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Department of Obstetrics and Gynecology, DMSD San Paolo Hospital Medical School, University of Milano, 20142 Milano, Italy

Correspondence should be addressed to Anna Maria Marconi, annamaria.marconi@unimi.it

Received 15 March 2012; Accepted 19 April 2012

Academic Editor: Timothy Regnault

Copyright © 2012 Laura Avagliano et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The placenta represents a key organ for fetal growth as it acts as an interface between mother and fetus, regulating the fetal-maternal
exchange of nutrients, gases, and waste products. During pregnancy, amino acids represent one of the major nutrients for fetal life,
and both maternal and fetal concentrations are significantly different in pregnancies with intrauterine growth restriction when
compared to uncomplicated pregnancies. The transport of amino acids across the placenta is a complex process that includes the
influx of neutral, anionic, and cationic amino acids across the microvilluos plasma membrane of the syncytiotrophoblast, the
passage through the cytoplasm of the trophoblasts, and the transfer outside the trophoblasts across the basal membrane into the
fetal circulation. In this paper, we review the transport mechanisms of amino acids across the placenta in normal pregnancies and
in pregnancies complicated by intrauterine growth restriction.

1. Introduction

The placenta represents a key organ for fetal growth as it acts
as an interface between mother and fetus regulating the fetal-
maternal exchange of nutrients, gases, water, ions, and waste
products; moreover, it is capable of metabolic, immunologic,
and endocrine functions.

In humans, the hemochorial placenta includes the syncy-
tiotrophoblast (a continuous, uninterrupted, multinucleated
surface that covers the villous tree), the cytotrophoblast (a
second layer of mononucleated trophoblasts that become
discontinuous as pregnancy progresses), the connective
tissue of the villous tree, and the endothelium of the fetal
capillaries. During pregnancy, the placenta grows in volume,
weight, and in terms of development and maturation of the
type of villi, to allow the optimal fetal-maternal exchange
[1]. Terminal villi are the final ramifications of the villous
tree, characterized by a very thin syncytiotrophoblastic layer
facing the fetal capillaries with the least maternal-fetal dis-
tance. The syncytiotrophoblast, therefore, is the key structure
in regulating transplacental exchange across its maternal and
fetal facing: the microvillous plasma membrane (MVM) and
the basal membrane, respectively (BM).

During pregnancy, amino acids represent one of the
major nutrients for fetal life; they are important precursors
for fetal development and growth, for the biosynthesis of
proteins, nucleotides (purine and pyrimidine), neurotrans-
mitters, and so forth. The transport of amino acids across
the placenta is a complex process mediated by transporters
located on the MVM and BM of the syncytiotrophoblast.

The purpose of this paper is to review the transport
mechanisms of amino acids across the placenta in normal
pregnancies and in pregnancies complicated by intrauterine
growth restriction (IUGR).

2. Maternal and Fetal Concentrations

The fetal plasma concentration of most amino acids does
not change during pregnancy and is significantly higher than
maternal concentration [2–5], indicating an active transport
across the placenta, from the maternal to the fetal circulation.
In addition, in normal pregnancies, between maternal and
fetal concentrations, there is a significant linear relationship
for most amino acids leading to an increase in the umbilical
venous concentration as maternal concentration increases
[5, 6].
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3. Placental Amino Acid
Transport and Metabolism

The concentration of free amino acids in the placental tissue
is higher than the concentration both in fetal and maternal
plasma [2]; the placenta not only transports amino acids
to the fetus, but its production and/or utilization of an
amino acid plays an active role in determining its flux into
the fetal circulation. In vivo animal studies have shown
that the placenta is an extremely active organ metabolically
with a very high rate of protein turnover and with some
amino acids produced/utilized at very high rate. In addition,
the presence of interorgan cycles of some nonessential
amino acids between the placenta and fetal liver has been
demonstrated: fetal glutamine and glycine are metabolized in
the fetal liver and released to the placenta as glutamate and
serine, respectively [7–11]. Studies performed in pregnant
women with stable isotopes suggest that a similar interaction
is present also in human pregnancies [12].

Many types of amino acid transport systems have been
identified in the placenta [13] (Table 1). Each transporter is
highly stereospecific, but different transporters have overlap-
ping substrate specificity, with the possible compensation of
one transporter activity by another [14].

Two major classes of amino acids transporters have been
described: Na+-dependent transport systems (that mediate
amino acids influx and lead to increased concentration of
amino acids within the cell) and Na+-independent systems
[19–21] (Table 1, Figure 1).

As mentioned earlier, the syncytiotrophoblast is the key
structure in regulating transplacental amino acids passage.
The transport through the syncytiotrophoblast includes
the influx of neutral, anionic, and cationic amino acids
across the MVM, the passage through the cytoplasm of the
trophoblasts, and the transfer outside the trophoblasts across
the basal membrane into the fetal circulation. Placental
amino acids transporters are present both at the microvillous
and basal membrane levels. Whereas the transport across
the MVM has been well studied, that across the BM is less
understood: the transport into the MVM of the syncytiotro-
phoblast almost always requires energy to act against the
concentration gradient (Na+-dependent transport systems);
on the contrary, in the outflux of amino acid across the
BM, Na+-independent systems have an important role [21].
The transport across the BM may be mediated by amino
acid exchangers (that take one amino acid molecule from
outside the cell and one from inside the cell and switch their
position); moreover, recently, the presence and efficacy of
some efflux transporters (TAT1, LAT3, LAT4) in the human
BM have been reported in isolated perfused human placental
cotyledons [22] suggesting that facilitate diffusion is possible
across the syncytiotrophoblast basal membrane.

Furthermore, during pregnancy, an adaptive response
to different fetal nutrient demands seems possible [23],
based on the evidence of changes in placental transporters
expression and activity during the course of gestation: it
has been shown that the activity of system A increases
[24]. In addition, it has been shown that, during pregnancy,
the same amino acid may be transported through different

systems, contingent to which membrane is being crossed: in
term placentas, L-arginine transport across the microvillous
membrane preparations seems to occur through both the y+

and y+L systems, while, in the basal membrane, transport
may be restricted to the y+L system [25]. Altogether, these
observations point to the complex interactions between the
developing microvillous and basal membrane within the
trophoblast and between the maternal and fetal circulations,
to facilitate an increase in nutrient delivery to warrant the
demand of the growing fetus [26]. In other words, the
placenta acts as a “nutrient sensor” regulating its transporter
function [18].

4. Intrauterine Growth Restriction

Intrauterine fetal growth is determined by a balance between
fetal genetically determined growth potential and maternal-
placental nutrients supply [27]. Some factors influence
fetal nutrition: maternal nutrition and metabolism, utero-
placental blood flow, placental size, and placental transfer
capacity [28]. In pregnancies complicated by intrauterine
growth restriction (IUGR), all these factors can be affected
[29].

4.1. Maternal and Fetal Concentrations. The concentration
of most amino acids is significantly decreased both in the
umbilical artery and vein of IUGR pregnancies when com-
pared to normally grown babies [5, 6, 30, 31]: in particular,
small for gestational age fetuses have significantly lower
concentrations of the essential branched chain amino acids
valine, leucine, and isoleucine [5]. Furthermore, in IUGR,
the maternal concentration of most essential amino acids
is significantly higher than in pregnancies with appropriate
for gestational age (AGA) fetuses, likely as a result of
a maladaptation to pregnancy with a deficient hormone
production: this observation, together with the presence
of lower fetal amino acid concentrations in intrauterine
growth restriction, leads to significantly lower fetal-maternal
differences in these pregnancies [6, 30].

Moreover, in IUGR pregnancies, increasing the maternal
concentration of amino acids leads to an increased umbilical
uptake of some of the amino acids to the fetus but with
no evidence of a change in the uptake of the essential
amino acids valine, phenylalanine, lysine, histidine, and
threonine suggesting the presence of competition for the
same transporter across the placenta that might block
transport [32].

Recently, we have also shown that the maternal con-
centration of most amino acids is significantly increased
within 48 hours after the administration of antenatal cor-
ticosteroids, and this determines that the concentrations
of phenylalanine, methionine, threonine, valine, leucine,
serine, glycine, alanine, glutamine, and proline are also
significantly increased both in the umbilical vein and
artery when compared to controls. However, the umbilical
venoarterial difference of total amino nitrogen was not
significantly different from zero: overall, the results of this
study suggest that, in IUGR pregnancies, corticosteroids
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Table 1: Amino acids transport systems in the human placenta.

Transport system Protein Localization Substrate

Na+-dependent systems

A SNAT1, 2, 4 MVM, BM Neutral amino acids

ASC ASCT1, 2 BM Neutral amino acids

β TAUT MVM, BM Taurine

N SN1 MVM (contested in humans) Histidine, asparagine, glutamine

X−AG EAAT1–4 MVM, BM Anionic amino acids

GLY GLYT1 MV Glycine and sarcosine

B0,+ ATB0,+ ? Cationic and neutral amino acids

Na+-independent systems

L LAT1, 2, 4/4F2hc MVM, BV
Neutral amino acids, branched-chain
amino acids, and tryptophan

y+ CAT1, 4 MVM, BV Cationic amino acids

y+L y+LAT1/4F2hc MVM, BM
Cationic amino acids (neutral amino
acids in the presence of sodium)

b,0,+ rBAT BM Cationic and neutral amino acids

T TAT1 BM Aromatic amino acids

asc asc1/4F2hc BM? Small neutral amino acids and D-serine

MVM: microvillous membrane.
BM: basal membrane.
Modified from [15–17].
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Figure 1: Mechanisms of amino acid transport. Na+-dependent transporters (T) permit the uptake of amino acids (aa) into the cell;
amino acids are actively transported against a concentration gradient, using a Na+ gradient maintained by the Na+/K+ ATPasi. Amino
acid exchangers (Ex) mediate the passage of amino acids by switching the position of one amino acid (aa1) from outside the cell and with
one other (aa2) inside the cell. The transport across the basal membrane is poorly understood: may be mediate by amino acid exchangers

(swapping one amino acid within the syncytiotrophoblast for one in the fetal capillary) or a nonexchanger passage may exist ( ? ) such as
facilitate diffusion. (electron microscopy image: courtesy of GP Bulfamante; Diagram of amino acids transport modified from [15]).
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not only increase maternal protein catabolism but increase
fetal protein catabolism as well. In addition, despite an
increase in protein catabolism, those amino acids with
relatively large bidirectional flux across the placenta, such
as leucine and phenylalanine, do not exhibit large increases
in fetal concentration; on the contrary, other amino acids,
with very little bidirectional flux, such as alanine and
threonine, are trapped within the fetal circulation leading
to the large increase in their concentrations [33]. Whether
corticosteroids have a direct effect on the human placental
amino acid transport systems, as it has been shown in the
mouse placenta [34], needs to be determined.

4.2. Placental Amino Acid Transport and Metabolism. Studies
we have performed in human pregnancies at the time of
fetal blood sampling, during a constant infusion of L-[1-
13C]-leucine, have also shown that the fetomaternal leucine
enrichment ratio progressively decreases in IUGR based
on clinical severity [35]: this suggests not only that the
transplacental flux of leucine is impaired but also a possible
increased protein catabolism in these pregnancies [35]. In
addition, if injected as a bolus into the maternal circulation
of IUGR pregnancies, the fetomaternal enrichment ratio of
two essential amino acids, leucine and phenylalanine, is sig-
nificantly lower than in AGA pregnancies, again suggesting
an impaired placental flux, whereas no differences are present
for the nonessential amino acids, glycine, and proline [36].

However, as recently reviewed [21], some external factors
may regulate the activity of amino acid transporters such as
oxygen level [37], reactive oxygen species [38], insulin [37],
leptin [39], and angiotensin II [40]. Therefore, it remains
to be established whether the impairment of the amino acid
transport system is the cause or the consequence of IUGR: we
have shown that placental MVM system A activity not only
is lower in IUGR compared with normal pregnancies but is
also related to the severity of IUGR [41].

In vivo studies of placental amino acid transport and
metabolism in the ovine heat-stress model of IUGR have
shown a reduced flux of maternal leucine into the placenta
and fetus [42]: this reduction is due to the reduction in
placental and fetal mass and is accompanied by a decreased
uteroplacental utilization of leucine. In addition, since utero-
placental oxygen and glucose consumption rates per gram of
tissue remain within normal limits, the decrease in leucine
utilization is not due to the general decline in metabolic rate
[42]. In the same model, decreased fetoplacental threonine
flux into the fetus and decreased fetoplacental threonine
oxidation rate have been demonstrated indicating a down-
regulation of placental amino acids transport [43].

In severe IUGR fetal lambs (placental and fetal weights
reduced by 40–60%), it has been shown that umbilical
oxygen, glucose, and essential amino acid uptakes are signif-
icantly reduced compared to control animals whereas there
are no differences in moderate IUGR (placental and fetal
weights reduced by 25%) [44]. Two possible explanations
have been proposed for these difference: first, since the pla-
cental diffusional exchange capacity of the severe IUGR fetus
is significantly reduced, compared to AGA and moderate

IUGR, changes in placental permeability and surface area
might act as an impediment to control value uptakes per unit
fetal weight; second, an upregulation of specific placental
transport systems might be present since the mRNA expres-
sion of system L light chain components, LAT-1 and LAT-
2, in severe IUGR is not different from control placentas,
whereas it is significantly elevated in moderate IUGR
[44].

In vitro studies of the human transport of amino acids
have been performed [26]: in vesicle obtained from IUGR
placentas, a reduced uptake of leucine and lysine has been
reported, indicating a reduction of number or activity of
the neutral and cationic amino acids transporters [45];
a decreased transport of taurine in isolated MVM has
also been observed [46], suggesting a reduced activity of
β amino acid transporters. Furthermore, in MVM and
BM vesicles from IUGR placentas, a decreased activity
of system A (a sodium-dependent neutral amino acid
transporter) has been shown [47–49], and the decreased
activity of system A in MVM has been also related to the
severity of IUGR [41]. Table 2 summarizes the alteration of
amino acid transporters in the human placenta in IUGR
pregnancies.

5. Fetal Programming

Evidence suggests that intrauterine fetal life is the mirror of
what happens to human health in adult life [50]: abnormal
intrauterine fetal growth (in excess or defect) is associated
with the development of metabolic syndrome in adult life
[50].

Epigenetic dysregulation may be the link between
intrauterine events and adult disease; data from animal
models suggest that nutrition in pregnancy could result
in epigenetic modification [51]: a low-protein diet during
pregnancy activates the placental amino acid response path-
way in rats and programs the growth capacity of offspring
[52]; moreover, in mice, maternal undernutrition alters the
placental phenotype by adapting the expression of glucose
and amino acids transporters to support fetal growth [53].

The metabolism of the fetus is adaptive and programmed
to respond as expected to postnatal life [54]. Furthermore,
as mentioned earlier, the placenta is a nutrient sensor [18]:
if it senses an environment with low nutrient levels (deficit
of maternal supply, such as in maternal undernutrition,
alteration in substrate and oxygen level in maternal blood,
alteration of placental blood flow), it increases its transport
activity to allow normal fetal growth, by increasing the
passage of nutrients from the maternal to fetal circulation;
on the other hand, if there is an insufficient nutrient supply
at the maternal side, the placenta may decrease its transport
capacity, adapting fetal growth to a lower level, in order to
reduce fetal (and postnatal) demand [55]. In addition, the
placenta may modulate its transport activity even when it
perceives an environment with a high nutritional content,
as in gestational diabetic pregnancies. In these cases, an
upregulation of glucose and amino acids transporters has
been observed [55].
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Table 2: Alteration of amino acids transporters in the IUGR human
placenta.

Transport system MVM BM

Taurine − =

Lysine = −

Leucine − −

System A − =

−: decreased; =: unaltered transporter activity; MVM: microvillous mem-
brane; BM: basal membrane (modified from [18]).

If the intrauterine environment may influence the epige-
netic regulation, it is theoretically conceivable that impaired
placental transport function could affect epigenetic regula-
tion. In other word, the placenta may adapt fetal metabolism,
and, therefore, the transport function of the placenta could
be considered a “programming agent.”
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