of the most distant outgroup and a taxon of alleged hybrid origin (M. muralis) relationships among the growth forms of Monanthes still could not be consistently resolved.

[^0]
Introduction

Monanthes comprises about 10 taxa (Praeger, 1932; Nyffeler, 1992). It includes small to minute herbs with globose buds, long, filiform peduncles, $6-8(5-10)$-merous, obdiplostemonous flowers, with free. narrow, greenish, yellowish or purplish petals and conspicuously large nectariferous scales (Praeger, 1932; Nyffeler, 1992). The Moroccan Sedum surculosum Cosson is often included in Monanthes (as M. atlantica Ball) because of its large nectariferous scales and a general resemblance in habit and flower morphology (Ball, 1878; Berger, 1930; Uhl, 1961; Galland, 1988; Nyffeler, 1992). Recent molecular studies showed, however, that Sedum surculosum shares a unique 70 bp deletion in the chloroplast DNA trnL (UAA) - trnF (GAA) intergenic spacer with the Moroccan S. jaccardianum Marie \& Wilczek and consequently should be excluded from Monanthes (Mes and 't Hart, 1994). Monanthes is generally included in the so called Macaronesian Sempervivoideae together with Aeonium (including Greenovia) and Aichryson (Praeger, 1932; Lems, 1960; Lösch, 1990; Mes, 1995). Molecular data further indicate that the Macaronesian Sempervivoideae are monophyletic as are the constituent genera Aeonium, Aichryson, and Monanthes (Mes, 1995; Mes et al., 1996). The sister taxon of the Macaronesian Sempervivoideae is Sedum series Monanthoidea (Batt.) Mes. It is endemic to Morocco and comprises S. modestum Ball, S. jaccardianum, and S. surculosum (Mes et al., 1996). Aeonium, which comprises 41 species, is the putative sister genus of Monanthes.
Species of Monanthes differ considerably in life-form and growth-form and this diversity has been emphasized in infrageneric classification. There is one annual species, M. icterica, whereas the other taxa are perennial and have erect, diffusely branched shoots and elliptic leaves, or form tufts of decumbent (rarely) ascending, much branched shoots with dense terminal rosettes. Finally, some species have monopodial, usually compact rosettes and axillary, stoloniferous offsets of variable length. Sventenius (1960) distinguished four sections which correspond with the four life-form and growth-form types. Nyffeler (1992) distinguished only three sections including the annual M. icterica in the group of species with monopodial, compact rosettes because of a similar flower morphology.

Cytologically Monanthes is very uniform (Tab. 1). Most taxa have a secondary basic number of $x=18$ and very small chromosomes, except for M. icterica, which has a basic number of $x=10$ and large chromosomes (Uhl, 1961; 't Hart and Nyffeler, pers. comm.). Most taxa are diploid with a chromosome number of $2 \mathrm{n}=36$. Tetraploids $(2 \mathrm{n}=72)$ have occasionally been found in M. laxiflora and M. pallens and predominate in M. polyphylla ssp. polyphylla and M. muralis. M. anagensis is most probably hexaploid $(2 \mathrm{n}=108)$.

Monanthes occurs on all seven Canary Islands and the Salvage Islands, but its centre of diversity is Tenerife, the largest of the Canary Islands and the centre of the archipelago (Praeger, 1932; Nyffeler, 1992). Seven out of nine species of Monanthes, including two one-island endemics, M. anagensis and M. minima, have been reported for this island alone. The two easternmost islands, Fuerteventura and Lanzarote, have only M. laxiflora. For Hierro, the westernmost island, only M.
muralis has been reported and M. lowei is the only species occurring on the Salvage Islands (North of the Canary Islands). M. laxiflora is the most widely distributed species and occurs on the five easternmost islands (except for Hierro and La Palma). M. polyphylla occurs on four western islands whereas M. brachycaulos, M. icterica, M. muralis and M. pallens are restricted to only two of the five western islands each. Morphological differentiation of geographically separated populations has been reported for the widely distributed M. brachycaulos, M. laxiflora, M. muralis, M. pallens, and M. polyphylla (Nyffeler, 1992). In the latter four specics the morphological and geographical differentiation is accompanied by polyploidy.

Extensive interspecific hybridization has been reported in the Macaronesian Sempervivoideae (Praeger, 1929, 1932; Jacobsen and Rowley, 1973; Bañares, 1990; Nyffeler, 1992). In nature hybrids of Monanthes are found at many sites where two or more perennial taxa are sympatric (hybrids involving the annual M. icterica are as yet unknown). The hybrids are of restricted distribution and usually occur only in small numbers or as single plants. The distribution of the perennial species and subspecies of Monanthes on the Canary Islands shows that there are about 12 sympatric combinations of two taxa which could produce hybrids, and so far about 10 alleged interspecific hybrids have been reported (Praeger, 1932; Nyffeler, 1992). Some hybrids can be recognized at a glance, in particular all hybrids involving M. laxiflora, but more frequently the hybrid nature of a plant is very difficult to determine. Nyffeler (1995) supplied experimental support for the possibility of

Table 1. Chromosome numbers in Monanthes

Monanthes	$2 \mathrm{n}=$	Reference
sect. Annua Sventenius		
M. icterica (Webb ex Bolle) Christ	20	't Hart and Nyffeler (pers. comm.)
sect. Monanthes		
M. polyphylla Haworth	36,72	Uhl (1961)
subsp. amydros Nyffeler	36	't Hart and Nyffeler (pers. comm.)
subsp. polyphylla	36	Uhl (1961)
	72	't Hart and Nyffeler (pers. comm.)
M. muralis (Webb ex Bolle) Hooker	72	Uhl (1961)
	36,72	't Hart and Nyffeler (pers. comm.)
sect. Petrophyllea Sventenius ex P. V. Heath		
M. lowei (Paiva) Perez and Acebes	36	Uhl (1961)
	36	't Hart and Nyffeler (pers. comm.)
M. brachycaulos (Webb and Berth.) Lowe	36	Uhl (1961)
	36	't Hart and Nyffeler (pers. comm.)
M. minima (Bolle) Christ	36	Uhl (1961)
M. pallens (Webb) Christ	36	Uhl (1961)
	36,72	't Hart and Nyffeler (pers. comm.)
sect. Sedoidea Sventenius ex Nyffeler		
M. laxifora (DC.) Bolle ex Bornm.	36	Uhl (1961)
M. anagensis Praeger	36,72	't Hart and Nyffeler (pers. comm.)
	c. 72	Uhl (1961)
	108	't Hart and Nyffeler (pers. comm.)

hybridization in Monanthes. Hybrids among taxa at the same ploidy-level (diploid as well as tetraploid) turned out to be highly fertile. Pollen fertility of triploid hybrids was considerably impaired (less than 25%), but these plants produced extra large pollen grains which most probably are unreduced (or 2 n) gametes. Large pollen grains have also been observed in Sectum hybrids which in a few cases produced spontaneous amphiploid offspring ('t Hart, 1987).
We determined the evolutionary relationships among the species of Monanthes and the impact of reticulation in the genus by means of phylogenetic analysis of morphological data, sequence variation of the chloroplast $\operatorname{trn} \mathrm{L}-\operatorname{trnF}$ chloroplast intergenic spacer, Transcribed Spacer 2 (ITS2) sequences of the nuclear ribosomal DNA, and RAPDs.

Materials and methods

Morphological and anatomical data presented by Nyffeler (1992) on eleven taxa of Monanthes (including Sedum surculosum) were used for a Principal Component Analysis (PCA) and a cladistic analysis. In Table 2, the compiled data set for the 30 characters (unordered, bi- and multistate characters) is presented. The data were transformed to accommodate for Nyffeler's (1992) character states "present in almost all cases" and "occasionally or partly present". For outgroup comparison Aichryson tortuosum was added to the data set (Mes, 1995; Mes et al., 1996). For the Principal Components Analysis of the morphological data set we used the program SPSS for Windows with means used for missing values. Morphological data were cladistically analysed using PAUP's (version 3.1.1.) branch-and-bound option. In the cladistic analyses all phylogenetically non-informative characters were excluded. Aichryson tortuosum and Sedum surculosum, which are both closely related to Monanthes (Mes, 1995; Mes et al., 1996) were used as outgroups.

Total DNA was isolated as described by Guillemaut and Marechal-Drouard (1992), although slightly modified (Mes and 't Hart, 1994), from plants collected in nature and cultivated in the greenhouse of the Botanic Garden of Utrecht (Tab. 3).

For amplification of chloroplast and nuclear sequences universal primers were used (Taberlet et al., 1991; White et al., 1990). Sequences were determined by the method of Sanger et al. (1977) using the Taq Dye Deoxy Terminator Cycle Sequencing Kit and the 373 Automated DNA Sequencer. Chloroplast sequences were determined for five species of Monanthes, and nuclear sequences were determined for all species currently recognised (Nyffeler, 1992), with multiple accessions for some species. Alignment of sequences was performed with PCGENE (Intelligenetics) with manual editing. In order to provide the most unambiguous polarisation of mutations for the chloroplast and nuclear sequences we included five North African species of Sedum, six species of Aconium, and three species of Aichryson to the sequence data, in addition to the outgroup species Sedum sediforme and Sempervivum ciliosum, which are quite distantly related to the Macaronesian Sempervivoideae (van Ham, 1994).

Table 2. Morphological characters of the species of Monamthes used for cladistic analysis and Principal Coordinate Analysis.

> 1 $00 ? 0110 ? ? ? 10110001010111000000$ $00 ? 1111 ? ? ? 11100001010111000000$ 010000010000000000000001000000 011000010001111000000001000010 011000010100001000000001100110 011000020100021100000001100111 $10 ? 0110 ? ? ? 0110000 ? 000001000000$ $00 ? 110021101101011101011111111$ $00 ? 210021100121101101011111111$ $00 ? 110001001111011101011111111$
M. anagensis

M laviftora
M. lonei
M. brachycaulos
M. minima
M. pallens
M. icterica
$\begin{array}{ll}\text { Aichryson tortuosum } & 00 ? 111000 ? 11101001000011001110 \\ \text { Sedum surculosum } & 010000000000 ? 00000000000000000\end{array}$
Characters
. life form $0=$ perennial $1=$ annual
growth form $0=$ branched $1=$ simple
3. offsets $0=$ rarely $1=$ regular
. habit of axes $0=$ erect $1=$ decumbent $2=$ trailing
shape of axes $\theta=$ short, stout $\mathrm{I}=$ long, slender
6. internodes $0=$ compressed $1=$ elongate
7. phylotaxis 0 - alternate 1 - decussate
8. rosette $0=$ loose $1=$ compact $2=$ dense
9. rosette $0=$ wider than high $1=$ higher than wide
10. orientation of leaves inner rosette $0=$ patent $I=$ erect
11. leafshape $0=$ obovate $1=$ ovate elliptic
12. leafshape $0=$ ratio $6: 1$ to $3: 11=$ ratio $2: 1$ to $3: 2$
13. leaf base $0=$ attenuate $1=$ cuncate
4. leaf apex $0=$ rounded, acute $1=$ acuminate $2=$ truncate
15. leaf indumentum $0=$ no, few glandular hairs $1=$ glandular hairs
16. leaf surface $0=$ smooth or upper margin papillose $1=$ upper part papillose
17. leaf surface $0=$ smooth or upper part papillose $1=$ upper margin papillose
18. inflorescense arising from $0=$ branched, simple floriferous shoot $I=$ tips of vegetative shoot
19. pedicels $0=$ evenly arranged $1=$ basally clustered
20. indumentum of pedicels, sepals $0=$ glandular hairs $1=$ few, very short glandular hairs

1. indumentum of pedicels, sepals $0=$ glandular hairs $<0.6 \mathrm{~mm} 1=$ glandular hairs $>0.6 \mathrm{~mm}$
2. bud shape $0=$ globular $1=$ conical
3. number of flower elements $0=5,6$, or $71=8$ or 9
4. petal shape $0=$ ovate $1=$ oblong
5. petal shape $0=$ other $1=$ narrowly oblong
glandular hairs of petal indumentum $0=<0.3 \mathrm{~mm} \mathrm{I}=0.3 \mathrm{~mm} \cdots 1.2 \mathrm{~mm}$
. nectary lamina $0=$ cuneate, rarely attenuate $1=$ truncate, cordate, distinctly clawed
6. margin of nectary lamina $0=$ crenulate $1=$ erose
carpel indumentum $0=$ no glandular hairs $1=$ some glandular hairs
7. carpel surface $0=$ smooth $1=$ papillose

Table 3. Origin and accession numbers of the plants studied. Accessions indicated with an asterisk were used for sequence determinations.

```
Monanthes Haworth
Monanthes sect. Monanthoidea
M. lowi (Paiva) Pérez \& Acebes
Portugal, Selvagens, Island, 31951*.
M. brachycaulos (Webb \& Berthelot) Lowe
Spain, Canary Islands, Tenerife, Punta de Teno, 31601. Spain, Canary Islands, Tenerife, near Guimar, Barrance Teguigo near Los Morrenos, 31946*. Spain, Canary Islands, Gran Canaria, Las Lagunetas along the road to Cruz de Tejeda, 32180*.
M. mimima (Bolle) Christ
Spain, Canary Islands, Tenerife, Las Rosas, 2 km SW of Guimar along the road to Alta Vista, 32175*.
```

M. pallens (Webb) Christ

Spain. Canary Islands, Tenerife. Barranco del Infierno. 31610*. Spain, Canary Islands, Tenerife, Barranco del Infierno, 31954. Spain, Canary Islands, Tenerife, Adeja, Barranco del Infierno, 32746.
M. icterica (Webb ex Bolle) Christ

Spain, Canary Islands, Tenerife, below Teno, along footpath across hills towards Las Casas and Punta de Teno, 32737*.

Monanthes sect. Monanthes
M. polyphylla Haworth
M. polyphylla ssp. polyphylla

Spain. Canary Islands, Tenerife. Teno, along the road to Punta de Teno, 31956. Spain, Canary Islands, Tenerife, Teno, 500 m W of the tunnel to Punta de Teno, 32177. Spain, Canary Istands, Tenerife, Barranco de Las Cuevas, about 9 km W of Buenavista, 32187*. Spain. Canary Islands, Tenerife, Santa Ursula, 32744.
M. polyphylla ssp. amydros

Spain, Canary Islands, Gomera, E part of the Island, above Puntallana near the village, 31955. Spain, Canary Islands, Gomera, alle Gran Rey, along the road from Vizcaina to El Cercado, 31957. Spain, Canary Islands, Gomera, Barranco del Valle, 1.5 km S of Vallehermosa, 32179. Spain, Canary Islands, Gomera, Degollada de la Cumbre, on rocks NW of the N portal of the tunnel, 32183*. Spain, Canary Islands, Gomera, Barranco de la Villa, 32754.
M. muralis (Webb ex Bolle) Hooker

Spain, Canary Islands, Hierro, laurel forest along the descent to El Golfo, on cliffs along footpath, 31958. Spain, Canary Islands, Hierro, Valverde on a wall, 31959. Spain, Canary Islands, Hierro, Laurisilva, descent to El Golfo, on cliffs, 32176*. Spain, Canary Islands, La Palma, along the road from Los Quemados to Volcán de Teneguia, 32708*. Spain, Canary Islands, Hierro, Taibique, 32750^{*}.

Monanthes sect. Sedoidea Sventenius ex Nyfteler
M. anagensis PraEger

Spain, Canary Islands, Tenerife, Anaga mountains, vicinity of Los Carboneras, 31608*. Spain, Canary Islands, Tenerife, Anaga mountains, S of El Bailadero, along the road to San Andres, 32181.
M. Iaxifora (DC.) Bolle

Spain. Canary Islands, Gomera, Bosque del Cedro, 30486*. Spain, Canary Islands, Gomera, near El Cedro, laurel forest along the road to Carretera del Sur, 31944. Spain, Canary Islands, Tenerife, Anaga region, El Bailadero, 32184.

Table 3. (continued)
Acomium Webb \& Berth.
A. diplocydum* (DC.) Whbbex Boidf. Canary Islands, Tenerife, 30443. A. glutinosum* (Aiton) Wfbb \& Berth. Madeira, valley of the river Machico. 30452. A. haworthii* Salm-Dyck ex Webb \& Berth. Canary Islands. Tenerife, 9 km N of Masca, 31487. A. sedifolium* (Webb ex Bolle) Pit. \& Proust. Canary Islands. Tenerife, Barranco de Masca, 31908. A. simsii* (SWEET) StEARN. Canary Islands, Gran Canaria, 250 m N of Ayacata, 30440. A. tabuliforme* (HAW). Webb ex Berth. Canary Islands, Tenerife, 1 km S of Buenavista del Norte, 31918.

Aichryson Webb \& Berth.
A. dichotomum * (DC.) Webb \& Berth. Canary Islands, Tenerife, 31938. A. punctata* (Chr. Sm. Ex Buch) Webr \& Berth. Madeira, 30462. A. tortuosum* (Ait.) Webb \& Berth. Canary Islands, Lanzarote, 30466.

Sedum L.
S. surculosum Coss. var. surculosum*. Morocco, 1 km NE of Oukaimeden, 2460 m , Ait Lafkih c.s. 601 , 1989 (RNG; Herb. Inst. Argon. Vet. Hassan II, Rabat). S. jaccardianum* Maire \& Wilczek. Morocco, 24 km S of Azrou, 32219. S. modestum* Ball. Morocco, Taza-Jebel Tazzeka, 32226. S. cueruleum* L. Tunisia, Cap Scrrat. 31621. S. pubescens* Vahl. Tunisia, Jebel Ichkeul, 31627. S. sediforme* (Jace.) PAU. Portugal (Beira Litoral), Vaguira Praia, 15429.
Sempertiam L.
Semperticum ciliosum*, Greece, Mt. Siniaski, 31473.

In cladistic analysis of the sequence data, most parsimonious trees (MPTs) were obtained using Trec Biscetion-Rcconncction (TBR), mulpars, steepest descent and 500 random additions of taxa. Bootstrap analysis (Felsenstein, 1985; 100 addition replicates, 5 random addition replicates per bootstrap replicate; replicate aborted if 32000 trees were found) and decay analysis (Donoghue et al., 1992; Soltis et al., 1993) were used to assess support for monophyletic groups. In analysis of the chloroplast and nuclear sequence data sets, branches with decay values higher than 2 were very difficult to find due to the highly structured data matrices. Therefore a Strict Consensus Tree (SCT) of all trees up to two steps longer than the MPTs was computed and the converse of this topology was used as a constraint in heuristic searches to determine decay values of the stronger supported branches (Johnson and Soltis, 1994; Morgan et al., 1994). In addition, in decay analyses of the sequence data, non-minimal trees were searched using 10000 random additions without swapping. SCTs from both strategies were combined to determine decay values. The character state optimization option minF was used to determine branch-lengths (including autapomorphies). Cluster analysis of the chloroplast and nuclear sequences based on Jukes-Cantor distances with pairwise deletions of positions containing gaps, was performed with Neighbor-Joining (Saitou and Nei, 1987; Kumar et al., 1993).

Amplification of RAPDs was according to Yu and Pauls (1992). For amplification of RAPDs of M. polyphylla, M. muralis and a limited number of accessions of all species of the genus (see Fig. 5), we used "operon primers" F1, F4, F9, F10, F12, F14, C1, C2, and C8. Presence and absence of RAPDs was compiled into a binary
datamatrix and ambiguities were coded as missing (?) in the datamatrix. We did not determine homology of any of the RAPDs with Southern hybridization. For a Principal Coordinate Analysis of the RAPD data, zero-zero combinations were not used to calculate similarity values, i.e. absolute character state differences (Manhat\tan metric) divided by the maximum value of that characters over all taxa (= Gower metric; Gower, 1971), the latter of which were used as input for PCA using the program PCO3D, kindly provided by Dr. RP Adams (1993). For graphical presentation we used SPSS for Windows. RAPDs were used to determine the distribution of RAPD fragments between M. icterica and the perennial species of Monanthes and to determine the phylogenetic position of M. muralis from Hierro among the other perennial species of Monanthes.
MPTs for the RAPD data set were searched for using options TBR branch swapping, steepest descent and mulpars with 500 random additions of taxa. Options used for bootstrap analysis were identical to that of the sequences, except for the use of TBR branch swapping. The cladogram based on RAPDs were midpoint rooted only for presentation and are interpreted as unrooted networks. Cluster analysis was also performed using Neighbor-Joining and 1-Jaccard's (1908) coefficient as a distance measure.

Morphological data, chloroplast and nuclear sequences were combined and cladistically analyzed. All characters were treated unordered and unweighted. PAUP's branch-and-bound option was used to calculate MPTs, as well as to determine support values. Aichryson tortuosum and Monanthes icterica were used as outgroups, either singly or in combination.

Results

Morphology

Principal Component Analysis of the morphological data of Monanthes (including Sedum surculosum) corroborates Nyffeler's classification in a (more) formal way (Fig. 1). The first two principal axes covered 63.8% of the variation, whereas the third became relatively insignificant (11.4%). The morphological characters which contribute most include growth form, the shape of axes and rosettes, the position of inflorescense, arrangement of pedicels, indumentum of pedicles, and the size of the hairs of the petal indumentum. When the first two axes were plotted, three clusters were found which agree with the three sections distinguished by Nyffeler. The cluster comprising M. polyphylla and M. muralis is the most cohesive cluster. Similarities among the species are lowest in M. sect. Monanthoidea which comprises, in addition to M. brachycaulos, M. lowei, M. minima, and M. pallens, the aberrant S. surculosum $(=M$. atlantica) and the cytologically distinct M. icterica (Tab. 1). M. laxiffora and M. anagensis form another cluster.

Cladistic analysis of the morphological data (3 unique and 27 informative characters) using both Aichryson tortuosum and Sedum surculosum as outgroups,
indicated that Monanthes is not monophyletic (46 steps, consistency 0.61 , retention index 0.75), since both outgroup species provided different root positions. When a monophyly constraint was enforced, sixteen shortest trees (length 58 , consistency 0.55) were obtained, which were much longer than the trees generated with the use of either Aichryson tortuosum or Sedum surculosum as outgroup (46 steps). In the strict consensus tree (Fig. 2a) relationships among the ingroup taxa were unresolved, except for a strongly supported clade comprising both subspecies of M. polyphylla together with M. muralis and less well-supported monophyly of M. laxiflora and M. anagensis. The single shortest tree with Aichryson tortuosum as an outgroup (length 46, consistency 0.65; Fig. 2b) and the two shortest trees (length 46, consistency 0.67; Fig. 2c) obtained with Sedum surculosum as an outgroup also strongly supported monophyly of M. polyphylla and M. muralis, but either as sister taxon to the other species of Monanthes (Aichryson tortuosum) or terminal in a weakly supported larger clade which also comprised M. pallens and M. minima (Sedum surculosum). In both cladograms monophyly of M. laxiffora and M. anagensis is supported with M. icterica as a sister species. Both topologies were retained when the morphological characters were weighted according to the rescaled consistency index with base weight 1000 (Farris, 1969).

Fig. 1. Principal Component Analysis of the morphological data of the species of Monamhes and Sedum surculosum (from Nyffeler. 1992). Missing values were treated as intermediate values. The clusters (dotted lines) indicate sectional classification according to Nyffeler (1992).

Fig. 2. Left: Strict consensus tree of 16 shortest cladograms of 61 steps of the species of Monanthes based on morphological data using Sedum surculosum and Aichryson tortuosum as an outgroup. Moinanthes was forced to be monophyletic. Middle: Single shortest cladogram of 49 steps of the species of Monamthes based on morphological data using Aichryson tortuosum as an outgroup. Right: Strict consensus tree of two shortest cladograms of 49 steps of the species of Monamthes based on morphological data using Sedum jaccardiamm as an outgroup.
58 steps
16 trees
$T d$, max: 12

Chloroplast DNA

Chloroplast DNA trnL - trnF spacer sequences were determined for diploid M. icterica, M. laxiflora, M. brachycaulos, and M. polyphylla ssp. polyphylla and a tetraploid accession of M. muralis from Hierro. The sequences were aligned along the species of Aconium, Aichryson, Sedum, and Sempervioum. The aligned sequences are 286 positions long. Within Monanthes, the length of the spacer varies from 248 (M. polyphy/la ssp. polyphy/la) to 256 bp (M. icterica). Excluding alignment gaps, 82 variable, and 25 informative base substitutions were found in the entire alignment. Three were outgroup variable positions, one characterized all perennial species of Monanthes (excluding M. icterica), and one was informative within Monanthes. No base substitutions characterized Monanthes. The other 20 phylogenetically informative base substitutions were synapomorphic for other combinations of taxa. Sequence divergence within Monanthes ranges from 0.00% (between M. laxiflora and M. muralis from Hierro) to 3.05% (between M. icterica and M. muralis from Hierro).

In the alignment (obtainable from the authors), 13 indels have been hypothesised (outgroup variable and indels associated with replication slippage excluded). When Sedum sediforme and Sempervivum ciliosum (Mes, 1995; Mes et al., 1996), were used to polarise the indels, four insertions and nine deletions are present in the whole ingroup. Four indels characterize one or more species of Monanthes. A 10 bp deletion [41-50], a 4 bp insertion [217-220] and a putative 1 bp deletion are present in all specics examincd except for M. icterica. Finally, a 7 bp insertion [132-138], present in M. laxiffora, M. muralis, M. brachycaulos, is also found in Sedum pubescens and Aichryson punctata, albeit with some slight sequence alternations. It is absent from M. polyphylla ssp. polyphylla. However, the well supported monophyly of Aichryson as well as of the perennial taxa of Monanthes (excluding M. icterica), suggests that this homoplasious indel could nevertheless be phylogenetically informative within the respective genera. We surveyed the length of the $\operatorname{trnL}-\operatorname{trnF}$ chloroplast spacer in nine plants of both subspecies of M. polyphylla. The 7 bp insertion seemed to be absent in all plants, except for accession 32179 (see Tab. 3) which has a spacer approximately 30 bp longer than the others (not shown). This suggests that M. polyphylla is the only species of Monanthes which lacks the 7 bp insertion. The chloroplast spacer sequence of M. icterica differs considerably from the spacer of the other species of Monanthes. It is characterized by 10 unique indels, i.e., 7 single bp indels $[45,74,115,155,157,207$, and 274], a 2 bp indel [166] as well as by a 7 bp insertion [170-176].

Cladistic analysis of the chloroplast DNA sequences found eight trees of 36 steps (consistency 0.72 , retention index 0.74). The SCT is calculated using only base substitutions. Indels were subsequently fitted onto this topology (Fig. 3). The results indicate that the Macaronesian Sempervivoideae together witht the Moroccan Sedum series Monanthoidea are monophyletic (Mes, 1995; Mes et al., 1996). Due to a lack of sequence variation, the support for this clade as well as resolution among many of the taxa is low. The chloroplast genomes of four species of Monanthes, M. muralis from Hierro, M. laxiffora, M. brachycaulos and M. polyphylla ssp. polyphylla
(the perennial species), are indicated to be monophyletic, whereas M. icterica constitutes a monotypic clade. As a result of low levels of sequence variation, the support measures of this analysis, which are based on base substitutions only, are accordingly low. Most notably, the indels further resolve and give extra support to some clades (e.g., monophyly of the perennial taxa of Monanthes ([217-220 and

Fig. 3. Strict consensus tree of eight more parsimonious cladograms of 36 steps based on sequence variation of the chloroplast DNA trnL (UAA) - trnF (GAA) intergenic spacer of species of Aeonium, Aichryson, and North African Sedims as additional ingroup species and Sedum sediforme and Sempervicum ciliosum as outgroups. Alignment gaps were treated as mising data. Indels in regions which contained dubious alignments due to replication slippage [109-111 and 231-235] were not fitted. Numbers above branches indicate branch lengths. Numbers below branches indicate bootstrap-values and decay-values. These were determined using only base substitutions. Indels were fitted onto the topology afterwards.

41-50]). Buth the topology and support for individual branches of the NeighborJoining dendrogram (not shown) are in agreement with the cladistic analysis.

Nuclear ribosomal DNA

The alignment of the ITS2 sequences (obtainable from the authors) of the species of Monanthes, 6 of Aeonium and 3 of Aichryson, and 5 North African Sedoideae and Sempervivum ciliosum is 227 positions long. The length of the ITS2 sequences of Monanthes varies from 209 (M. icterica) to 214 bp (M. laxiflora). In the alignment of the ITS2 sequences a large number of short indels (1 or 2 bp) is hypothesized and accordingly a large number of alternative, equally likely alignments can be made. One alignment has been used in all phylogenetic analyses. The entire alignment (including the species of Sedum, Sempervivum, Aichryson, Aconium and Monanthes) comprises 133 variable and 87 phylogenetically informative sites. Polarization of the base substitutions in Monanthes using the species of Aconium shows that 34 of the 67 variable positions are informative and that 33 are unique (alignment gaps and missing data excluded). Twelve base substitutions are informative among the perennial taxa of Monanthes. Fifteen indels are present in the alignment, two of which are synapomorphies for the perennial taxa of Monanthes, and one is potentially informative within Monanthes (excluding M. icterica). M. icterica has a ITS2 region which is very different from the other species of Monanthes, given the number of unique indels (6) and the number of unique base substitutions (18). This is also reflected in the sequence divergence which ranges from 18.5% to 23.1%, between M. icterica and M. pallens and between M. icterica and M. polyphylla ssp. polyphylla, respectively. ITS2 sequence divergence among the perennial taxa of Monanthes ranges from 0.00% to 10.1% among M. minima, M. anagensis, and one of the plants of M. brachycaulos on one hand and between M. lowei and M. polyphylla ssp. amydros on the other.

Divergence of the ITS2 sequence between M. icterica and the other species of Monanthes is within the range of intergeneric divergences in the Macaronesian Sempervivoideae and varies from 12.7% between M. icterica and Aeonium to 17.5% between M. icterica and Aichryson. In contrast, among M. pallens, M. anagensis, M. laxifora, M. lowei, M. minima, and M. brachycaulos, sequence divergences vary from 0.0% to 2.4% and between the subspecies of M. polyphylla and M. muralis (Hierro), maximum sequence divergence amounts of 3.4%. Between the two sistertaxa of Monanthes (the subspecies of M. polyphylla are sister to the other perennial species), minimum genetic divergence is 5.4% (between M. pallens and M. polyphylla). The Neighbor-Joining dendrogram (not shown) strongly indicates monophyly of both Aeonium and Monanthes (excluding M. icterica). Paraphyly is indicated for the two accessions of M. brachycaulos since the accession of M. brachycaulos from Tenerife is the sister group of M. pallens and the accession of M. brachycaulos from Gran Canaria is the sister group of M. lowei. The relatively low support for a clade comprising M. muralis and M. polyphylla is probably due to the large amount of missing data for M. muralis from Hierro.

The aberrant M. icterica and Aichryson form a weakly supported clade in the Neighbor-Joining tree.

We attempted to determine the ITS2 sequence of M. muralis from Hierro from both directions. In parts of the ITS2 region which could be sequenced, frequently two predominant nucleotides were present at a single position in the chromatogram. In nearly all instances nucleotides were either identical to the homologous positions of the maternal or to the paternal species. The ITS2 sequence of M. muralis from Hierro might therefore be merely a reflection of the number of (different) parental copies of ribosomal DNA present in this taxon. It has been suggested that the lack of sequence homogenization may result from recent reticulation (Baldwin, 1995). In such cases additivity can definitely confirm hybridity as reported elsewhere (Campbell et al., 1993; Kim and Jansen, 1994).

Cladistic analysis (positions containing gaps treated as missing data) of the data set which comprised 49 variable and 100 informative positions resulted in 60 MPTs of 208 steps (consistency 0.67 , retention index 0.82; SCT in Fig. 4). The results indicate that 1) the perennial taxa of Monanthes form a strongly supported monophyletic clade, 2) Aconium is the (putative) sister group of the perennial Monanthes clade, 3) annual M. icterica is separated from Monanthes and forms a weakly supported monophyletic clade with the species of Aichryson, 4) Monanthes (excluding M. icterica), M. polyphylla and M. muralis form a monophyletic group which has a sister group relationship to the other species of Monanthes 5) within the latter group, M. pallens is the sister species of a clade comprising M. brachycaulos, M. lovei, M. minima, M. anagensis, M. laxiflora and the diploid M. muralis from La Palma, and 6) the accessions of M. muralis from Hierro $(2 \mathrm{n}=72)$ and La Palma $(2 n-36)$ are indicated to be polyphyletic. Similar results were obtained using Neighbor-Joining as a clustering criterion (not shown).
Weighting transitions and transversions equally, M. icterica is the sisterspecies of Aichryson. However, this topology is only weakly supported, which is probably due to the high number of unique mutations, while only few synapomorphies support this or any other position of M. icterica. We examined the relationships among the species of the Macaronesian Sempervivoideae using different weights of transversions over transitions in the ITS2 sequences (from 1:1 to 5:1; Wojciechowski et al., 1993). Except for the position of M. icterica, relationships among species of Monanthes did not change significantly. At a weight ratio of $2: 1$ only M. lowei and M. brachycaulos (from Gran Canaria) as well as M. muralis from La Palma and M. laxiflora were indicated to be monopophyletic, but all other relationships remained intact. The position of M. icterica however changed significantly. As already mentioned, a $1: 1$ ratio found M. icterica to be the most likely sisterspecies of Aichryson. In the SCT of weight ratio's $2: 1$ and $3: 1$ a basal polytomy in the Macaronesian Sempervivoideae appeared, which comprised separate lineages for the species of Aichryson, Aeonium, Monanthes, and a monotypic lineage comprising M. icterica. SCTs using weight ratio's of $4: 1$ and $5: 1$ indicated monophyly of Monanthes, with M. icterica as the obviously distantly related sister species of the perennial Monanthes taxa. However, at these weight ratio's Monanthes was included in Aconium, which renders the latter genus paraphyletic.

Fig. 4. Strict consensus tree of 60 most parsimonious cladograms of 208 steps based on sequence variation of the muclear ribosomal Internal Transcribed Spacer 2 (ITS2) of species of Aeominm. Aichryson, and North African Sedums as additional ingroup species and Sedum sediforme and Sempertinum ciliosum as outgroups. Alignment gaps were treated as missing data. When the option gapmode = "newstate" instead of "missing" was used, a polytomy with four lineages was found. These lineages are indicated by dotted squares. Numbers above branches indicate branch lengths. Numbers below branches indicate bootstrap-values and decay-values.

$R A P D_{S}$

RAPD patterns of M. icterica were very different from all other species of Monanthes. Several markers unique to either M. icterica or to the perennial species have been detected (Tab. 4). Although many more RAPDs were found, only intense RAPD markers are presented. Since M. icterica is only distantly related to the perennial species of Monanthes, homology assessment of RAPDs is likely to be compromised. Consequently, this species excluded from the RAPD analyses described below.

Table 4. A RAPD markers found between M. muralis from Hierro and the other species of the genus. Markers indicated were either present in M. muralis and subspecies M. polyphy/la, or in M. muralis and M. pallens, M. anagensis, M. laxiftora, M. brachycautos, M. lowei, M. muralis from La Palma, and M. minima. Exceptions are indicated. Accessions are identical to those indicated in Figure 5. Markers are indicated by the size (in $b p$) and the primer used. respectively. B. RAPD markers found between cither M. icterica or in the other species of Momamhes. We surveyed I plant of M. icterict, 5 plants of M. polyphylla ssp. polyphyla, 4 of M. polyphy/la ssp. amydros (POL), 4 of M. muralis from Hierro (MUR), one plant of M. muralis from La Palma, two plants of M. laviflora, one of M. anagensis, two of M. bradycallos, one of M. minima and M. lonei, and two of M. pallens (PAL). Accessions are identical to those indicated in Figure 5.

A

570 F 14	MUR Hierro + POL
600 F 12	MUR Hierro + POL
550 FI 4	MUR Hierro + PAL, except for M. pallens (32746, and 31954)
850F9	MUR Hierro + PAL
$507 \mathrm{F9}$	MUR Hierro + PAL
550 Cl	MUR Hierro + PAL, except for M. muralis from La Palma (32708)
B	
1200 F 12	M. ictericat
850 F 10	M. icterica
1900C8	M. icrerica
1550 F 12	Monanthes without M. ictericat
1650 F 10	Monanthes without M. ictericat
1800 C 2	Monanthes without M. icterica

570 F14 MUR Hierro + POL
MUR Hierro + POL
850F9 MUR Hierro + PAL
MUR Hierro + PAL
550 Cl MUR Hierro + PAL, except for M. muralis from La Palma (32708)

B

The RAPD data set of all perennial species of Monanthes contained 151 informative and 64 variable characters. Wagner analysis of the RAPD data found 5 shortest trees of length 337 (consistency 0.45 , retention index 0.68 , Fig. 5B). Three main clusters were detected. One comprised both subspecies of M. polyphylla which were separated from the other species. The second group comprised accessions of M. muralis from Hierro. The third group comprised M. muralis from La Palma, M. anagensis, M. laxiflora, M. lowei, M. brachycaulos, M. minima and M. pallens. The two species with branched, ascending shoots, M. laxiffora and M. anagensis, were separated from the rosulate species in PCA and cluster analysis. Wagner analysis, however, excluded M. laxiflora and M. anagensis from the group of rosulate taxa and combined the two species with M. muralis from Hierro.

Accessions of M. muralis from Hierro and La Palma are highly divergent genetically. The four plants of M. muralis from Hierro were terminal in a strongly supported clade (bootstrap value 100%) which also comprised the other perennial species of Monanthes, except for M. polyphylla (Fig. 5B). In contrast, in a Neighbor-Joining cluster analysis based on Jaccard distances, the plants of M. muralis from Hierro formed a cluster intermediate between the two sister clades in the genus. The position of the plants from Hierro thus differs between cluster

C. Principal Coordinate Analysis

Fig. 5. A. Neighbor-Joining dendrogram based on presence and absence of RAPDs of all species of Monanthes except for M. icterica. The dendrogram was constructed from 1-Jaccard's distance coefficients (Jaccard, 1908). B. Strict consensus tree of five most parsimonious unrooted Wagner cladograms of 337 steps of nine (sub)species of Monanthes. C. Scatter plot of the first two Principal Coordinates (covering 20.3 and 13.3% of the variation. respectively) resulting from a Principal Coordinate Analysis (PCO23D; Adams, 1994) of 23 accessions of nine (sub)species of Monanthes.
analysis and cladistic analysis (Figs. 5A and B). Their aberrant position is also apparent in a Principal Coordinate Analysis (axis 1 and 2 covered 20.3% and 13.3% of the variation, respectively) in which three well separated clusters can be observed, i.e. one comprising all eight plants of M. polyphylla (either subspecies), one comprising M. brachycaulos, M. minima, M. laxiflora, M. anagensis, M. pallens, and M. muralis from La Palma, and a cluster comprising the four plants of M. muralis from Hierro. The position of the plants of M. muralis from Hierro is therefore dependent upon the method of analysis. Their ambiguous position may be due to the presence of several RAPDs which they share with (nearly) all species of the clade with M. pallens as a basal species (Fig. 5) or with the subspecies of M. polyphylla (Tab. 4).

Analyses of combined data from morphology, chloroplast DNA and nuclear DNA
The data set comprised 34 informative ITS2 and 27 morphological characters. Three chloroplast DNA characters were available for a subset of the species. Since M. icterica is not included in the clade which comprises the perennial species, this annual species is used as an outgroup species, in addition to Aichryson tortuosum. Sedum surculosum was not used as an outgroup because it is more distant to Monanthes than the other two species, which both belong to the Macaronesian Sempervivoideae. The morphological data of M. muralis are mainly based on the accessions from Hicrro rather than La Palma (Nyffeler, 1992). This taxon is probably a hybrid between representatives of the major lineages within the genus (at least based on molecular data). The plants from Hierro are probably of hybrid origin (see above) and we therefore excluded M. muralis from the combined analysis because a hybrid between (relatively) distant lineages may have a profound effect on cladistic analyses (McDade, 1992).

Unconstrained cladistic analysis using both Aichryson tortuosum and Monanthes icterica as outgroups resulted in a single MPT of 86 steps (CI 0.67, RI 0.70, Fig. 6). In the resulting topology, M. polyphylla was sister to the other perennial species and M. anagensis and M. laxiflora were sister to M. brachycaulos, M. pallens, M. lowei, and M. minima. The topology differs from the molecular tree (Fig. 4) with respect to the resolution of the relationships among growth forms. Due to the impact of the morphological characters, M. sect. Sedoidea is sister to the other perennial species of M. sect. Monanthoidea. Monophyly of M. polyphylla is strengthened. However, when Aichryson tortuosum and Monanthes icterica were singly used as outgroups, very different topologies were obtained (Fig. 6). For example, the species with loose rosettes were paraphyletic when Aichrvson tortuosum was used as an outgroup.

Discussion

The results of Principal Component Analysis of the morphological data of Monanthes agree perfectly well with Nyffeler’s (1992) as well as Sventenius'

Fig. 6. A. Single most parsimonious tree (86 steps; Cl 0.61) of combined data from morphology, chloroplast trinL tmif sequences and ITS2 sequences of the species of Monamthes. Bootstrap- and decay values were determined using PAUP's branch-and-bound option. Aichryson tortuosum and Monanthes icterica were used as outgroups. Support measures above internal branches resulted from analysis without the chloroplast sequences. The strict consensus tree of both analyses was identical. B. Strict consensus tree of two most parsimonious trees (66 steps) of combined data from morphology, $\operatorname{trnL}-\operatorname{trn} \Gamma$ chloroplast sequences and ITS2 sequences of the specics of Monanthes. Aichryson tortuosum was used as an outgroup. C. Single most parsimonious trees (64 steps) of combined data from morphology, trnL trnF chloroplast sequences and ITS2 sequences of the species of Monanthes. Monanthes icterica was used as an outgroup.
classification (1960). In cladistic analysis however, both outgroup species Aichryson tortuosum and Sedum surculosum provided different root positions which was indicated by the increase of a large number of steps and homoplasy when Monanthes was forced into monophyly. This indicates that on basis of morphology, monophyly of the genus is unlikely. If M. icterica, which is genetically distinct from the other species of Monanthes is used as an additional outgroup, yet another root position is suggested. Although the variable root positions could result from the use of too distantly related outgroups, no more appropriate outgroup is available. Although we did not use the putative sister genus Aconium as an outgroup, Aichryson which is genetically closely related (Mes, 1995), is probably equally appropriate as an outgroup (see weighted analysis of ITS2 sequences).

Inclusion of M. icterica in Monanthes is primarily based on the typical flowers with the uniquely enlarged nectariferous scales. However, the phenetic analysis (PCA) of the morphological data (Fig. 1) as well as its annual life form and deviating chromosome number ($2 \mathrm{n}=20$) indicate that this species holds a unique position within the genus (Sventenius, 1960; 't Hart and Nyffeler, pers. comm.). Genetically, M. icterica is also quite distant to the other species of Monanthes. Phylogenetic analysis of chloroplast and nuclear sequences as well as RAPDs all indicate a unique position of M. icterica, without any close ties to either Monanthes or any of the other Macaronesian genera and North African Sedoideae. The
cytological and morphological features of M. icterica as well as its peculiar life form are unique when compared to other taxa of the Macaronesian Sempervivoideae. As M. icterica does not share any RAPD fragments with Monanthes, it is certainly not a hybrid between a species of Monanthes and an (extant) species of one of the other genera of the Macaronesian Sempervivoideae. As the inclusion of M. icterica in Monanthes is primarily based on flower morphology, a multiple origin of this flower type with large nectariferous scales could be considered. Large nectariferous scales also occur in the North African Sedum surculosum (=Monanthes atlantica) and have been described for species of Mexican Sedum napiferum group (Fröderström, 1936; Clausen, 1957). Homoplasy of floral characters could also account for the disconcerting results of the cladistic analysis of the morphological data. Removing these characters (20,21 , and 23 through 30) from the morphological data set however still resulted in multiple root positions when using different outgroups. Probably also the vegetative characters of Monanthes are not very reliable characters for evolutionary inference.

Although relationships between M. icterica and the other species of Monanthes are rather distant, this species is evidently included in a strongly supported clade comprising the Macaronesian Sempervivoideae and certain North African species of Sedum ("Aconium"-clade; van Ham, 1994) as shown by the cladistic analysis of $\operatorname{trnL}(U A A)-\operatorname{trnF}$ (GAA) chloroplast DNA spacer sequence variation of a large taxonomic sample, covering all major genera of the Crassulaceae ('t Hart et al., pers. comm.) and phylogenetic analysis of sequence variation of the ITS2 region of the Macaronesian Sempervivoideae (bootstrap value 85%; Fig. 4). In the ITS2 phylogeny its position shifts depending on the differential weighting of transitions and transversions, but none of the topologies is strongly supported. One of the alternative topologies, indicated paraphyly of Aeonium by inclusion of Monanthes (including M. icterica) which is unlikely on basis of chloroplast DNA RFLPs. Using these characters, identical root positions were found for Aeonium using either Monanthes laxiflora or Aichryson tortuosum as an outgroup (Mes and 't Hart, 1995). As a result, relationships among the genera Aichryson, Aconium, Monanthes and a monotypic clade comprising M. icterica are essentially unresolved. The four lineages differ with respect to basic chromosome numbers (Tab. 1), which range form $2 \mathrm{n}=20$ in M. icterica, to $2 \mathrm{n}=30$ to 34 in Aichryson, and $2 \mathrm{n}=36$ in Aeonium and Monanthes. It has often been found that after arrival on an oceanic archipelagoe chromosome numbers increase and remain more constant after final settlement (Stuessy et al., 1992). The variable chromosome numbers of the Macaronesian lineages therefore either indicate the existence of an ancestral and polymorphic population whose distribution area might have been fragmented (e.g. be volcanism) or indicate periods of rapid speciation with subsequent changes of chromosome numbers in the surviving lineages. Both schemes are expected to result in polytomous relationships among taxa.

We found convincing evidence for the allopolyploid origin of M. muralis from Hierro. The diploid ($2 \mathrm{n}=36$) plant from La Palma is neither genetically nor evolutionary linked to the tetraploid $(2 n=72)$ plants from Hierro. Our molecular data from sequences and RAPDs unequivocally support a hybrid origin of M.
muralis from Hierro. Although certain regions of the trnL - trnF chloroplast spacer are prone to homoplasy (indels at positions 231-234 and 132-138; Mes et al., 1996; Mes, 1995), the 7 bp insertion in the accessions of Hierro indicates that their chloroplast genomes share a synapomorphy with M. laxiflora, M. brachycaulos and M. muralis from Hierro whereas the morphological and ITS2 data indicate inclusion of M. muralis from Hierro in the clade comprising the sister taxon, M. polyphylla. The different lineages to which the maternal and paternal donor of M. muralis from Hierro belong strongly suggest a hybrid origin for this taxon. Because only a small portion of the ITS2 region of M. muralis from Hierro could be sequenced, the clade comprising M. polyphylla and M. muralis is only weakly supported. The inability to determine the nucleotide sequence is consistent with the multiple ITS types expected in hybrids of recent origin (Kim and Jansen, 1994), "if concerted evolution fails to act across repeat units contributed by different parental species" (Baldwin et al.. 1995). Both the distribution of RAPDs (Tab. 4) and the variable position of M. muralis from Hierro (Fig. 5) are wholly consistent with a hybrid origin of this taxon. Although no general criteria can be given with respect to the position or identification of hybrid taxa in cladistic analysis (McDade, 1992), a highly variable position of such taxa in evolutionary analysis using multiple data sets can readily be envisioned to result from reticulation. M. laxiffora is the most probable maternal donor given the synapomorphy of the chloroplast genome [161] and the identical sequence of the 7 bp insertion [132-138]. Morphological and cytological characters are not conclusive with respect to the paternal species. The number of parastichies of M. muralis from Hierro is intermediate between both subspecies of M. polyphy/la, and the chromosome numbers are not distinctive with respect to the paternal (sub)species either. The more ascending and tufted habit of M. muralis indeed suggests that M. laxiffora might have been involved in the evolution of this taxon, and this has explicitly been stated for one of the accessions used (32176; Nyffeler, 1995). Interestingly, M. laxiffora does neither occur on La Palma nor on Hierro. Gomera is the island nearest to Hierro on which both M. laxiffora and one of the subspecies of M. polyphylla occur. The genetic similarity of the accessions of M. muralis from Hierro which share approximately 94% of the RAPDs (averaged over all pairwise comparisons of accessions), and the distribution of the plants studied over the entire island (see Tab. 3), suggest that this allotetraploid has spread rapidly over the island.

All molecular data agree with respect to the close genetic relationships of the perennial Monanthes taxa. Within this monophyletic lineage, three groups can be distinguished which by and large agree with the sections distinguished by Sventenius (1960) and Nyffeler (1992). M. sect. Monanthes with M. polyphylla (two subspecies) and M. muralis from Hierro is the sister taxon of the other perennial species. Two lineages, corresponding with M. sect Sedoidea and M. sect. Petrophyllae, respectively (Fig. 5). Relationships among these lineages are not consistently resolved (Fig. 4). Although the perennial species of these sections are genetically very similar, they differ considerably in habit and gross morphology.

The results of cladistic analysis of the combined morphological and sequence data (ITS2 and/or trnL-trnF) are topologically identical (Fig. 6A) because the
chloroplast sequences comprise only 3 ingroup-outgroup variable base substitutions. The topology of the tree of the combined analysis is consistent with the molecular data, but with a higher level of resolution (Fig. 6A). The topology of the combined analysis is in conflict with the molecular data when the outgroup taxa are used singly. Most aberrant is the analysis with M. icterica as an outgroup (Fig. 6C) in which the species of M. sect. Petrophyllae are basal to M. polyphylla. Although the topology using two outgroup species is compatible with previous strongly supported clades, and is compatible with a single origin of the 4 bp insertion in the chloroplast $\operatorname{trnL}-\operatorname{trnF}$ intergenic region, relationships among the growth forms of Monanthes remain weakly supported. Exclusion of M. icterica and M. muralis from Hierro on the basis of information newly obtained in this study, and a "total evidence" approach results in a single rooting point for the outgroups but does not consistently resolve relationships among growth forms within the genus.

References

Adams, R. P., T. Demeke and H. A. Abulfaith. 1993. RAPD DNA fingerprints and terpenoids: clues to past migrations of Juniperus in Arabia and East Africa. Theor. Appl. Genet. 87: 22-26.
Baldwin, B. G., M. J. Sanderson, J. M. Porter, M. F. Wojciechowski, C. S. Camphell and M. I. Donoghue. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann. Missouri Bot. Gard. 82: 247-277.
Ball, J. 1878. Spicilegium florae Maroccanae. J. Linn. Soc. London 16: 281.
Bañares, B. A. 1990. Híbridos de la familia Crassulaceae en las Islas Canarias. Novedades y datos corológicos. Part II. In Vieraea 18: 65-85.
Berger, A. 1930. Crassulaceae, pp 352-483. In A. Engler and K. Prantl (Eds.). Die natürlichen Pffanzenfamilien, 2nd edn, 18a, Leipzig: Wilhelm Engelmann.
Campbell, C. S., B. G. Baldwin, M. J. Donoghue and M. J. Wojciechowski. 1993. Towards a phylogeny of Amelanchier (Rosaceae: Maloideae): evidence from sequences of internal transcribed spacers (ITS) of nuclear ribosomal DNA (nrDNA). Amer. J. Bot. 80 (supplement, abstract): 135-136.
Clausen, R. T. 1959. Sedum of the Trans Mexican Volcanic Belt. Ithaca, New York.
Donoghue, M. J., R. G. Olmstead, J. F. Smith and J. D. Palmer. 1992. Phylogenetic relationships of Dipsacales based on rbcL sequences. Ann. Missouri Bot. Gard. 79: 333-345.
Farris, J. S. 1969. A successive approximations approach to character weighting. Syst. Zool. 18: 374-385.
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
Fröderström, H. 1936. The genus Sedum L. 4. Acta Horti Gothob. 10, App.: 1-262.
Galland, N. 1988. Recherche sur l'origine de la flore orophile du Maroc: étude caryologique et cytogeographique. PhD Thesis, University of Neuchatel, Switzerland.
Gower, J. C. 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 857-874.
Guillemaut, P. and I. Maréchal-Drouard. 1992. Isolation of plant DNA: a fast, inexpensive, and reliable method. Plant Mol. Biol. Rep. 10: 60-65.
van Ham, R. C. H. J. 1994. Phylogenetic implications of chloroplast DNA variation in the Crassulaceae. PhD Thesis, Utrecht University, Utrecht, The Netherlands.
't Hart, H. 1987. Natural hybrids in Sedum (Crassulaceae). 1. Two new hybrids of \boldsymbol{S}. series Rupestria and a new locality of $S . \times$ brevierei. Bot. Jahrb. Syst. 109: 1.16.
Jaccard, P. 1908. Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 44: 223270.

Jacobsen, H. and G. D. Rowley. 1973. Some name changes in sueculent plants. Part 5. In Nat. Cact. Suce. J. 28: 4-6.
Johnson, L. A. and D. E. Soltis. 1995. Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann. Missouri Bot. Gard. 82: 149-175.
Kim, K.-J. and R. K. Jansen. 1994. Comparisons of phylogenetic hypotheses among different data sets in dward dandelions (Krigia, Asteraceae): additional information from internal transcribed spacer sequences of nuclear ribosomal DNA. Pl. Syst. Evol. 190: 157-185.
Kumar, S., K. Tamura and M. Nei. 1993. MEGA: Molecular Evolutionary Genetics Analysis, version 1.0. The Pennsylvania State University, Park, PA.

Lems, K. 1960. Botanical notes on the Canary Islands. II. The evolution of plant forms in the islands: Aeonium. Ecology 41: 1-47.
Lösch, R. 1990. Funktionelle Voraussetzungen der adaptiven Nischenbesetzung in der Evolution der Makaronesischen Semperviven. Diss. Bot. 146.
McDade, L. A. 1992. Hybrids and phylogenetic systematics II. The impact of hybrids on cladistic analysis. Evolution 46: 1329-1346.
Mes, T. H. M. and H. 't Hart. 1994. Sedum surculosum and S. jaccardianum (Crassulaceae) share a unique 70 bp deletion in the chloroplast DNA $\operatorname{trnL}(U A A)-\operatorname{trn}(G A A)$ intergenic spacer. Pl. Syst. Evol. 193: 213-221.
Mes, T. H. M. 1995. Phylogenetic and systematic implications of chloroplast and nuclear spacer sequence variation in the Macaronesian Sempervivoideae and related Sedoideae. In H. 't Hart and U. Eggli (Eds.), Evolution and Systematics of the Crassulaceae, Backhuys Publishers, Leiden.
Mes, T. H. M., J. van Brederode and H. 't Hart. 1996. Origin of the woody Macaronesian Sempervivoideae and the phylogenetic position of the East African species of Aeonium. Bot. Acta 109: 477-491.
Morgan, D. R., D. E. Soltis and K. R. Robertson. 1994. Systematic and evolutionary implications of rbcL sequence variation in Rosaceae. Amer. J. Bot. 81: 890-903.
Nyffeler, R. 1992. A taxonomic versions of genus Monanthes Haworth (Crassulaceae). Bradleya 10: 49-82.
Nyffeler, R. 1995. Hybrization in Monanthes (Crassulaceae). In H. 't Hart and U. Eggli (Eds.), Evolution and Systematics of the Crassulaceae. Backhuys Publishers, Leiden.
Praeger, R. L. 1929. Semperviva of the Canary Islands Area. In ibid. 454-499 (including 8 plates).
Praeger, R. L. 1932. An account of the Sempervivum group. Royal Horticultural Society, London.
Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 9: 945-967.
Sanger, F., S. Nicklen and A. R. Coulsen. 1977. DNA-sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467.
Soltis, D. E., D. R. Morgan, A. Grable, P. S. Soltis and R. Kuzoff. 1993. Molecular systematics of Saxifragaceae sensu stricto. Amer. J. Bot. 80: 1056-1081.
Stuessy, T. F., D. J. Crawford and M. O. Silva. 1992. Evolution of the endemic vascular flora of the Juan Fernandez Islands, pp 337-339. In E. C. Dudley (Ed.), The Unity of Evolutionary Biology. Dioscorides Press, Portland.
Sventenius, E. R. 1960. Crassulaceae. In Additamentum ad Floram Canariensem 1: 13-18. Madrid, Inst. Nac. Invest. Agron.
Taberlet, P., L. Gielly, G. Pautou and J. Bouvet. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant. Mol. Biol. 17: 1105-1109.
Uhl, C. H. 1961. The chromosomes of the Sempervivoideae (Crassulaceae) Amer. J. Bot. 48: $114-$ 123.

White, T. J., T. Bruns, S. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp 315-322. In M. Innis, D. Gelfand, J. Sinnsky and T. White (Eds.), PCR protocols: a guide to methods and applications, Academic Press, San Diego, CA, USA.

Wojciechowski, M. F., M. J. Sanderson, B. G. Baldwin and M. J. Donoghue. 1993. Monophyly of aneuploid Astragalus (Frabaceae): evidence from nuclear ribosomal DNA internal transcribed spacer sequences. Amer. J. Bot. 80: 711-722.
Yu, K. and K. P. Pauls, 1992. Optimization of the PCR program for RAPD analysis. Nucl. Acids Res. 20: 2606.

Received 28 February 1996;
accepted 27 June 1996.

[^0]: * Author for correspondence.

