
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2009, Article ID 219140, 9 pages
doi:10.1155/2009/219140

Research Article

Pipeline FFT Architectures Optimized for FPGAs

Bin Zhou,1, 2 Yingning Peng,1 and David Hwang2

1 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
2 Department of Electrical and Computer Engineering, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA

Correspondence should be addressed to David Hwang, dhwang@gmu.edu

Received 28 February 2009; Accepted 23 June 2009

Recommended by Cesar Torres

This paper presents optimized implementations of two different pipeline FFT processors on Xilinx Spartan-3 and Virtex-4 FPGAs.
Different optimization techniques and rounding schemes were explored. The implementation results achieved better performance
with lower resource usage than prior art. The 16-bit 1024-point FFT with the R22SDF architecture had a maximum clock frequency
of 95.2 MHz and used 2802 slices on the Spartan-3, a throughput per area ratio of 0.034 Msamples/s/slice. The R4SDC architecture
ran at 123.8 MHz and used 4409 slices on the Spartan-3, a throughput per area ratio of 0.028 Msamples/s/slice. On Virtex-4, the
16-bit 1024-point R22SDF architecture ran at 235.6 MHz and used 2256 slice, giving a 0.104 Msamples/s/slice ratio; the 16-bit
1024-point R4SDC architecture ran at 219.2 MHz and used 3064 slices, giving a 0.072 Msamples/s/slice ratio. The R22SDF was
more efficient than the R4SDC in terms of throughput per area due to a simpler controller and an easier balanced rounding
scheme. This paper also shows that balanced stage rounding is an appropriate rounding scheme for pipeline FFT processors.

Copyright © 2009 Bin Zhou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The Fast Fourier Transform (FFT), as an efficient algorithm
to compute the Discrete Fourier Transform (DFT), is one
of the most important operations in modern digital signal
processing and communication systems. The pipeline FFT is
a special class of FFT algorithms which can compute the FFT
in a sequential manner; it achieves real-time behavior with
nonstop processing when data is continually fed through
the processor. Pipeline FFT architectures have been studied
since the 1970’s when real-time large scale signal processing
requirements became prevalent. Several different architec-
tures have been proposed, based on different decomposition
methods, such as the Radix-2 Multipath Delay Commutator
(R2MDC) [1], Radix-2 Single-Path Delay Feedback (R2SDF)
[2], Radix-4 Single-Path Delay Commutator (R4SDC) [3],
and Radix-22 Single-Path Delay Feedback (R22SDF) [4].
More recently, Radix-22 to Radix-24 SDF FFTs were studied
and compared in [5]; in [6] an R23SDF was implemented
and shown to be area efficient for 2 or 3 multipath channels.
Each of these architectures can be classified as multipath or
single-path. Multipath approaches can process M data inputs
simultaneously, though they have limitations on the number
of parallel data-paths, FFT points, and radix. This paper
focuses on single-path architectures.

From the hardware perspective, Field Programmable

Gate Array (FPGA) devices are increasingly being used for

hardware implementations in communications applications.
FPGAs at advanced technology nodes can achieve high
performance, while having more flexibility, faster design
time, and lower cost. As such, FPGAs are becoming more
attractive for FFT processing applications and are the target
platform of this paper.

The primary goal of this research is to optimize pipeline
FFT processors to achieve better performance and lower
cost than prior art implementations. In this paper, two

comparative implementations (R4SDC and R22SDF) of

pipeline FFT processors targeted towards Xilinx Spartan-3
and Virtex-4 FPGAs are presented. Different parameters such
as throughput, area, and SQNR are compared.

The rest of the paper is organized as follows. Section 2
discusses the methodology used to select the two archi-
tectures. Section 3 describes the implementation tools and
optimization methods used to improve performance and
reduce resource utilization. Section 4 explains the balanced
rounding schemes that were implemented and their impact
on the signal-to-quantization noise ratio (SQNR). Section 5
presents the results, and Section 6 presents some brief
conclusions.

2 International Journal of Reconfigurable Computing

Table 1: Hardware resource requirements comparison of pipeline FFT architectures (based on [4]).

Complex multipliers Complex adders Memory size Control logic
Comp. Utilization

add/sub Multiplier

R2SDF log2N − 2 2 log2N N − 1 simple 50% 50%

R4SDF log4N − 1 8 log4N N − 1 medium 25% 75%

R4SDC log4N − 1 3 log4N 2N − 2 complex 100% 75%

R22SDF log4N − 1 4 log4N N − 1 simple 75% 75%

R2MDC log2N − 2 2 log2N 3N/2− 2 simple 50% 50%

R4MDC 3(log4N − 1) 8 log4N 5N/2− 4 medium 25% 25%

Nt Nt Nt

Nt

Nt

Nt

C1 C2 C3

Figure 1: R4SDC commutator of stage t.

2. Pipeline FFT Architectures

2.1. Architecture Selection. The major characteristics and
resource requirements of several pipeline FFT architectures
are listed in Table 1. Computational efficiency is measured by
resource utilization percentage—how often the resources are
in an active state versus an idle state. As shown in the table,
the radix-4 Single-Path Delay-Commutator (R4SDC) and
radix-22 Single Path Delay Feedback (R22SDF) architectures
provide the highest computational efficiency and were
selected for implementation. The R4SDC architecture is
appealing due to the computational efficiency of its addition;
however the controller design is complex. The R22SDF
architecture has a simple controller but a less efficient
addition scheme. These designs are both radix-4 and scalable
to an arbitrary FFT size N (N is a power of 4).

2.2. R4SDC Architecture.

R4SDC Algorithms. The R4SDC was proposed by Bi and
Jones [3] and uses an iterative architecture to calculate the
radix-4 FFT. The key to the algorithm is splitting the FFT
into different stages by using different radices. In this paper,
the radix is always 4.

The derivation starts from the fundamental DFT equa-
tion for an N-point FFT:

X(k)=
N−1∑

n=0

x(n)WN
nk

(

k=0, 1 · · ·N − 1;WN=e− j(2π/N)
)

.

(1)

Table 2: Implementation tools.

Design step Tool

VHDL simulation ModelSim SE 6.2b

FPGA synthesis Synplicity Synplify Pro; Xilinx XST

FPGA implementation Xilinx ISE 9.1

Target FPGA
Spartan-3 Family; Virtex-E Family;

Virtex-4 Family

Verification Matlab R2006a

N can be represented as composite of v numbers N =

r1r2 · · · rv and defined as

Nt =
N

r1r2 · · · rt
, 1 ≤ t ≤ v − 1, (2)

where t is the stage, and rt is the stage radix. After putting

(2) into (1) and applying the relationship W
N jk
NiN j

=WNi

k, (1)

becomes

X(k) =
N1−1
∑

q1=0

WN
q1k

r1−1
∑

p=0

x
(

N1p + q1

)

Wr1

pk. (3)

Indeces k1 and m1 can be defined by k = r1k1 + m1, where
0 ≤ k1 ≤ N1 − 1, 0 ≤ m1 ≤ r1 − 1. Equation (3) becomes

X(r1k1 + m1) =
N1−1
∑

q1=0

x1

(

q1,m1

)

WN1

q1k1 ,

x1

(

q1,m1

)

=WN
q1m1

r1−1
∑

p=0

x
(

N1p + q1

)

Wr1

pm1 .

(4)

Therefore the complete N-point DFT can be written as
v − 1 different stages with intermediate stages in a recursive
equation:

xt
(

qt,mt

)

=W
qtmt

Nt−1

rt−1
∑

p=0

xt−1

(

Nt p + qt,mt−1

)

W
pmt
rt . (5)

International Journal of Reconfigurable Computing 3

W
qtmt

Nt−1
is the twiddle factor. For radix-4, the equations

become

X(4k1 + m1) =
N/4−1∑

q1=0

x1

(

q1,m1

)

WN/4
q1k1 ,

xt
(

qt,mt

)

=W
qtmt

Nt−1

3∑

p=0

xt−1

(

Nt p + qt,mt−1

)

W4
pmt

(6)

The R4SDC architecture is presented in Figures 1–3.
An N-point radix-4 pipeline FFT is decomposed to log4N
stages. Each stage consists of a commutator, a butterfly,
and a complex multiplier. Figure 1 outlines the commutator
for the R4SDC. Its six shift registers provide Nt delays.
The control signals are generated by logic functions. The
butterfly element, shown in Figure 2, performs the sum-
mation, where trivial multiplication is replaced by add/sub
and imaginary/real part swapping. Figure 3 shows the overall
architecture.

2.3. R22SDF Architecture. The R22SDF architecture was
proposed by He and Torkelson [4] and also begins from (1).
He applies a 3-dimensional index map:

n =

〈
N

2
n1 +

N

4
n2 + n3

�

N
; k = 〈k1 + 2k2 + 4k3〉N . (7)

Using the Common Factor Algorithm (CFA) to decom-
pose the twiddle factor, the FFT can be reconstructed as a set
of 4 DFTs of length N/4:

X(k1 + 2k2 + 4k3) =
N/4−1∑

n3=0

[

H(k1, k2,n3)W
n3(k1+2k2)
N

]

Wn3k3

N/4

(8)

H(k1, k2,n3) can be expressed as

H(k1, k2,n3) =

BF 2I
︷ ︸︸ ︷

[x(n3) + (−1)k1x(n3 + (N/2))] +(− j)(k1+2k2)

BF 2I
︷ ︸︸ ︷

[x(n3 + (N/4)) + (−1)k1x(n3 + (3/4)N)]
︸ ︷︷ ︸

BF 2II

, (9)

The R22SDF algorithm can be mapped to the architecture
shown in Figures 4–6. The number of stages is log4N . Every
stage contains two butterfly elements, each associated by
an Nt feedback shift register. A simple counter creates the
control signals. Pipeline registers can be added between
butterfly elements and between stages. Registers are also
added inside the complex multipliers to reduce the critical
path through the summation to the multiplier. The total
latency is approximately N + 4(log4N − 1) cycles.

3. FPGA-Based Implementations
and Optimizations

3.1. Specifications, Tool Flow, and Verification. Both of these
FFT architectures were implemented with generic synthesiz-
able VHDL code and verified with simulation against Matlab
scripts using Modelsim. Synplify or XST was used to perform
the synthesis, and ISE was used for place and route and
implementation. The architectures were optimized to achieve
maximum throughput with minimal area (slices). The tools
and development environment used are shown in Table 2.

3.2. General Optimization Methods. Some general optimiza-
tion measures were performed, including FSM encoding,
retiming, and CAD-related optimizations. Since the FFT
processors were targeted to Xilinx Spartan-3 and Virtex-
4 FPGAs (as well as synthesized for Virtex-E FPGAs), the
SRL16 component, which can implement a 16-bit shift
register within a single LUT, was inferred as much as possible
to preserve LUTs. This particularly helped the R22SDF

architecture because of the large number of shift registers.
R4SDC also benefited from SRL16 components in its com-
mutator registers. Block RAMs were used to store twiddle
factors, which dramatically reduced the combinational logic
utilization.

3.3. Architecture-Specific Optimization. A number of
architecture-specific optimizations were used. For both
architectures, a complex multiplication technique was used.
Usually, a complex multiplication is computed as:

(a + bi)× (c + di) = a× c − b × d + (a× d + b× c)i. (10)

This requires 4 multiplications and 2 add/suboperations.
As is well known, the equation is simplified to save one
multiplier:

(a + bi)× (c + di) = [a× (c + d)− (a + b)× d]

+ [a× (c + d) + (a− b)× c]i.
(11)

This requires only 3 multiplications and 5 add/sub-
operations. Pipeline registers were also added in order to
avoid the long critical path brought by the connection of real
adders and multipliers. Figure 7 shows the pipeline stages
inserted which were effective to reduce the critical path (REG
means pipeline register).

3.3.1. R4SDC Optimization. The R4SDC has a complex
controller, which creates a long critical path. By observing
that all stages have the same control bits but have different
sequences, using a ROM with an incremental address was

4 International Journal of Reconfigurable Computing

Add/sub

Add/sub

Add/sub

Add/sub

Add/sub

Add/sub Re
re(0)

re(1)

im(1)

im(0)

re(2)

re(3)

im(3)

im(2) Im

C4 C5 C6

Figure 2: R4SDC butterfly element of stage t.

· · ·

Stage 1 Stage 2 Stage v

Input Output
Commutator CommutatorButterfly Butterfly Commutator Butterfly

Twiddle

factor
Twiddle

factor

Twiddle

factor

Figure 3: N-point R4SDC pipeline FFT processor architecture.

a simpler solution than using a complex FSM. Pipeline
registers were also added to the butterfly elements, multi-
pliers, and between stages. Figure 8 illustrates the addition
of pipeline registers to cut the critical path efficiently within
the butterfly element. Since two continuous add/subelements
bring about a long propagation path, they were split using
pipelining. Figure 9 shows the addition of pipeline registers
between majority elements and between stages. For timing
purposes, the applicable control signals were also buffered.

There were some special measures taken into account
within controller in order to keep proper timing of signals.
Twiddle factors should also be delayed to cope with the
delayed sequence.

3.3.2. R22SDF Optimization. Due to its simple control
requirements, a simple counter was sufficient as the entire
controller for the R22SDF. To speed up the controller, a
fast adder could potentially be faster than a simple ripple-
carry adder. However, due to the small number of stages
(log4N), no substantial savings were found for a fast adder.
Pipeline registers were added between major elements and
also between stages. Note that the R22SDF is not suited
for adding pipeline registers within individual butterfly
elements, because this would break the timing for the data
feedback path. Figure 10 presents the pipelined stages. Note
that registers were only added between element units; in
addition, registers were added as necessary to keep the
control signals properly timed.

4. Rounding Scheme and SQNR

Due to finite wordlength effects, the implemented FFTs
always scaled by 1/N at the output of the design. This

scaling factor was distributed as divide-by-two operations
throughout each stage to reduce error propagation. As is
well known, truncation or conventional rounding (which is
denoted as round-half-up) will bring a notable quantization
error bias in divide-by-two operations, and this bias will
accumulate throughout the processing chain [5]. To alleviate
the bias, three unbiased rounding methods are investigated
for division by two.

Sign Bit-Based Rounding. In this scenario, if the MSB of
the number to be divided is 0 (i.e., positive number) it
is rounded-half-up. This will have a positive bias. On the
other hand, if the MSB is 1 (i.e., negative number) it
is truncated, leaving a negative bias. Assuming that the
positive and negative numbers are uniformly distributed,
this approach will lead to an unbiased rounding scheme.
However, selecting the bias based on the MSB implies that
these two rounding methods coexist in a single rounding
position, which requires extra hardware. This increases the
critical path, harming the performance. So it is not chosen.

Randomized [7]. In this scenario, if the bit to be rounded
is 1, a random up or down rounding is performed. If
it is 0, the same rounding scheme as done previously
is performed. From the statistical point of view, no bias
exists. But this method requires a random bit generator
and a long accumulation time, requiring big extra hardware
resources and significantly affects the performance. So it is
not implemented.

Balanced Stages Rounding [11]. This rounding method
explores balancing between stages. Round-half-up and trun-
cation are used in an interlaced fashion, as shown in
Figure 11.

International Journal of Reconfigurable Computing 5

Table 3: SQNR with different FFT sizes.

FFT size Input data width Twiddle factor width Stage number SQNR (dB)

R4SDC

16 16 16 2 82.29

64 16 16 3 73.49

256 16 16 4 67.47

1024 16 16 5 61.25

R22SDF

16 16 16 2 81.82

64 16 16 3 74.47

256 16 16 4 68.22

1024 16 16 5 62.68

Table 4: Implementation results on Spartan-3 devices.

Point Input data Twiddle factor
Slices

Block Max. speed Latency Transform time Throughput Throughput/area

size width width RAM (MHz) (cycles) Cycles Time (µs) (MS/s) (MS/s/slice)

R4SDC

16 16 16 468 2 108.20 21 16 0.15 108.20 0.231

64 16 16 952 2 107.23 73 64 0.60 107.23 0.113

256 16 16 1990 3 111.98 269 256 2.76 111.98 0.056

1024 16 16 4409 8 123.84 1041 1024 8.27 123.84 0.028

R22SDF

16 16 16 427 2 121.24 22 16 0.13 121.24 0.284

64 16 16 810 2 98.14 74 64 0.65 98.14 0.121

256 16 16 1303 3 98.73 270 256 2.59 98.73 0.076

1024 16 16 2802 8 95.25 1042 1024 10.75 95.25 0.034

Table 5: Implementation results on Virtex-4 devices.

Point Input data
DSP48 Slices

Block Max. speed Latency Transform time Throughput Throughput/area

size width RAM (MHz) (cycles) Cycles Time (µs) (MS/s) (MS/s/slice)

R4SDC

16 16 4 530 1 236.7 21 16 0.07 236.7 0.447

64 16 8 803 2 236.4 73 64 0.27 236.4 0.294

256 16 12 1370 3 218.9 269 256 1.17 218.9 0.160

1024 16 16 3064 8 219.2 1041 1024 4.67 219.2 0.072

R22SDF

16 16 4 517 1 237.9 22 16 0.07 237.9 0.460

64 16 8 779 2 236.7 74 64 0.27 236.7 0.304

256 16 12 1234 3 236.7 270 256 1.08 236.7 0.192

1024 16 16 2256 8 235.6 1042 1024 4.35 235.6 0.104

Table 6: Performance comparison versus prior art on Virtex-E devices.

FFT
Design

Point Input data Twiddle factor
Slices

Block Max. speed Latency Transform time Throughput Throughput/area

size width width RAM (MH) (Cycle) Cycles Time (µs) (MS/s) (MS/s/slice)

Amphion
[8]

1024 13 13 1639 9 57 5097 4096 71.86 14.25 0.009

Xilinx
[8, 9]

1024 16 16 1968 24 83 4096 4096 49.35 20.75 0.011

Sundance
[10]

1024 16 10 8031 20 49 1320 1320 27.00 49.00 0.006

Suksawas
R22SDF
[8]

1024 16 16 7365 28 82 1099 1024 12.49 82.00 0.011

Our
R22SDF

1024 16 16 5008 32 95.0 1042 1024 10.78 95.00 0.019

Our
R4SDC

1024 16 16 7052 32 94.2 1041 1024 10.87 94.20 0.013

6 International Journal of Reconfigurable Computing

N/8N/2 N/16N/4

BF2

I

s

BF2

I

s

BF2

II

t s

BF2

II

t s

log2(N)− 1 log2(N)− 2 log2(N)− 3 log2(N)− 4 1

1

0

2

W1(n) W2(n)

BF2

I

s

BF2

II

t s

(kX)(nx)
· · ·

· · ·

Figure 4: N-point R22SDF pipeline FFT processor architecture.

xr(n)

xi(n)

xr(n + N/2)

xi(n + N/2)

Zr(n + N/2)

Zi(n + N/2)

Zr(n)

Zi(n)

+

+

+

+

Figure 5: R22SDF BF2 I structure.

xr(n)

xi(n)

xr(n + N/2)

xi(n + N/2)

St

Zr(n + N/2)

Zi(n + N/2)

Zr(n)

Zi(n)

+

+

+

+

±

±

–

Figure 6: R22SDF BF2 II structure.

For an even number of stages, this will achieve the
same result as the randomized approach, while having a
smaller resource usage and simpler control. This scheme
fits the R22SDF architecture particularly well, because the
two butterfly elements within same stage of R22SDF can be
naturally balanced. This method was chosen for the designs
presented in the paper.

In order to compute the signal-to-quantization noise
ratio (SQNR), random generated noise was used as the
input to the pipeline FFT. A Matlab script generated double
precision floating point FFT results, which were used as
the true values. Figure 12 shows how they are compared
with the fixed-point implementations. Random experiments
were run several times and averaged to get a better error
approximation.

5. Results and Analysis

5.1. SQNR Results. Figure 13 shows the SQNR results with
different rounding schemes (balanced stages, truncation, and
round-half-up), for R4SDC and R22SDF, respectively, for a
16-bit data width (input data, twiddle factors, and output

data are 16 bits). The balanced stage rounding typically
improved the SQNR by 1-2 dB. The balanced stages scheme
gives better SQNR, because it leverages the randomness
between stages. The truncation and round-half-up only
reserve half of the information.

Table 3 presents the SQNR results as they vary with FFT
size. The larger the FFT, the worse the SQNR due to the
longer processing chain. Both architectures gave comparable
results in terms of SQNR. It is clear that larger data widths
will also give better SQNR but will increase area and critical
path. A 16-bit wordlength is a sufficient choice for many
signal processing applications.

The FFT architectures with smaller wordlengths than 16
bits are also implemented. The example in the Figure 14
shows the R4SDC architecture for an N = 1024 point FFT.
Every bit of word length increment brings about 6 dB of
SQNR gain.

5.2. Implementation Results. Table 4 gives the performance
results of both architectures with different FFT sizes on
Spartan-3 FPGAs (90 nm) [12]. The R22SDF achieved a
smaller area and better throughput per area than the R4SDC.
Due to the pipeline design, the maximum clock frequency
did not change drastically with FFT size for either design. As
expected the throughput per area decreases for larger FFT
sizes, which require more stages and area.

Table 5 presents the results on Virtex-4 FPGAs (90 nm)
using a 16-bit wordlength. Virtex-4 FPGAs have hardwired
DSP modules called DSP48 blocks, which are high-speed
modules optimized for signal processing operations such as
multiply-accumulate, and FIR filtering. By utilizing these
DSP48 blocks, the maximum clock frequency increased
substantially over the Spartan-3 devices.

Comparisons with prior art are shown in Table 6, which
shows publicly available pipeline FFT implementations on
FPGAs from literature. For fair comparison, since many of
the prior art implementations were implemented on Virtex-
E FPGAs (180 nm), the designs are also implemented on
Virtex-E. The best performance for the R22SDF method for
a 16-bit 1024-point FFT was published by Sukhsawas and
Benkrid in [8]. They used Handel-C as a rapid prototype lan-
guage and implemented the design on Virtex-E FPGAs. They
achieved 82 MHz maximum clock frequency and 7365 slices,
giving a throughput per area ratio of 0.011 Msamples/s/slice.

On the Virtex-E, our R22SDF achieved better perfor-
mance of 95 MHz and a smaller area of 5008 slices, giving a
superior throughput per area ratio of 0.019 Msamples/s/slice.

International Journal of Reconfigurable Computing 7

R
E

G

R
E

G

R
E

G

Real

Imag

+

+

+

–

–

Real0

Real1

Imag0

Imag1

Figure 7: The pipelined complex multiplier.

Add/sub

Add/sub

Add/sub

Add/sub

Add/sub

Add/sub

Re
re(0)

re(1)

im(1)

im(0)

re(2)

re(3)

im(3)

im(2)
Im

R
E

G

R
E

G

R
E

G

C4 C5 C6

Figure 8: Adding pipeline registers to R4SDC butterfly element.

Stage1

Input
Commutator Butterfly

Twiddle

factor

R
E

G

R
E

G

REG

Figure 9: Adding pipeline registers between elements and stages.

N/2

x(n)

W(n)

N/4

R
E

G

R
E

G

R
E

G

REG
REGREG

log2(N)− 1 log2(N)− 2

BF2

I

BF2

II

t ss

Figure 10: Adding pipeline registers for R22SDF.

Stage 2Stage 1 Round-half-up Truncation · · ·

Figure 11: Balanced stages rounding.

SQNR

Matlab

FFT

VHDL

FFT

Compare

Fix point

x

Floating point

Fix point

Xmatlab

XVHDL

Figure 12: SQNR calculation.

Our R4SDC architecture was also superior to prior art,
running at 94.2 MHz and using 7052 slices, a throughput per
area ratio of 0.013 Msamples/s/slice.

Another point of reference is the Xilinx FFT IP core. For
comparison sake, the IP core for Virtex-E is shown in the
table. The Virtex-E core shows four times the latency (4096)
in cycles due to its internal architecture. Its throughput
per area ratio is also only 0.011 Msamples/s/slice. Note that
all comparisons for throughput per area do not take into
account block RAMs, though each of the designs had a
similar number of required block RAMs. However, the
Xilinx FFT DSP core could perform better with new Xtreme
technology: on Virtex 4 device 4vsx25-10, 1024-point FFT

8 International Journal of Reconfigurable Computing

0

20

40

60

80

Point

Balanced

Truncation

Round-half-up

SQ
N

R
 (

d
b

)

16 64 256 1024

(a) R4SDC

0

20

40

60

80

Point

Balanced

Truncation

Round-half-up

SQ
N

R
 (

d
b

)

16 64 256 1024

(b) R22SDF

Figure 13: Rounding effects on SQNR.

37.19
43.29

49.18

55.06
61.14

0

10

12 13 14 15 16

20

30

40

50

60

70

Word-length

SQ
N

R
 (

d
b

)

Figure 14: SQNR variation with different word lengths.

could be finished within 2.85 nanoseconds in best case, while
cost 2141 Slices, 7 block RAMs, and 46 Xtreme DSP slices
[13].

6. Conclusions

In this paper, optimized implementations of R4SDC and
R22SDF pipeline FFT processors on Spartan-3, Virtex-4,
and Virtex-E FPGAs are presented. The 16-bit 1024-point
FFT with the R22SDF architecture had a maximum clock
frequency of 95.2 MHz and used 2802 slices on the Spartan-
3. The R4SDC ran at 123.8 MHz and used 4409 slices on
the Spartan-3. On Virtex-4 device, the numbers became
235.6 MHz and 2256 slices for R22SDF and 219.2 MHz
and 3064 slices for R22SDF, respectively. Different round-
ing schemes were analyzed and compared. SQNR analysis
showed the balanced stages rounding scheme gave high
SQNR with small overhead. The SQNR will gain around 6 dB
with every bit increment of word length.

The R22SDF architecture outperformed the R4SDC
architecture in terms of throughput per area, a measure of
efficiency, for the 1024-point FFT. This is due to its simpler

controller and compatibility with pipelining insertion. Both
architectures have comparable maximum clock frequency
and SQNR with the balanced stages rounding scheme.

References

[1] L. R. Rabiner and B. Gold, Theory and Application of Digital
Signal Processing, Prentice-Hall, Upper Saddle River, NJ, USA,
1975.

[2] E. H. Wold and A. M. Despain, “Pipeline and parallel-pipeline
FFT processors for VLSI implementation,” IEEE Transactions
on Computers, vol. 33, no. 5, pp. 414–426, 1984.

[3] G. Bi and E. V. Jones, “A pipelined FFT processor for word-
sequential data,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 37, no. 12, pp. 1982–1985, 1989.

[4] S. He and M. Torkelson, “A new approach to pipeline FFT
processor,” in Proceedings of the 10th International Parallel
Processing Symposium (IPPS ’96), pp. 766–770, Honolulu,
Hawaii, USA, April 1996.

[5] J.-Y. Oh and M.-S. Lim, “New radix-2 to the 4th power
pipeline FFT processor,” IEICE Transactions on Electronics, vol.
E88-C, no. 8, pp. 1740–1746, 2005.

[6] T. Sansaloni, A. Pérez-Pascual, V. Torres, and J. Valls, “Efficient
pipeline FFT processors for WLAN MIMO-OFDM systems,”
Electronics Letters, vol. 41, no. 19, pp. 1043–1044, 2005.

[7] S. Johansson, S. He, and P. Nilsson, “Wordlength optimization
of a pipelined FFT processor,” in Proceedings of the 42nd
Midwest Symposium on Circuits and Systems, vol. 1, pp. 501–
503, 1999.

[8] S. Sukhsawas and K. Benkrid, “A high-level implementation
of a high performance pipeline FFT on Virtex-E FPGAs,” in
Proceedings of the IEEE Computer Society Annual Symposium
on VLSI (ISVLSI ’04), pp. 229–232, February 2004.

[9] Xilinx, Inc., “High-Performance 1024-Point Complex FFT/
IFFT V2.0,” San Jose, Calif, USA, July 2000, http://www.xilinx
.com/ipcenter.

[10] Sundance Multiprocessor Technology Ltd., 1024-Point Fixed
Point FFT Processor, July 2008, http://www.sundance.com/
web/files/productpage.asp?STRFilter=FC200.

[11] P. Kabal and B. Sayar, “Performance of fixed-point FFT’s:
rounding and scaling considerations,” in Proceedings of the

International Journal of Reconfigurable Computing 9

IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP ’86), pp. 221–224, 1986.

[12] B. Zhou and D. Hwang, “Implementations and optimizations
of pipeline FFTs on Xilinx FPGAs,” in Proceedings of the
International Conference on Reconfigurable Computing and
FPGAs (ReConFig ’08), pp. 325–330, 2008.

[13] Xilinx, Inc., “Xilinx Fast Fourier Transform V3.2 Product
Specification,” San Jose, Calif, USA, January 2006.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

