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ABSTRACT. - We study the deformation, defined by a Nijenhuis opera-
tor, and the dualization, defined by a Poisson bivector, of the Lie bracket
of vector fields on a manifold and, more generally, of the Lie bracket on
a differential Lie algebra over a commutative algebra. Requiring that the
two processes commute, one obtains hierarchies of pairwise compatible
Lie brackets on the module and on its dual. Each differential Lie algebra-
structure on a module gives rise to a cohomology operator on the algebra
of forms over the module, as well as to a graded Lie algebra-structure on
the algebra of multivectors (the Schouten algebra). We study the deforma-
tion and the dualization of the derivations of the algebra of forms and of
the Schouten bracket of multivectors, thus obtaining generalizations of
the preceding differential geometric results together with new proofs.
Section 2 comprises the study of the Nijenhuis operators on the twilled
Lie algebras, an "N-matrix version" of the Kostant-Symes theorem, and
an application to Hamiltonian systems of Toda type on semisimple Lie
algebras.

RESUME. 2014 Nous etudions la deformation, definie par un tenseur de
Nijenhuis, et la dualisation, definie par un bivecteur de Poisson, du crochet
de Lie des champs de vecteurs sur une variete et, plus generalement,
du crochet de Lie sur une algebre de Lie differentielle sur une algèbre
commutative. En imposant la commutativité des deux operations, on
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36 Y. KOSMANN-SCHWARZBACH AND F. MAGRI

obtient, sur le module et sur son dual, des hierarchies de crochets de Lie
deux à deux compatibles. Toute structure d’algèbre de Lie différentielle
sur un module correspond d’une part à un opérateur de cohomologie sur
l’algèbre des formes sur le module et, d’autre part, à une structure d’algèbre
de Lie graduée sur l’algèbre des multivecteurs sur le module (algebre de
Schouten). Nous étudions la deformation et la dualisation des derivations
de l’algèbre des formes et du crochet de Schouten des multivecteurs,
obtenant ainsi des généralisations de résultats précédents de géométrie
différentielle, ainsi que des démonstrations nouvelles. Au paragraphe 2,
nous étudions les opérateurs de Nijenhuis sur les algèbres de Lie bicroisées,
une « version N-matrice » du théorème de Kostant-Symes, et une applica-
tion à des systèmes hamiltoniens du type de Toda sur les algèbres de Lie
semi-simples.
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6.5. Dualization of the Lie bracket by means of a Poisson bivector on a differential Lie
algebra. The associated Schouten algebra and graded differential algebra.

6.6. Morphisms of differential Lie algebras.
6.7. Conclusion: Poisson-Nijenhuis structures on differential Lie algebras.

INTRODUCTION

A Poisson-Nijenhuis manifold ([30], [31]) is a manifold equipped with
both a Poisson structure, defined by a bivector P whose Schouten bracket
vanishes, and a (I,I)-tensor N whose Nijenhuis torsion vanishes, to be
called a Nijenhuis tensor, which satisfy a compatibility condition to be
discussed below. The Poisson-Nijenhuis structures on manifolds and, in
particular, on duals of Lie algebras constitute a natural framework for
the theory of completely integrable systems. In work in progress, we shall
study the relationships between the theory of Poisson-Nijenhuis structures
and that of Poisson-Lie groups, bigebras and the modified Yang-Baxter
equation as expounded in [21]. This article can be considered as Part 0 of
the series of papers [21]. Here, we shall develop the theory of Poisson-
Nijenhuis structures in a slightly more general sisuation than that of
smooth manifolds since, in section 1, we study the Nijenhuis structures
on real or complex Lie algebras, and we show, in section 6, that the rest
of the theory developed in sections 3, 4 and 5 on smooth manifolds can
be extended to the case of the modules over a communitative algebra
which are "differential Lie algebras". (See subsection 6.1 for definitions
and historical remarks.)

In section 1, we consider an infinitesimal deformation of a Lie algebra-
strucure on a vector space E, and we prove that, when such a deformation
is defined by an endomorphism N of E whose Nijenhuis torsion vanishes,
all the brackets obtained by iteration are Lie brackets which are pairwise
compatible. Section 2 studies the relationship between the Nijenhuis opera-
tors and the twilled Lie algebra-structures, involution theorems on the
dual of a Lie algebra and, as an application, some Hamiltonian systems
of Toda type on semisimple Lie algebras.

In section 3, we show how to construct a bracket on the space of
1-forms from the usual Lie bracket of vector fields and a bivector P, and
we prove that this bracket is a Lie bracket if and only if the Schouten
bracket, [P, P], vanishes. The Lie brackket of 1-forms on a Poisson
manifold was introduced by Magri in [30], [31] ] and independently by
several authors. (See subsection 3.2.)

Vol. 53, n° 1-1990.



38 Y. KOSMANN-SCHWARZBACH AND F. MAGRI

For a (I , I)-tensor N, we have used the generally accepted definition of
the Nijenhuis torsion, formula (1 .1), and we have denoted it by [N, 
(We remark that the bracket originally defined by Frolicher and Nijenhuis
is twice this quantity.) For a bivector P, we have considered the Schouten
bracket [P, P]~ defined by (3 . 1). We have incorporated the factor 2 in the
definition in order for this Schouten bracket to coincide with the one
considered in subsection 6 . 3. In both cases, the index ~ refers to the Lie
algebra-structure on the space of vector fields. Apart from the trivial

question of normalization, the two objects play roles which are strikingly
similar: both measure the failure of a mapping to be a morphism of
brackets, as shown by formulae (1.6) and (3.5). When [N, N]~ vanishes,
N. Jl is a Lie bracket and N is a morphism from (E, N . .Il) to (E, When

[P, P]~ vanishes, v (,, P) defined by formula (3.2) is a Lie bracket on E*
and P defines a morphism from (E*, v P)) to (E, j~).

In section 4, we combine the process of deformation of the Lie algebra-
structure of the linear space E of vector fields by means of a Nijenhuis
tensor N, and that of the dualization of the Lie bracket on E by means
of a Poisson bivector P. Requiring that the two processes commute intro-
duces the compatibility condition linking N and P. The deformation pro-
cess can be iterated, and, in section 5, we show that, when the compatibility
condition is satisfied, a sequence of Lie brackets on the linear space E*
of 1-forms is obtained in this way. We study the hierarchy of Lie brackets
on E and on E* obtained from a Poisson-Nijenhuis structure on E, and
we prove that the iterated deformations commute with the dualizations

and that both the Lie brackets on E and the Lie brackets on E* are

pairwise compatible.
In section 6, we define and study the differential Lie algebras over a

commutative algebra A, of which the C~M-module of vector fields on
a manifold M, with the usual Lie bracket, is the typical example. In

subsections 6.1 and 6. 2, we show how each differential Lie algebra struc-
ture on an A-module E defines a graded differential algebra-structure on
A (E*), generalizing the de Rham cohomology operator on the exterior
algebra of forms, and a graded Lie algebra-structure on A E, generalizing
the Schouten bracket on the exterior algebra of multivectors.

In subsection 6. 4, we show that, given an A-linear mapping N from E
to E, the derivation of A (E*) associated with the deformed bracket 
on E is the Lie derivation (in the generalized sense) with respect to the
E-valued 1-form N on E. We use this fact to give an alternate, less

computational proof of a theorem of section 1: If the Nijenhuis torsion
of N vanishes, then N. Jl is a Lie bracket. We also study the deformed
Schouten bracket on A E.

In subsection 6.5, we show that the dualization of the Lie bracket of
vector fields described in section 3 can be carried out more generally on a
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39POISSON-NIJENHUIS STRUCTURES

differential Lie algebra E over a commutative algebra A. Given an A-
linear, antisymmetric mapping, P, from E*, the A-dual of E, to E, there
is an associated bracket on E* which is a Lie bracket if and only if the
Schouten bracket of P, considered as a bivector, vanishes. We prove

(proposition 6.2) that the derivation on multivectors associated with an
A-linear, antisymmetric mapping P from E* to E is the operator [P, .],
where [ , ] denotes the Schouten bracket and P is the bivector defined

by P. When P is a Poisson bivector on a manifold, this derivation is, up
to a sign, the G-cohomology operator introduced by Lichnerowicz [27].
We use this proposition to obtain a generalization together with an
alternate proof of the theorem of section 3: On a nondegenerate differential
Lie algebra, the bracket on E* associated with P is a Lie bracket if and
only if the Schouten bracket of P vanishes. The Schouten bracket on

A (E*), which extends the Lie bracket on E* defined by the Poisson
bivector P, is the bracket introduced by Koszul in [23].

Since morphisms of differential Lie algebras correspond to morphisms
of graded differential algebras between the algebras of forms, we obtain a
proof of the fact that the exterior powers of the Poisson mapping inter-
twine the de Rham and the Lichnerowicz cohomology operators. More-
over, morphisms of differential Lie algebras correspond to morphisms of
Schouten algebras and, in particular, when P is a Poisson bivector, AP is
a morphism of Schouten algebras.

In conclusion, we stress the fact that the theory of Poisson-Nijenhuis
structures applies to the case of the differential Lie algebras, and we
outline some applications of this theory.
Many results presented here were previously formulated in various

contexts. For instance, the work of de Barros ([ 10], [ 11 ]) is a comprehensive
algebraization of the infinitesimal structures on a manifold under more
general assumptions than ours and includes, as an application, the consi-
deration of what we have called the deformed bracket N. jn and the proof
that the vanishing of the Nijenhuis torsion of N implies the Jacobi identity
for the deformed bracket N. ~. This fact was also proved in [25]. It appears
in a short announcement by Dorfman [12] with applications to the theory
of integrable systems. We realized while writing this article that the

connection between the Lie bracket of differential 1-forms and the Lich-
nerowicz cohomology operator on a Poisson manifold had been previously
noted in [3], [4], and a preprint by Huebschmann [ 18] came to our attention
in which a very general algebraic version of the theory (but not the facts
about the existence of the Schouten Lie algebra of a differential Lie

algebra) is developed. Many previously unrelated results from various
areas are proved in this article and used as the building blocks of the
theory of Poisson-Nijenhuis structures.
The main results of the theory had been proved in [30], but the methods

of proof used here are new and less computational. The contents of
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40 Y. KOSMANN-SCHWARZBACH AND F. MAGRI

sections 1, 3, 4 and 5 of this article were announced in various lectures
[31 a] [21 a]. Some examples of Poisson-Nijenhuis structures appear in
[31 a]. The connection between solutions of the modified Yang-Baxter
equation and bihamiltonian structures on the dual of a Lie algebra (see
subsection 6.7), which is due to Magri, was announced in a lecture by
Magri (E.N.S., Paris, May 1988) and in [21 a].

1. DEFORMATION OF LIE BRACKETS BY MEANS OF A
NIJENHUIS OPERATOR

In this section, we construct a hierarchy of pairwise compatible Lie
brackets on a Lie algebra by means of a Nijenhuis operator, and we prove
that the images of the center of the Lie algebra under the powers of the
Nijenhuis operator are Abelian subalgebras with respect to each of these
Lie algebra brackets.

1.1. Constructing deformed brackets from Nijenhuis operators

Let E be a vector space over the field of real or complex numbers. In
the applications to differential geometry, E will be the vector space TM
of smooth vector fields over M or its complexification, or the vector space
T* M of smooth differential 1-forms over M or its complexification.

Let Jl be an E-valued 2-form on E that defines a Lie algebra-structure
on E. The Lie bracket defined by Jl will be denoted by [ , ]~ or simply by
[ , ] when no confusion is possible.

Let N be a linear map from E to itself. The Nijenhuis torsion [N, N~~
of N, with respect to the Lie algebra-structure Jl, is the E-valued 2-form
defined by

for x and y in F.

DEFINITION 1. 1. - If the Nijenhuis torsion of N vanishes, we shall say
that N is a Nijenhuis operator.

Let denote the E-valued 2-form on E defined by

for x and y in E. The bracket defined by N. ~ will be denoted by [ , ]N . W
Thus, by definition,

The various interpretations of N . to be given below, as well as the
examples and applications, will justify the introduction of the bracket

Annales de l’Institut Henri Poincaré - Physique théorique
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[ , u, 
which we shall call, somewhat improperly, the deformed bracket.

In the sense of the theory of deformations of Lie algebras [35], N . p is a
trivial infinitesimal deformation of p since

where, for any t in R,

and Jlt defines a Lie algebra-structure on E that is isomorphic to u.
In general, N. Jl need not define a Lie bracket, even if Jl itself does.
In corollary 1. 1 below we prove however that N. Jl does define a Lie

bracket in the special case where N is a Nijenhuis operator. We also prove,
that p and are then compatible Lie algebra-structures in the following
sense.

DEFINITION 1. 2. - Two Lie brackets p and p’ are called compatible if
their sum is also a Lie bracket.

If Jl and j~ are compatible Lie brackets, then for each t in R or C,
Jl + t Jl’ is a Lie bracket.

It follows from the general theory of deformations [35] that if u’ is an
infinitesimal deformation of Jl which is also a Lie algebra-structure, then 

r

for each t in [R or C, is a Lie algebra-structure and therefore Jl and
Jl’ are compatible. The one-parameter family of Lie algebra-structures
~ + t Jl’ is called an actual deformation of p, and the Lie brackets Jl + t ~’
are the deformed brackets. It is only by an abuse of language that we call

itself, when N is a Nijenhuis operator, a deformed Lie bracket.
To prove the properties of the deformed brackets, we shall make use of

the Richardson-Nijenhuis bracket of E-valued forms on E.

1.2. Richardson-Nijenhuis bracket of E-valued forms on a vector space E
and the properties of the deformed bracket

Let E be a vector space over the field K = ~ or C. Let a be an E-valued
K-multilinear form of degree a on E. To a there corresponds a derivation ia
of degree a - I of the graded algebra of K-multilinear forms on E with
values in an arbitrary vector space F, defined as follows. For each
b-form J3 with values in F, if b &#x3E;_ 1, we define the p with
values in F by 

Vol. 53, n° 1-1990.



42 Y. KOSMANN-SCHWARZBACH AND F. MAGRI

and we set ia (3 = 0 for b = 0, i. e., when P is a function. We have denoted a
permutation of 1, ..., a + b -1 by o, and its signature by The x;’s,
i=1,..., a+b-l, denote elements of E. We remark that the form i03B1 03B2 is
denoted by P A a in [ 14] .

Let [ , ] denote the commutator in the graded sense on the vector space
of derivations of the space of E-valued forms on E. The formula

defines a bracket [ , ] on the space of E-valued forms on E which coincides
with the one defined by Nijenhuis and Richardson in [35]. We have
denoted this bracket by [ , ] (small, light type face) to distinguish it form
the Lie bracket [ , ] (light type face), the bracket [ , ] (large, light type
face) used to denote the Nijenhuis torsion, and from the commutator [ , ]
(normal, heavy type face). If a is an E-valued form of degree a, and if P
is an E-valued form of degree b, then

The Richardson-Nijenhuis bracket is anticommutative (in the graded
sense), and satisfies the Jacobi identity (in the graded sense).

It is known [35] that Jl defines a Lie algebra-structure on E if and only
if the Richardson-Nijenhuis bracket of ~,, Jl], vanishes.

Let N be a linear mapping from E to E, considered as an E-valued
1-form on E. By the definition of [N, yj = iJ! N - iN ~. _ - N~, we see that

Moreover,

LEMMA 1. l. - Let [N, be the Nijenhuis torsion of N with respect to
the Lie algebra-structure y considered as an E-valued 2-form on E. Then

Proof - The proof is a straightforward computation, using the defini-
tion 

_

for xl, x2, x~ in E, where fdenotes the sum over the cyclic permutations
over the indices 1, 2 and 3.
The deformed structure N. u is a Lie algebra-structure if and only if

(N . ~., N = o. Now, the preceding lemma shows that this condition is

satisfied if and only if [1.1, [N, vanishes. This quantity has a simple
cohomological interpretation.

Let us set, for any E-valued form a of degree a,

Annales de l’Institut Henri Poincaré - Physique théorique
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It follows from the graded Jacobi identity for the Richardson-Nijenhuis
bracket that 8~ is a cohomology operator. It is easy to check [35] that 8~
is the coboundary operator of the cochain complex of E-valued forms on
E, where E acts on itself by the adjoint action defined by ji. Clearly,

and

Thus N. ~ defines a Lie algebra bracket on E if and only if the Nijenhuis
torsion of N is a 2-cocycle.
The Lie algebra-structures y and N. ~ satisfy

It follows from this fact and from lemma 1. l, that, when the Nijenhuis
torsion of N is a 2-cocycle, the expression

[11 + t N . + t N . = + t (iy, N. + [N . J.!, + t2 [N. N. vi

vanishes identically, for t in R or C, which expresses the fact that  and
are compatible.

In conclusion:

PROPOSITION 1. l. - Let  be a Lie algebra-structure on E, and let N
be a linear map from E to E. Then N . ~, = ö~ N is a Lie algebra-structure
on E if and only if the Nijenhuis torsion [N, N]~ of N is ~~-closed, in which
case [, )~ and [, )N . ~ are compatible.
The following corollary will be important in the sequel.

COROLLARY 1. l. - Let ~, be a Lie algebra-structure on E, and let N be
a linear map from E to E. Assume that the Nijenhuis torsion of N with
respect to ~u vanishes. Then

(i) N . ~, defines a Lie bracket,
(ii) the Lie bracket [, ]N . ~ is compatible with the Lie bracket [, )~,
(iii) N is a Lie algebra-morphism from (E, N . to (E, y).
Proo, f : - (i) and (ii) are a special case of proposition 1.1. (An alternate

proof of (i) will moreover be given in section 6.) The last statement follows
immediately from the identity

We have shown that N . ~ is a Lie bracket compatible with ~ under the
assumption that the Nijenhuis torsion of N, with respect to ~ be closed
in the Lie algebra-cohomology. In order to define the iterated brackets
and to study their properties, we shall make use of the stronger hypothesis
that the Nijenhuis torsion of N vanishes.

Vol. 53, n° 1-1990.
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1.3. Properties of the iterated brackets

Let us assume, as in corollary 1.1, that N is a Nijenhuis operator. The
identity

is easy to prove and shows that, when the torsion of N with respect to J.l
vanishes, the torsion of N with respect to N. J.l also vanishes. Therefore
the deformation of J.l into N . J.l can be iterated, and we shall prove below
some properties of the brackets obtained from N. J.l by iteration.
The following lemma is well-known. (See e. g. note 5 of [26].)

LEMMA 1. 2. - N~ ~ = o, then, for each integer k &#x3E;__ I , [Nk, = o.

This property implies that we can deform the given Lie bracket not
only by means of N but by any power Nk of N. The following lemma
expresses the associativity of the deformation process.

LEMMA 1. 3 . - Let J.l and N be as in corollary 1.1. Then for each integer

Proof. - In fact, let

Then

It is clear that C~==0 and that I&#x3E;~ = 2 [N, Moreover,

Therefore, induction shows that, if [N, N~~ = o, then O§Q = 0 for all 
Summarizing this discussion, we obtain:

PROPOSITION 1.2. - Let  be a Lie algebra-structure on E, and let N
be a Nijenhuis operator on (E, y). Let k and m be nonnegative integers.
Then

(i) defines a Lie bracket;
(ii) the Nijenhuis torsion of Nm with respect to the Lie algebra-structure

Nk . y vanishes;
(iii) the Lie brackets [, )Nk . ~ and [ , ]Nm . ~ are compatible;
(iv) Nm is a Lie algebra-morphism from (E, Nk+m ~) to (E, Nk. p).

Annales de l’Institut Henri Poincaré - Physique théorique
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Proof - Part (i) follows from lemma 1. 2 and corollary 1.1 (i). In
order to prove (ii), we remark that the following formula is valid for each
integer ~~0,

or

The proof is by computation, using the result of lemma 1.3. From this
formula, it follows that if [N, N]~ vanishes, then the torsion of N with
respect to each iterated bracket Nk . J.1 vanishes. Moreover, by lemma 1. 2,
since the torsion of N with respect to the Lie bracket Nk . jn vanishes, for
any integer m &#x3E;-_ o, that of Nm vanishes also.

Part (iii) follows from corollary 1. 1 (ii), using the facts that for k &#x3E; m,
Nk . ~ = N~. (which follows from lemma 1 . 3), and that Nk - m has
vanishing Nijenhuis torsion with respect to Nm. y. Part (iv) follows from
corollary 1 . 1 (iii), using and [Nm, = o.

1.4. Abelian subalgebras

We shall now prove an additional property of the deformed Lie brackets
which has applications in the theory of integrable systems.

PROPOSITION 1.3. - Let N be a Nijenhuis operator on a Lie algebra
(E, and let k and m be nonnegative integers. Then

(a) The center C~ of (E, y) is an Abelian subalgebra of (E, Nm. J.1).
(b) The image of C~ under Nk is an Abelian subalgebra of

(E, J.1).

Proof - Let x and y be in the center of (E, J.1). Then

which proves (a). Moreover, since the Nijenhuis torsion of Nk with respect
to N"". Jl vanishes,

which proves (b).
In [8], Caccese states a theorem due to Mishchenko and Fomenko in a

form close to the preceding result.

Vol. 53, n° 1-1990.
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2. DEFORMATION OF LIE BRACKETS AND HAMILTONIAN
SYSTEMS

In this section, we explain the close relationship between twilled Lie
algebras and Nijenhuis operators, and we show how the properties of
Nijenhuis operators derived in the first section yield, as a corollary,
involution theorems on the dual of a Lie algebra. Using Nijenhuis ope-
rators, a class of Hamiltonian systems of Toda type are obtained for each
semisimple Lie algebra.

2.1. The Nijenhuis operator of a twilled Lie algebra

An operator with vanishing Nijenhuis torsion is easily constructed on a
Lie algebra g = (E, Jl) which splits, as a vector space, into a direct sum of
two Lie subalgebras, a and b. The notion of a Lie algebra which is a
direct sum of two Lie subalgebras was introduced and studied in [21], as
a generalization of Drinfeld’s Lie bialgebras, under the name "twilled
extension", or, preferably, twilled Lie algebra ("algèbre de Lie bicroisée",
in French, see [2]). Shortly thereafter this notion was defined in [32], where
it was called a bicrossproduct Lie algebra, and in [28], where it was called
a double Lie algebra.

Let g=a0b, and let x be the projection of g onto a parallel to b. For
x in g, we shall write x~ for the a-component, x x of x, and x6 for the
b-component, ~20147r~, of x. We shall also write [ , ] for [ , ]~.

Let N be any Nijenhuis operator on the Lie algebra a such that, for x
and y in g,

If N is a Nijenhuis operator on a which satisfies (2 . 1 ), denoting the
canonical injection of a into 9 by i, then N = is a Nijenhuis operator
on g. In fact, for x and y in g,

The first term vanishes because N is a Nijenhuis operator on a, while the
second term vanishes because of the additional requirement (2.1) on N,
and the last term is zero because b is a Lie subalgebra of g. Whence the
Nijenhuis torsion of N vanishes.
The identity of a is obviously a Nijenhuis operator on a which satisfies

condition (2 . 1). The associated Nijenhuis operator on g, N = i ° ~, is the

Annales dc l’Institut Henri Poincaré - Physique théorique
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projection of g onto a. Similarly, the projection onto b is a Nijenhuis
operator on g.

Nontriviality for a twilled Lie algebra means that a and b are both
different from {0}, and nontriviality for a Nijenhuis operator means that
it is neither invertible nor equal to 0. When a is neither {0 } nor g, then
the projection of g onto a is a nontrivial Nijenhuis operator on g. Therefore

PROPOSITION 2.1. - Any nontrivial twilled Lie algebra has a nontrivial
Nijenhuis operator and, therefore, a hierarchy of deformed Lie brackets.

Let us remark, however, that if the Nijenhuis operator is the projection
of g onto one of the subalgebras of a twilled Lie algebra, the corresponding
"hierarchy" has only two elements, ~ and N.n, since, in this case, N2 = N.

Conversely, let us show that any finite-dimensional Lie algebra admitting
a Nijenhuis operator is a twilled Lie algebra. This twilled Lie algebra-
structure is nontrivial if the Nijenhuis operator is nontrivial.

Let E be a finite-dimensional vector space, and let N be a linear mapping
from E to E. Recall [17] that there exists a smallest integer ~1, called
the Riesz index of N, such that the sequences of nested subspaces

and

both stabilize at rank r. Thus, by definition,

and

Moreover, E splits as the direct sum of the vector spaces Im Nr and
Ker Nr, the Fitting components of N. We shall set a=lm Nr and

We now assume that g = (E, Il) is a Lie algebra. We show that, if N is
a Nijenhuis operator, then a and b are Lie subalgebras. In fact, by lemma
1. 2, [N, N]~ implies [Nr, Thus, for x and y in g,

Thus [a, a] c a and, moreover, since Ker N2 r = Ker Nr, [b, b] c b.
By the definition of the Riesz index, a = Im Nr is invariant under Nr,

and N, the restriction of N~ to a, is invertible. It follows from lemma 1.2
that N is a Nijenhuis operator on a. We show that, in addition, N satisfies
equation (2 . 1 ). Since N is invertible, it suffices to prove that, for x and y
in g,
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By definition, and since the Nijenhuis torsion of Np vanishes,

which expression is equal to 0 because Nr vanishes on b. Therefore N
satisfies (2 .1 ).

In conclusion, nontrivial Nijenhuis operators on a Lie algebra g are in
one-to-one correspondence with pairs (a(j1b, N), where a(+)b is a nontrivial
twilled Lie algebra-structure on g, and where N is an invertible Nijenhuis
operator on a. In the next subsection, we shall consider the idempotent
Nijenhuis operators which correspond to the case where N is the identity
of a.

2.2. The N-matrix approach to the Kostant-Symes theorem

In this subsection we present "an N-matrix approach" to the Kostant-
Symes theorem, to be distinguished from, and compared with, Semenov-
Tian-Shansky’s "R-matrix approach" to the theory of integrable sys-
tems [41].

Let g be a finite-dimensional Lie algebra with Lie bracket [ , ]~ = [ , ].
We consider the dual g* of g equipped with the linear Poisson structure
defined by y ("Lie-Poisson structure" or "Kirillov-Kostant-Souriau struc-
ture"), and we denote the Poisson bracket on C~ (g*) by { , }  or by
{ , } g*’ Then, for f and g in C~g*), and ç in g*,

Casimir functions are functions on g* whose Poisson bracket with any
function vanishes.

We shall prove that when N is an idempotent Nijenhuis operator on
(g, y), i. e., when g is a twilled Lie algebra and N is the projection of g onto
a factor, then

is a Nijenhuis operator on COO (g*). We first note the following facts:

and

Annales de l’lnstitut Henri Poincaré - Physique théorique



49POISSON-NIJENHUIS STRUCTURES

Proof - The chain rule implies (i). To prove (ii) we write the definitions
and use the preceding result. Since, by assumption, N2 = N, we obtain

PROPOSITION 2.2. - If N is an idempotent Nijenhuis operator on

(g, [, ]J!)’ then % is a Nijenhuis operator on (g*), ~ , } J!).
Proof - The proposition follows from formula (2. 3).
Since % is a Nijenhuis operator on Coo (g*), there is a deformed Poisson

bracket of functions on g*,

This bracket is compatible with the Lie-Poisson bracket ~ , ~ ~, but the
hierarchy reduces to just two such brackets since JV2 = JV.

In the following proposition, we study the restriction of the Poisson
bracket to the dual of the image of N.
We consider the splitting where a is the image of N and b its

kernel. Then, N=~7r, where, as above, x is the projection of g onto a,
and i is the canonical injection of a into g. The mapping ri is a morphism
of Poisson manifolds from g* to a*. In fact, since i is a Lie algebra-
morphism from a to g, for f and g in C°~ (a*),

Therefore, for any f and g in Coo (g*),

Since

and since is the restriction, of f to a*, we see that the Lie-
Poisson bracket on a* and the bracket { , } K on g* are related by

We have proved:

PROPOSITION 2 . 3. - The linear mapping t~c is a Poisson morphism from
a* equipped with ~ , ~Q* to g* equipped with the Poisson structure ~ , 

Therefore a* with its canonical Poisson structure is a Poisson sub-
manifold of g* equipped with { , }N. From (2.4) and proposition 1 . 3 we
obtain immediately
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COROLLARY 2 1 (Kostant-Symes theorem [22]). - If f and g are Casimir
functions on g*, then

In order to compare this "N-matrix approach" with the "R-matrix
approach" of Semenov-Tian-Shansky, we first remark that the Lie algebra-
structure { , }j~ on g* coincides with the Lie-Poisson structure defined
by the deformed Lie bracket N. ~ when restricted to a*. In fact, 

Since ç is in a*, then

and therefore

proving that both brackets coincide on a*.
Now, consider the R-bracket of Semenov-Tian-Shansky,

where 

Then,

while

Thus the bracket [ , ]N . ~ and the bracket [ , ]R have the same projection
onto a.

Thus, upon restriction to a*, the bracket { , ~~. and the Lie-Poisson
brackets associated with the deformed Lie bracket [ , ]N . ~ and with the
R-bracket [ , ]R all coincide. In consequence, the Hamiltonian vector fields
defined by these Poisson brackets on g* coincide on a*.

2.3. Nijenhuis operators on semisimple Lie algebras and the Toda lattice

Let e be a semisimple real or complex Lie algebra of rank I. If s is real,
we assume that it is split. We consider a Cartan subalgebra t) and a system
of simple roots (Xi, ..., ~ with respect to t). Let

be the associated Borel subalgebra. Let hi, ..., hi be a basis of 1). Let xJ
be an eigenvector of the simple root (x~ ~’=1, ... , I. The generators
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hl, ..., hi, x~, ..., ~ of 9 satisfy the commutation relations

where A (i, j) = r:1j (hi).
Let N be the projection of 9 onto b, which, by the result of

subsection 2.1, is a Nijenhuis operator on g. The deformed Lie bracket
[ , ]N on g has the commutation relations

Thus n becomes an Abelian subalgebra of (g, [ , ]N). The vector

subspace V of g generated by hl, ..., ~, ~~ ..., ~ is, in fact, a Lie
subalgebra of (g, [ , ]N) whose Lie brackets are written above. Let V* be
the dual of the vector space V, with coordinates bl, ..., ..., al
with respect to the dual basis hi , ..., ht, j~ ... x*. Their Poisson
brackets in the Lie-Poisson structure { , }N are

Let H = H (at, ..., ai, bi , ..., hz) be a function on V*. The Hamiltonian
system associated with H is

whence the following result [13],

PROPOSITION 2 . 4. - Let W be a 2 l-dimensional vector space with coordi-
nates al, ... , aj, bl, ... , bi. When the entries o,f’ the matrix (A (i, j)) are
the components o_ f ’ a system simple roots o, f ’ a semisimple Lie algebra, the
dynamical system (2. 5) is Hamiltonian.

1
In particular, for H = ~ - (bi)2 + ai , we obtain the systemi= 1 2

which had been considered in [1] and [42].
In [ 13], Flaschka shows that with a suitable choice of a system of simple

roots of the Lie algebra 5 = s1 (l+ 1, C), the equations (2. 5) are those of
the nonperiodic Toda lattice in center of mass-coordinates.
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We now show that the same method also yields the usual equations of
the Toda lattice in the Flaschka coordinates ..., bi, ..., bi + 1 ,

Instead of a Borel subalgebra of the semisimple Lie algebra 51 (l + 1, C),
we consider the solvable Lie algebra b of all upper triangular matrices of
order l + 1, generated by

which satisfy the commutation relations

Let N be the projection of b onto the subalgebra of all diagonal matrices.
For a Hamiltonian H = H (ai, ...., ai’ bl, ..., we obtain a Hamil-
tonian system

~+1 1 l

For H= 2014(1/2) ~ (bi)2 - ~ (ai)2, these are the usual equations of the
i=l i i=1

nonperiodic Toda lattice.

3. DUALIZATION OF LIE BRACKETS BY MEANS OF A POISSON
’ 

BIVECTOR

In this section we shall construct a Lie bracket on the space of differen-
tial 1-forms on a Poisson manifold, by a kind of dualization process, from
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the Lie bracket of vector fields, while in section 6, we shall show that this

construction can be performed somewhat more generally on a differential
Lie algebra equipped with a bivector with vanishing Schouten bracket.

3.1. Poisson manifolds

Let M be a Hausdorff, second-countable, smooth manifold. Here and

below, " 1-form" or simply "form" will stand for a "smooth differential
1-form", while "vector", "tensor", and "multivector" will stand for

"smooth vector field", "smooth tensor field", and "smooth field of anti-

symmetric contravariant tensors", respectively. A multivector of rank k
will be called a k-vector. Let A = Coo M be the ring of smooth real-valued
functions on M, let E = TM denote the A-module of smooth vector fields
on M, and let E* = T* M be the dual A-module of smooth differential 1-

forms. Let us first recall some standard definitions concerning the Poisson
manifolds.

Let P be a bivector on M. Then P defines a biderivation, denoted by
{ , }p, of the ring of functions, A==C~M. By definition, the Poisson
bracket of f and g in C °° M is the function

The Schouten bracket of P is the trivector [P, P] such that, for f ’1, 
and f3 in A,

II

(Using the notation [ , ] for the Schouten bracket of multivectors is

justified since it reduces to the ordinary Lie bracket in the case of two
vector fields.) By definition, P is a Poisson bivector if

and (M, P) is a Poisson manifold if P is a Poisson bivector. It is clear

from (3.1) that (M, P) is a Poisson manifold if and only if the antisymmet-
ric bracket { , }p satisfies Jacobi’s identity. We shall denote by P the
linear mapping from E* = T* M to E = TM defined by P, such that for ex

and p in E*,

and by [P, P] the antisymmetric mapping from E* x E* to E defined by
[P, P], such that for a, P and y in E*,
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3.2. The Lie bracket of 1-forms on a Poisson manifold

The bivector P also defines an antisymmetric bracket on the 1-forms
on M in the following way. The bracket of 1-forms a and P is defined to
be the 1-form {a, where

for x in E. Here and below, ~x denotes the Lie derivation by x ~ E. It is
clear that this expression is A-linear with respect to x, and that it therefore
defines a 1-form { a, P ~P for a and P in E*. Formula (3.2) can be
rewritten as

As a matter of fact, definition (3.2) can be rewritten using only the Lie
derivative of functions and the Lie bracket of vector fields, using the
relation

where x and y are vector fields and a is a 1-form. It is then easy to see
that it actually generalizes to the case where E is a ’differential Lie algebra’
(see section 6).

This bracket of 1-forms on a Poisson manifold is not so well-known as
the Poisson bracket of functions. It was found, apparently independently,
by Magri [30], [31] and by several other authors, Gel’fand and
Dorfman [12] (it also plays an implicit role in [ 15]), Koszul in his study
of Schouten brackets [23], Karasev [ 19] in the case of a Poisson-Lie group,
and Coste, Dazord and Weinstein [9] in the context of their study of
symplectic groupoids. It also figures in Weinstein’s note [42] on the
infinitesimal dressing transformations.
We now state two fundamental properties of this bracket which can be

used to characterize it axiomatically. For a and P in E*, and for f and g
in A,

and

The bracket { , }p is the only bracket on 1-forms satisfying (3.3) and
(3 . 4).
B We consider the R-bilinear mapping from (A EÐ E*) X (A EÐ E*) to

A Q) E* whose restriction to the functions is zero, whose restriction to the
1-forms is the bracket (3 . 2), and which maps a pair (a,/) to f, and
a pair ( f, a) f Condition (3.3) is equivalent to the requirement
that this bilinear mapping extend uniquely to a biderivation of the graded
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associative algebra A (E*), analogous to the Schouten bracket of multivec-
tors obtained by an extension of the Lie bracket of vectors and the Lie
derivation of functions. For this reason, the bracket { , }p satisfying
property (3.3) is sometimes called a biderivation of the A-module E*. A
formula for the corresponding biderivation on the algebra of all forms on
M appears in the work of Koszul [23]. This Koszul-Schouten bracket will
play an important role in section 6.
We shall now prove two fundamental identities that relate the bracket

{ , }p to the Schouten bracket [P, P].
PROPOSITION 3.1.- For any bivector P, and I-forms oc and ~i in E*, 

’

Proof. - We use the relation (see [31 ], [15])

The result follows from replacing { , by its expression.
We shall now prove that the bracket { , }p satisfies Jacobi’s identity if

and only if P is a Poisson bivector.

LEMMA 3.1. - For Cil, Ci2 and a3 in E*,

Proof. - We use the definition (3 .1 ) and the relations (3 . 5) and (3. 6).
These identities imply

PROPOSITION 3.2. - (i) The bracket { , }p on E* is a Lie bracket if and
only if P is a Poisson bivector.

(ii) When P is a Poisson bivector, P is a Lie algebra-morphism from
(E~ { , }p) to (E, [ , ]).

Proof - It follows from lemma 3.1 that if [P, P] = 0, then the antisym-
metric bracket { , }p satisfies Jacobi’s identity. To prove the converse, we
first remark that it follows from formulae (3. 4) and (3 .1 ) that for 
f2 and f3 in A,

If { , }p is a Lie bracket, this expression must vanish identically and
therefore the trivector [P, P] must vanish. The proof of part (i) is therefore
complete.

Part (ii) of the proposition follows immediately from proposition 3.1.
In section 6, we shall give an alternative proof of proposition 3 . 2, using

the derivations of the graded associative algebra of the multivectors on M.
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3. 3. Example: the bracket of 1-forms on the dual of a Lie algebra

Let g be a finite-dimensional Lie algebra with Lie bracket [ , ]. Then
g* is a Poisson manifold. The Poisson bivector P of g* is such that

for ~ in g* and x in T~ (g*) identified with g. For differential I-forms r1

and P on g*, considered as mappings from g* to g, we find

where d03BE a is the differential at ç of the mapping a. For a and P taken to
be constant differential 1-forms on g identified with elements x and y of
g, this formula reduces to

Thus the Lie bracket of 1-forms on g* extends the Lie bracket of the
given Lie algebra g.

4. DEFORMATION AND DUALIZATION: THE COMPATIBILITY
CONDITION

In this section, as in the last, M is a Hausdorff, second-countable,
smooth manifold, and we retain the other notations as well. We shall
apply the results of section 1 to the deformation of the natural Lie algebra-
structure of E by a Nijenhuis tensor, i. e., a Nijenhuis operator on E which
is also A-linear, and the results of section 3 concerning the dualization of
the Lie bracket of vector fields by means of a Poisson bivector. Given
both a Nijenhuis tensor and a Poisson bivector on a manifold, it is natural
to require that the two processes, deformation and dualization, commute.
This requirement - the compatibility condition - leads to the definition and
first properties of the Poisson-Nijenhuis structures, which will be described
in this section. Further properties of the hierarchy of Poisson structures
defined by a Poisson-Nijenhuis structure will be described in the next
section.

4.1. Deformed Lie bracket of vector fields and associated bracket on
forms

We denote by jn the natural Lie algebra-structure on E = TM, and by
[ , ]~, instead of by [ , ] as in the last section, the Lie bracket of vector
fields, and, more generally, the Schouten bracket of multivectors which
extends the Lie bracket of vector fields.
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Let P be a Poisson bivector on M, i. e., a bivector such that

We shall denote by v = v (p, P) the Lie algebra-structure on E* that was
constructed, in section 3, from the naturel Lie algebra-structure Jl on

vector fields and from the Poisson bivector P. The corresponding Lie
bracket on E* will, however, be denoted by { , }y or { , }~ instead of by
{ , }p, as in section 3. Recall (proposition 3 . 2) that the linear mapping P
from E* to E is a Lie algebra-morphism from (E*, v) to (E, ~).

Let N be a (I,I)-tensor with vanishing Nijenhuis torsion with respect
to Jl,

We denote by ~=N.j~ the deformed Lie algebra-structure on E. Using
the notations and results of section 1 applied to E = TM, we consider the
deformed Lie bracket of vector fields, denoted by [ , ]N. J.1 or [ , I’. We
recall that N is a Lie algebra-morphism from (E, N . Jl) to (E, The
deformed bracket has properties similar to those of the natural bracket,
namely, it satisfies the identity, for x and y in E, and f in A,

where, by definition,

It follows from this property that there exists a unique deformed deriva-
tion, denoted by 2:, of the algebra of tensors, that commutes with the
contractions, such that

In particular, for a in E*,

Here the transpose tN of the linear map, N, is considered to be a ( 1,1 )-
tensor. This derivation law 2’ can also be denoted by FN. , while the
natural derivation law 2 will sometimes be referred to as J~, to stress
that it is associated with the natural Lie bracket Jl on E.
There is a deformed differential d’ = dN , ~ on the space of all forms

A (E*), such that

where ix denotes the interior product with x. In particular, for a function
fin A,
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The map d’ is a coboundary, i. e., (d’)2 = o.
It also follows from property (4. 3) that there exists a unique bideriva-

tion, again denoted by [ , or [ , ]’, of the graded associative algebra
of multivectors A E, whose restriction to the functions is zero, whose
restriction to the vectors is [ , ]’, and which maps a pair (x, f ) to FNx f,
and a pair ( f, x) to - fE Nx f ’. This biderivation is called the Schouten
bracket associated with N. ~.
We now combine the processes of deformation and dualization and we

consider the bracket { , }p= { . }~ ~ on E* which is defined by a formula
similar to formula (3.2’) which defines { , }~. We replace the Lie deriva-
tion law F by the deformed Lie derivation law F’ and the differential d
on functions by the deformed differential d’. Thus, by definition, for a
and 03B2 in E*,

by formulas (4.4) and (4. 5).
We shall now investigate the condition under which the bracket on E

that we have just considered is a Lie bracket.

4. 2. The compatibility condition: Poisson-Nijenhuis structures

We denote by NP the (2,0)-tensor associated with the linear mapping
N°P from E* to E, defined by

and by P ~N the (2,0)-tensor defined by

We shall deal with the following diagram of linear maps:

For v’, we can consider the following brackets on E*:
(a) v’ = v (N .1.1, P), ~. e. , the bracket { , }p={ , }~ obtained by duali-

zation from the deformed Lie bracket [,]’=[, ]~.~ on E by means of
the bivector P, which is given by formula (4.6),

(b) L e. , the bracket { , }~i/2)(Np+p~N) obtained

by dualization of the natural Lie bracket [ , ] = [ , ]~ on E by means of
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the bivector ( 1 /2) (NP + which is defined by

(c) i. e., the bracket { , obtained by deformation
from the Lie bracket { , }v={ ? }~ where v = v (p, P), by means of the
(1,1)-tensor ~N on E*, which is defined by

These three brackets are not independent. Indeed,

LEMMA 4. l. - Let ~, be a Lie algebra-structure on E. Then, for any
N and for any bivector P,

Proof - We obtain from the definition (4. 8), for a and )3 in E*,

By addition, using (4.6) and (4. 7) we obtain the lemma.
It is not true in general that these brackets will satisfy Jacobi’s identity

because

(a) the Schouten bracket [P, P]’ = [P, P]N . ~ of the bivector P need not
vanish,

(b) the Schouten bracket

of the bivector NP + P tN need not vanish,
(c) the Nijenhuis torsion of the ( 1,1 )-tensor tN, with respect to

the Lie algebra-structure v = v (jn, P), need not vanish.
Below, we show that a single compatibility condition on N and P implies

that the preceding diagram commutes, that the three quantities mentioned
above vanish, that the three brackets on E* considered above must coincide
and satisfy Jacobi’s identity, and that all the arrows in the diagram are
Lie algebra-morphisms.

DEFINITION 4.1. - A Nijenhuis tensor N and a Poisson bivector P on a
manifold M are called compatible f NP is a bivector, i. e.,
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and if

If the Nijenhuis tensor N and the Poisson bivector P are compatible, the
pair (P, N) is called a Poisson-Nijenhuis structure on M, and (M, P, N) is
called a Poisson-Nijenhuis manifold.
By (4 . 9), when N and P are compatible, It

follows from lemma 4.1 that, if N and P are compatible, then the three
brackets defined by (4.6), (4.7) and (4. 8) coincide, namely

In order to express the compatibility condition, let us set

As a result of assumption (4. 9), C~ (P, N) is A-linear with respect to a
and P. Thus C~ (P, N) is a form-valued bivector on E which vanishes if
and only if the processes of dualization and of deformation commute.
From lemma 4 . 1, we obtain

Using the first equality and the definitions of the brackets, we find

We see that this form-valued bivector C~ (P, N) is none other than the
tensor considered by Magri and Morosi in [30] and designated there by
R (P, N). (We have avoided the use of the letter R because this letter is
used in other contexts in the theory of the Yang-Baxter equation.) We
note that this differential concomitant of the bivector P and the (1,1)-
tensor N, which has the required tensoriel properties only when NP=PtN,
was already considered by Schouten in 1953 ([40], formula ( 15)). In fact a
staightforward calculation shows that the coordinate expression for

C~ (P, N) is, with obvious notations,

The tensor C  (P, N) also relates the torsion of N with respect to  with
the torsion of tN with respect to v (j~ P).

Let P be a Poisson bivector and let N be a (I , I)-tensor. Then, for any
a and P in E*, x in E,
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To prove this formula, we first check the identity, for x in E and for u
and P in E*,

which expresses the torsion of N with respect to Jl, evaluated on x and
in terms of brackets on forms. This identity can be rewritten as

from which it is clear that (4. 12) follows. Formula (4 , 1 2) implies

LEMMA 4. 2. - If the Nijenhuis tensor N and the Poisson bivector Pare
compatible, then

It follows from this lemma and from corollary 1.1 that, when N is a

Nijenhuis tensor that is compatible with P, the brackets P),
v (N . and NP) on E* coincide and satisfy Jacobi’s identity.
Moreover

PROPOSITION 4 . 1. - Let (P, N) be a Poisson-Nijenhuis structure on M.
Then,

(i) the bracket N , v P) satisfies the Jacobi identity and is compatible
with v P), and tN is a Lie algebra-morphism from (E*, N , v P)) to

(E*, v P)), i. e., for all 03B1 and 03B2 in E*,

(ii) P is a Lie algebra-morphism from (E*, tN . v P)) to (E, N . Il),

(iii) NP is a Lie algebra-morphism from (E*, v P)) to (E, Il),

Proof - In view of lemma 4. 2, we obtain part (i) by applying
corollary 1. 1 to v (u, P) and to rN. To prove (ii), we use definition (4 . 8)
and assumption (4. 9), and we apply proposition 3 . 1. We thus obtain

Part (iii) is a direct consequence of (i) and (ii). For part (iv) we use
proposition 3.2 (i) and the results (ii) and (iii), above. Finally, by
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corollary 1.1, is a Lie algebra-structure on E*. By
the compatibility condition, this bracket is v (p, P + NP). Using proposition
3 . 2 (i) once more, we have proved that P + NP is a Poisson bivector with
respect to Il, whence (v).

Proposition 4. 1 (iv) shows that, given a Poisson-Nijenhuis structure
(P, N) on a manifold M, the bivector NP defines a new Poisson structure
on M, and (v) proves that this Poisson structure is compatible with the
given Poisson structure P.

In the next section, we shall study the iteration of the processes of
deformation and dualization on a Poisson manifold.

5. HIERARCHIES OF BRACKETS OF A POISSON-NIJENHUIS
STRUCTURE

In this section we consider a Poisson-Nijenhuis structure (P, N) on a
Hausdorff, second-countable, smooth manifold M, as in section 4. We
show that there exist hierarchies of Lie brackets on both E, the space of
vector fields, and E*, the space of differential 1-forms, and that all the
iterated deformations commute with all the dualizations, as indicated by
the diagram at the end of this section.

5.1. The iterated Lie brackets on vector fields and on 1-forms

From the usual Lie algebra-structure p on E, with Lie bracket

[ , ] = [ , ]~, and from the (I,I)-tensor N whose Nijenhuis torsion with
respect to  vanishes, we can construct the sequence of Lie algebra-
structures,

with Lie brackets

We have proved in proposition 1. 2 that each of these iterated brackets is
indeed a Lie algebra-bracket, and that they are compatible in pairs. Such
a sequence of compatible Lie algebra-structures can be called a hierarchy
of Lie algebra-structures.

Given y and the Poisson bivector P, we now consider the Lie algebra-
structure on the space of 1-forms E*, with the Lie bracket
{ , }~={ , }~ that was defined and studied in sections 3 and 4. By
proposition 4.1, we know that, when N and P are compatible, the Nijen-
huis torsion of the (l,I)-tensor ~N with respect to P) vanishes.
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Therefore, we can apply the results of section 1 to construct a sequence
of Lie algebra-structures,

with Lie brackets

Again, these iterated brackets on the space of 1-forms are indeed Lie
brackets, and they are compatible in pairs. Let us remark that, by
lemma 1. 3, for 

Because of condition (4. 9), each linear mapping P is an antisymmet-
ric map from E* to E which therefore defines a bivector that we shall

denote by Nk P. Thus, from the Poisson bivector P and the iterated

Nijenhuis tensors Nk one can construct a sequence of bivectors,

The following lemma shows that the properties which are valid for N,
tN and P, are also valid for the iterated tensors Ni, and Ni P.

LEMMA 5. 1. - For each integer k &#x3E;_ 0, and for each integer i &#x3E;_ 0, x and

y in E, 03B1 and 03B2 in E*,

and, more generally,

Proof - Formulae (5.3) and (5.4) express the morphism-properties of
Ni and which follow from proposition 1.2. To prove (5.5) we use
the definition of { , }b the fact that P is a Poisson bivector, and assump-
tion (4.9). We obtain

Now, formula (5.6) follows from (5. 5) and (5.4).

5.2. Deformation and dualization of iterated Lie brackets

In section 4, we introduced a compatibility condition on N and P in
order to ensure that the processes of deformation of p under N and of
dualization of Jl under P commute. In this subsection we show that this
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compatibility condition actually implies that the same property is valid
for any of the iterated Lie algebra-structures j, j~0, for any of the
iterated Nijenhuis tensors Nk, k &#x3E;_-1, and any of the iterated bivectors Ni P,

More precisely,

PROPOSITION 5 . 1. - Let (P, N) be a Poisson-Nijenhuis structure on a
manifold. Let k be a nonnegative integer. Then, for all nonnegative integers
i and j such that 

Proof - A direct computation shows that, for each i -&#x3E;_ 1, a and B in
E* ,

Since N and P are compatible, the relation

is valid for i = 0 and i =1. Let us assume that this relation is valid for all
integers less than or equal to i &#x3E;__ 1. Then the second term of the left-hand
side of this identity vanishes by (5 . 4). Therefore

The last equality uses relation (5.2). Thus relation (5.8) is proved by
induction on i.

Lemma 4 . 1 implies that, for all 

From (5.9) and (5 .10) it follows that the relations

are valid for k = 0 and any ~0. Let us assume that these relations are
valid for any integer less than or equal to and any Then (5 . 10)
shows that

proving by induction on k that relations (5 . 11 ) are valid for any 
and any ~0. These relations in turn show that

for thus proving the proposition.
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5 . 3, The hierarchy of Poisson structures on a Poisson.Nijenhuis manifold

We shall now prove that, because Nand P are compatible, the
bivectors P, NP, ..., Nk P, ... are Poisson bivectors and compatible ín
pairs.

PROPOSITION 5.2. ,...,. On a Poisson-Nijenhuis manifold (M, P, N), each
bivector Ni P is a Poisson bivector with respect to each Lie algebra,..structure
Nk. = k, and for all nonnegative integers I., j and k, 

.

Since, by relation (5,7), the brackets and 
coincide. it follows from formula (3.6) and proposition 3 . 1 that N’P is a
Poisson bivector with respect to 
We shall prove that, moreover tN’P, for ~0,

~~0. From prop.o.sition 1.2 (iii) applied to 
and N’P), and from formula (5.7) we know that

is a Lie algebra-structure on E*. Using proposi-
tion 3.2(i), we conclude that is a Poisson bivector with
respect to ~.
(We have in fact used the generalizations of propositions 3. t and 3.2

to the iterated Lie brackets These are straightforward, and they also
follow from the general results of section 6.)

In the particular case where ~~0, the preceding proposition yields the
fundamental property of the Poisson-Nijenhuis structures;

COROLLARY 5.1. - On a (M, P, N), there is
a hierarchy of iterated Poisson structures, i.e., a sequence of Poisson
structures N’P, which are compatible in pairs.
Combining the results of propositions 5 . 1 and 5.2, we see that the

hypotheses [N,N] 0=0, [P, P] 0=0, C 0(P,N)=0 imply that, for all
nonnegative integers ~ j and k., 

.

tn particular, proposition 5.2 that the following 
commutative and that .all the arrows ate 

These rcsul.ts are in fact valid somewhat more generally on the differen-
Lie algebras to be studied in the next section.
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6. DIFFERENTIAL LIE ALGEBRAS, GRADED DIFFERENTIAL
ALGEBRAS AND SCHOUTEN ALGEBRAS

In this section, we shall define and study the differential Lie algebras,
an appropriate algebraic framework for both the vector space of vector
fields on a manifold and the vector space of differential 1-forms on a
Poisson manifold. With a differential Lie algebra E we associate a graded
differential algebra, which generalizes the algebra of forms A (E*) equipped
with the de Rham cohomology operator, and a graded Lie algebra, which
generalizes the algebra of multivectors A E equipped with the Schouten
bracket. We shall show that the process of deformation described in
section 1 can be carried out on a differential Lie algebra equipped with a
Nijenhuis operator, while the dualization described in section 3 can be
performed on a differential Lie algebra equipped with a bivector with
vanishing Schouten bracket. We shall study the effect of deformations
and dualizations on the cohomology operator of the associated graded
differential algebra and on the Schouten bracket.

6 . I. Differential Lie algebras

The linear space E = TM of smooth vector fields on a smooth manifold
M is, in a natural way, both an A-module (where A denotes the associative
and commutative R-algebra, with unit, of the smooth, real-valued
functions on M), and a Lie algebra over f~. These two structures are
related by the identity

for all x and y in E, and for all f in A. We have denoted by [ , ] the
standard Lie algebra bracket on E and, by ~x f, the Lie derivative of f
by x. We remark that x E E ~ .2 x is an R-Lie algebra-morphism from
(E, [ , ]) into the [R-Lie algebra of derivations of the ring A, and that it
is A-linear. When one formalizes the above properties, one arrives at what
Palais [37] called Lie d-rings over A. Some closely related variants have
been studied by algebraists and geometers under various names: pseudo-
Lie-algebras ([16], [38]), (K, R)- or (K, A)-Lie algebras [39], [5], Elie Cartan
spaces and pre-spaces [10], [11], Lie modules [34], Lie-Cartan pairs [20].
(The list is not complete.) We shall consider a special class of Lie d-rings,
which we shall call the differential Lie algebras. It will be convenient to
first introduce the weaker notion of a differential pre-Lie algebra. Roughly
speaking, the differential Lie algebras over an algebra are the algebraic
counterparts of the Lie algebroids ([38], [9], [29]), just as the modules over
a ring are the algebraic counterparts of the vector bundles.
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DEFINITION 6 . l. - Let K be the field of real or complex numbers, and
let A be an associative and commutative K-algebra with unit. Let E be a
finitely generated projective A-module. Let  be an antisymmetric, K-bilinear
map, from E x E to E. We say that (E, Jl) is a differential pre-Lie algebra
over A if there exists an A-linear map 2fJ from E to the K-vector space of
derivations of A such that

for all x and y in E, and for all f in A.
Most of the results of this section require that the bidual of E can be

identified with E, so, in order to simplify the exposition, we have added
to the definition the requirement that E be a finitely generated projective
A-module.

By adding the requirement that ~ satisfy the Jacobi identity, we arrive
at the following definition:

DEFINITION 6. 2. - We say that (E, differential Lie algebra over
A if (E, differential pre-Lie algebra over A and f, in addition, y is a
K-Lie algebra-structure on E, and if 2~ defines an E-module-structure on A.
Thus when (E, Il) is a differential Lie algebra, 2~ is a K-Lie algebra-

morphism from (E, Jl) to the K-Lie algebra of derivations of the ring A,
i. e.,

for all x and y in E.
Here are three examples of differential Lie algebras in differential geome-

try :
If M is a Hausdorff, second-countable, smooth manifold, the vector

space E = TM of smooth vector fields on M is a finitely generated projec-
tive A-module, where A is the algebra of smooth functions on M, and
therefore it is a differential Lie algebra with respect to the usual Lie
bracket. If, moreover, M is a Poisson manifold, the associative algebra of
smooth functions over M, with respect to the Poisson bracket, and the
vector space of smooth differential 1-forms with respect to the bracket
(3.2), are differential Lie algebras.

Let us assume that the A-module E contains an element which is not a
torsion element, i. e., there exists y E E such that f E A and fy = 0 imply
f= 0. This assumption has the following consequences:

(a) The K-linear map 2~ in the definition of differential pre-Lie algebras
is uniquely defined.
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(b) It is enough to assume that takes values in the vector space of
K-linear maps from A to A, since (6.2) implies

which proves that takes values in the derivations of A.

(c) Property (6.3) of 2~ in the definition of the differential Lie algebras
becomes a consequence of the Jacobi identity for Jl since, by relation (6 . 2)
and by the antisymmetry of Jl,

These properties do not require the commutativity of A. They were
proved by Herz [16] under the assumption that A is a skew field.

If the A-module E possesses two linearly independent elements, then in
the definition of differential pre-Lie algebras, it is enough to assume that
the map 21J is K-linear, since (6.2) implies that

whence is necessarily A-linear.
In the particular case where A is a commutative field, this property was

also proved by Herz.
We shall now consider the exterior algebras AE and A(E*), and we

shall show that a differential Lie algebra-structure on E gives rise to both
a graded differential algebra-structure on A(E*), and a graded Lie algebra-
structure on A E.

6.2. The graded differential algebra of a differential Lie algebra

We recall that a graded differential algebra (abbreviated as GDA) is a
graded commutative algebra, with a derivation of degree 1 and square0.
When the derivation is not necessarily of square 0, we shall speak of .a
pre-GDA.

Let (E, J1) be a differential pre-Lie algebra over A. We denote by E*
the A-dual of E~ Hom~(E, A), Since E is finitely generated and projective,
we can identify the A-module of q-linear (over A) antisymmetric maps
from E to A with and we set A(E*)== ~ Then the

~~o
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operator, dp. : A (E*) - A (E*), defined for rJw in A q (E*) by

where ..., are elements of E, and where indicates an omitted
variable, is a derivation of degree 1 of the graded associative algebra
A (E*) 

Thus, to each differential pre-Lie algebra-structure j on E, there corres-
. ponds a derivation d, of the graded algebra A (E*) which is of degree 1

but not necessarily of square 0. Conversely, assume that (A(E*), d) is a
graded algebra with a derivation of degree 1. Using the fact that the dual
of E* can be identified with E, we define

and

where x and y are in E, E*, and fe A. Then (E, Jl) is a differential

pre-Lie algebra, and y is the unique differential pre-Lie algebra-structure
on E such that dJl = d, To summarize, when (E, p) is a differential pre-Lie
algebra, (A (E*), is a pre-GDA, and conversely.
When (E, ).1) is a differential Lie algebra, the derivation dp is the restric-

tion to the A-linear forms on E of the coboundary operator of the
cohomology of the K-Lie algebra E with values in the E-module A, and
therefore, when (E, J.1) is a differential Lie algebra, the square of dp
vanishes. The following proposition contains a direct proof of this fact
and of its converse.

PROPOSITION 6.1. - The differential pre-Lie algebra (E, Jl) over A is a
differential Lie algebra f and only f

Proof. - For f~A,

For E*,

Thus, if (E, Il) is a differential Lie algebra, by (6.3) and "b the Jacobi
identity for p, the derivation (dp)2 vanishes on A and on E*, and therefore
also on A(E*), since it follows from the assumptions made on E that A
and E* generate the algebra of A-multilinear antisymmetric maps from E
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to A. Conversely, if (d~)2 = 0, then ~~‘ satisfies (6 . 3) and p satisfies Jacobi’s
identity, so (E, Jl) is a differential Lie algebra.
To summarize, when (E, Jl) is a differential Lie algebra, (A (E*), d~) is a

graded differential algebra, and conversely.
If 0 is an A-linear E-valued q-form on E, then, by definition,

where iO) is defined as in subsection 1.2, and where [ , ] is the graded
commutator. Then, for any co, 3~ is a derivation of degree q of A (E*)
which commutes with d~ (in the graded sense).
When (0 is an E-valued 0-form, i. e., an element x of E, 3~ is called the

Lie derivation with respect to x. Then, 8f is a derivation of degree 0 of
A (E*) which commutes with d~, and

and

The restriction of 3~ to A° (E*) = A is 2~.

6.3. The Schouten algebra of a differential Lie algebra

The Schouten bracket (see [36], [23], and also [7], [33]) of multivectors
on a manifold M is the unique R-bilinear mapping [ , ] on A E with
values in A E, where E = TM, which

(a) extends the Lie bracket on E,
(b) satisfies for all x in E, and for all f in A,
(c) is antisymmetric in the graded sense, i. e.,

(d) is a biderivation of the graded algebra A E, i. e.,

for Q E Aq E, Q’ E nq’ E, Q" E nq" E.
The Schouten bracket of multivectors satisfies the Jacobi identity in the

graded sense,

i. e., it is a graded Lie algebra-bracket on A E when the usual gradation is
shifted by one. It should be stressed that this bracket differs from the

bracket used by Lichnerowicz, denoted by [ , ]L, by a sign,

Similarly, given a differential pre-Lie algebra (E, ~.) over A, there exists
a unique K-bilinear mapping on the graded algebra A E with values in
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A E, which possesses the above four properties. This bilinear mapping will
be called the Schouten bracket of multivectors, and be denoted by [ , ]~.
We shall refer to (A E, [ , ]~) as the Schouten graded pre-Lie algebra, or
simply as the Schouten pre-algebra, of (E, When (E, ~) is a differential
Lie algebra, the Schouten bracket [ , 1~ satisfies the Jacobi identity (in
the graded sense), and in this case we shall refer to (A E, [ , ]~) as the
Schouten graded Lie algebra, or simply as the Schouten algebra, of (E, ~).
We shall call a differential pre-Lie algebra nondegenerate if the only

element Q in A E that satisfies [Q, Q’]~ = 0 for all Q’ E A E, is Q=0. This
property is clearly satisfied in the case where E = TM with the usual Lie
bracket of vector fields. 

-

6.4. Graded differential algebra and Schouten algebra associated with a
deformed Lie bracket

In this subsection, we retain the notations of section 1 and we assume

moreover that (E, Jl) is a differential pre-Lie algebra over A. Let N be an
A-linear mapping from E to E, and let

be the deformed K-bilinear map on E. Then (E, N. Jl) is a differential pre-
Lie algebra with

We shall first study the effect of the deformation on the associated pre-
GDA (A (E*), d ).

PROPOSITION 6 . 2. - Let (E, be a differential pre-Lie algebra and let
N be an A-linear mapping from E to E. Then (E, N. is a di, f ’, f ’erential
pre-Lie algebra. The derivation of degree 1 of the graded algebra, A (E*),
associated with ~.’ = N. ~, and denoted by d’ or dN . ~, satisfies

Proof. - It suffices to check that both derivations coincide on the
0-forms and on the 1-forms. In fact, for f in A and for x in E,

and for a in E*, and for x and y in E,
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It is natural to introduce the Nijenhuis torsion of N in order to
determine when the square of dJ1 vanishes. It follows from the intrinsic
definition of the Froticher-Nijenhuis bracket that, for an E-valued form
NonE,

(We remark that the bracket originally defined by Frolicher and Nijenhuis
[14] is twice the one that we consider. Had we used their definition, the
graded commutator [9{~ 3~] would have replaced the square of 9~ in the
preceding formula.)

In view of the fact that the differential pre-Lie algebra (E, N. is a
differential Lie algebra if and only if (d~ , ~)2 = 0, formulae (6 . 7) and (6 . 8)
imply

COROLLARY 6 . I . - If N is a Nijenhuis operator on a differential Lie
algebra (E, y), then (E, N. Jl) is a differential Lie algebra.

This corollary is just corollary 1.1 (i). In the special case where
E = TM, it was proved by J. Lehmann-Lejeune [25]. See also the com-
prehensive work of C. M. de Barros ([10], [ 11 ]) who gave an algebraic
framework for the theory.
We now determine the deformed Schouten bracket.

PROPOSITION 6. 3. - Let N be a Nijenhuis operator on a differential pre-
Lie algebra (E, p). The Schouten bracket [, ]N , ~ defined on A E by the
differential pre-Lie algebra structure N. p satisfies

Proof - In this formula, the elements of A E are considered to be
forms on E*, and the transpose rN of N as an E*-valued 1-form on E*.
The formula is valid when Q and Q’ are of degree 0 or 1, and therefore it
is valid in general.

6. 5. Dualization of the Lie bracket by means of a Poisson bivector on a
differential Lie algebra. The associated Schouten algebra and graded

differential algebra

In section 3 we studied the problem of dualizing the Lie bracket p on
E = TM by means of an A-linear mapping, P, from E* to E corresponding
to a Poisson bivector P. We can proceed in exactly the same manner in
the case of a differential Lie algebra (E, Jl): formula (6. 9) below genera-
lizes formula (3 . 2).
We remark that in the process of dualization, the vectors and the

1-forms are exchanged. Starting from a differential Lie algebra-structure
on the space of vector fields on a manifold, after dualization by means of
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a Poisson bivector, we obtain the differential Lie algebra-structure on the
space of I-forms that has already been considered in section 3. We shall
see that the associated graded differential algebra is that of the multivectors
with the Lichnerowicz cohomology operator [27], while the Schouten

algebra is that of the forms on the manifold with the graded Lie algebra-
structure defined by Koszul in [23].

Let (E, be a differential pre-Lie algebra over A. Let P a bivector on
E, i. e., an element of A~ E, and let P be the linear mapping from E* to E
defined by

for a in in E*. For elements a and p in E*, and for an element x in
E, we set

Then E*, with the bilinear mapping v: E* x E* --+- E* defined by
v (a, P) == {a, p ~P, is a differential pre-Lie algebra, with

We shall set v = v (~, P), and we shall sometimes denote the bracket of
1-forms {03B1, fi } P, defined in (6 . 9), by [lL, 
By the construction of subsection 6.2, the differential pre-Lie algebra-

structure 03BD( , P) on E* defines a derivation d03BD of degree 1, on A (E**)
which we identify with A E. The following proposition relates this deriva-
tion d" of A E with the Schouten bracket defined by the given pre-Lie
algebra-structure y on E.

PROPOSITION 6 . 4. - Let (E, Il) be a differential pre-Lie algebra, and let
P be a bivector on E. The derivation of degree 1 of the graded algebra AE
corresponding to the bracket v = { , ~P on E* is

where [, )~ denotes the Schouten bracket on AE defined by Il.
Proof - By the definition of d~,

Let us check that both derivations, d~ and [P, . ],, coincide on elements
of A = A °E and E = A lE. In fact, let f be an element of A. Then, for a
in E*,
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while

Now let x be an element of E. Then, for ex and P in E*,

by the definitions of d03BD and { , } P, while

Thus, when E = TM, and P is a Poisson bivector, up to a sign, d~ is

nothing other than the cohomology operator on A E introduced by
Lichnerowicz [27].

Conversely, under the assumption that E is projective and finitely
generated, given a derivation, D, of degree 1 on A E, we know that there
exists a unique differential pre-Lie algebra-structure, v, on E* such that

Given (E, ~) and P as above, let us consider D = [P, . .]~ which is,
in fact, a derivation of degree 1 on A E. Then the bilinear mapping { , }~
on E* defined by (6.9) is the unique differential pre-Lie algebra-structure
on E* such that the corresponding derivation on A E is [P, . ]~.

It follows from the preceding characterization of v == { , }~, and from
proposition 6.1, that { , }~ is a Lie bracket on E* if and only if

[P, [P, . ]~]~ = O. Assume that (E, ~,) is a differential Lie algebra. By the
Jacobi identity for the Schouten bracket [ , ]~ on A E, this condition is
equivalent to [[P, P]~, .]~=0. Therefore, if P is a Poisson bivector, then

{ , }~ is a Lie bracket. If, moreover, the differential Lie algebra (E, Jl) is

nondegenerate, then the converse is true. We have thus obtained an alterna-
tive proof of proposition 3. 2 (i) and, more generally,

PROPOSITION 6.5. - Let (E, Jl) be a differential Lie algebra, and let P
be a bivector on E. A sufficient condition for the formula (6 . 9) to define a
Lie bracket { , E* is that P be a Poisson bivector. When (E, fl) is a

nondegenerate differential Lie algebra this condition is also necessary.
This proof of the Jacobi identity for { , ~P seems to be new, but the

fact that d03BD is nothing but the Lichnerowicz cohomology operator had
been noted independently, in the case of a Poisson manifold, by Bhaskara
and Viswanath ([3], [4]). An algebraic version of the theory, in which no
algebraic assumptions are made on the A-module E, and several applica-
tions can be found in a recent preprint by Huebschmann [18].
We now compute dvP according to the definition, and we apply

proposition 6 . 4. This computation yields the following explicit expression,
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where, by definition,

Thus we have checked that the definitions of the Schouten bracket of P

adopted here and in section 3 [see formula (3.6)] agree. Moreover, we
find, as in formula (3. 5),

We now assume that P is a Poisson bivector and that P has an inverse
Q (the symplectic case). We set P-1= Q. Then, from P [lL, = [P oc, P 
we obtain

for all x and y in E. Dualizing the Lie bracket P) by means of
the 2-form D, we obtain a bracket ~ (v, .0) on E that satisfies the same
relation and therefore coincides with the given bracket. Applying
proposition 6.4, we obtain the formula

that relates the de Rham cohomology operator du with the Koszul-
Schouten bracket [ , ]03BD on A (E*). In particular, given a nondegenerate
differential Lie algebra (E, an invertible 2-form Q on E satisfies

[D, S2],, = 0, where S2 -1 ), if and only if S2 is d~-closed.
By the construction of section 6.3, the differential pre-Lie algebra-

structure v (Jl, P) on E* defines a A (E*)-valued K-bilinear mapping on
A (E*), the Schouten bracket, denoted by [ , ]y. It is clear from the
definitions that if E = TM, where (M, P) is a Poisson manifold, this
bracket on A (E*) is the bracket introduced by Koszul in [23], p. 266,
because both brackets coincide on forms of degree 0 or 1. (In [23], the
Poisson bivector is denoted by w and the corresponding Schouten bracket
on A (E*) is denoted by [ , ]w.)

Let us set

where ip is the interior product of forms with the bivector P. When P is a
Poisson bivector, the K-linear operator a" on A (E*) of degree -1, is the
Poisson homology operator, denoted by A in [23] and by 8 in [6]. Koszul’s
formula relates the dualized Schouten bracket [ , ]~ on A (E*) with the
differential d~ and the exterior product

for a in A~(E*), and fl in A (E*).
The following diagram summarizes the relations between the various

structures, , d  and [ , ] , their deformations, and [ , ]N. ,
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studied in section 6.4, and their dualizations, v = P), d,, and [ , ]v,
studied in this section.

6.6. Morphisms of differential Lie algebras

We now show that to each morphism between differential Lie algebras
there corresponds a morphism between their graded differential algebras
(with the arrow reversed) and a morphism between their Schouten algebras,
thus bringing out the functoriality of the constructions of subsections 6.2
and 6.3. Let (E, Jl) and (F, v) be differential pre-Lie algebras over the
K-algebra A. We say that a mapping, p, from (F, v) to (E, Jl) is a morphism
of differential pre-Lie algebras if it is A-linear and if, for all y and y’ in F,
and for all f in A,

and

(If the image of p contains an element which is not a torsion element, the
second condition is a consequence of the first.) The same conditions define
a morphism of differential Lie algebras.
For example, a direct consequence of formula (6.11) is the following

LEMMA 6. 1. - A bivector P defines a morphism P of dfferential pre-
Lie algebras from (E*, v P jj to (E, y) f and only f the Schouten bracket

of P with respect to  vanishes.

Let denote the q-th exterior power of the transpose of p. (In
particular, for q = 0, one obtains the identity of A.) Then

PROPOSITION 6 . 6. - An A-linear mapping p from F to E is a morphism
of di, f ’_ f ’eren tial pre-Lie algebras from (F, v) to (E, J.1) if and only g is

a morphism of degree 0 of pre-GDA’s from (A (E*), to (A (F*), i. e.,
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the following diagram is commutative for all c~ ~ 0,

Proof - In fact, for q = ~, the commutativity of the diagram is equiva-
lent to (6.14). For using (6.14), we obtain for a in E*, y and y’
inE,

Therefore the diagram commutes for q = 1 if and only if (6.13) is satisfied.
The diagram commutes for all q’s if and only if it commutes for q = 0
and q = 1 since A and E* generate A (E*), and since d~ are

derivations.
In the case E*, with v = v P), where P is a bivector on E,

the preceding diagram becomes

As a corollary of proposition 6.6 and lemma 6.1, we obtain

COROLLARY 6.2. - Let (E, be a differential Lie algebra. When P is
a Poisson bivector on (E, the extension of - P ~o the exterior algebra
A (E*), whose restriction to is ~( ~- ~ ~‘~ intertwines the de Rham
cohomology operator d, and the cohomology operator ~ [P, . ~~,

This corollary is to be compared with the result of Koszul in [23],
p. 266, and with that of Krasilshchik [24], p. 102. In :(23] the restriction

to the 1-forms should be .I(a) w and not - w. The result in [24],
taking into account the signs in the definition of the operator ~ and of
the Schouten bracket, coincides with ours
We now consider the morphism of Schouten pre-algebras associated

with a morphism of differential pre-Lie algebras. To each morphism of
differential pre-Lie algebras p from (F, v) to (E, f.1)., there coresponds a
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morphism A p of the Schouten pre-algebras

i. e., the following formula is valid

for Q in 1~~ F and Q’ in Aq’ F. In fact, by (6 . 13) and (6 . 14), this formula
is valid when the degrees of Q and Q’ are 0 or 1.

In particular, if P is a Poisson bivector on a differential Lie algebra
(E,{i), and if v=v(p, P), then by lemma 6. 1, P : (E*, v) ~ (E, Jl) is a

morphism of differential Lie algebras and therefore A P is a morphism of
graded Lie algebras from the Schouten algebra (A (E*), [ , ]~) of (E*, v)
to the Schouten algebra (A E, [ , ]~) of (E, Jl). We have thus given a new
proof of a result of Koszul (formula 3. 3 of [23]).

6. 7. Conclusion: Poisson-Nijenhuis structures on differential Lie algebras

In this section, we have set out a general theory of differential Lie
algebras, which constitutes a unified framework for the study of the Lie
brackets on both TM, the space of vector fields, and T* M, the space of
differential 1-forms on a manifold. We have seen how the deformation of

a differential Lie algebra (E, by means of a Nijenhuis operator N gives
rise to a deformed derivation, ~N.~=[~ d~], of A (E*), and its dualization
by means of a Poisson bivector P gives rise to a dualized derivation,

[P, . ]~, of A E, and we have also introduced and studied the associated
Schouten algebras. The definition of the Poisson-Nijenhuis structures that
was given in section 4 can be carried over unchanged to the case of
differential Lie algebras. The proofs, in sections 4 and 5, of the properties
of a Poisson-Nijenhuis structure (P, N) on a manifold and of the hierarchy
of iterated Poisson structures P, NP, ..., Ni P, ... which it defines, are

algebraic, and they apply verbatim to the case of a Poisson-Nijenhuis
structure on a differential Lie algebra. Other proofs of these same proper-
ties can alternatively be obtained by studying, instead of the brackets

v(N.~P), tN. v P), v !~~ 2 1 ( NP + P or v (p, NP + P tN), their

associated derivations. For example, let tN be considered as an

E*-valued 1-form on E*, so Then lemma 4.1 can be

reformulated as

To obtain a proof of this formula as a corollary of the general results
of section 6, we first use proposition 6 . 4 to write d03BD (N . , P) = [P, .]N . ,
and we apply proposition 6.3 to this deformed Schouten bracket.
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Then we use proposition 6 . 2 to write (~, p) 
= d~ (~, P)] and we use

proposition 6 . 4 to write dy (~, P) = [P, . ]~. When we add both expressions,
we obtain the result. Similarly, the compatibility condition, that was
introduced in definition 4.1, can be interpreted in terms of derivations on
AE.

Examples of Poisson-Nijenhuis structures on Lie groups and on the
dual of a Lie algebra can be found in [31 a]. There are open problems
concerning the classification under equivalence relations of the Poisson-
Nijenhuis structures on manifolds.
The properties of the Poisson-Nijenhuis structures that were established

in this article constitute an appropriate framework for the study of integra-
ble Hamiltonian systems because a special case of these structures, the
linear Poisson-Nijenhuis structures, can be constructed on the duals of
associative Lie algebras by means of solutions of the modified Yang-
Baxter equation [21 a]. Such linear Poisson-Nijenhuis structures on the
dual of a Lie algebra give rise to quadratic Poisson structures and most
of the familiar integrable systems can be regarded as reductions of systems
which are bi-hamiltonian with respect to such a pair of a linear and a
quadratic Poisson structure.

Note added in proof

We would like to thank S. Sternberg for calling to our attention the
article of M. Gerstenhaber, The Cohomology structure of an associative
ring, Ann. Math., 78, 1963, pp. 267-288, which states the axioms of what
we have called a Schouten algebra (see section 6 . 3, supra), and for showing
us his unpublished manuscript with B. Kostant, "Anti-Poisson algebras
and current algebras", which contains a definition of the differential Lie
algebras, which they call (L, M)-systems, explains their relationship with
the Schouten algebras, which they call ~-graded Poisson algebras, and
provides applications to the commutation relations in various algebras of
currents, results obtained and announced circa 1970.
A contravariant definition of the symplectic manifolds had already been

advocated by R. Jost in 1964. The intrinsic definition of the Schouten
bracket of multivectors was introduced by W. M. Tulczyjew, The graded
Lie algebra of multivector fields and the generalized Lie derivative of
forms, Bull. Acad. Pol. Sci., T. 22, 1974, pp. 937-942, which is anterior to
the sources that we cited, as a preliminary to his "Poisson brackets and
canonical manifolds", ibid., pp. 931-935, where the Schouten bracket of
the Poisson bivector is explicitly considered. Tulczyjew asserts in his
introduction that "the duality between forms and multivector fields is

incomplete without some differential operation in the algebra of multivec-
tors dual in a sense to the exterior differential of forms" and he states that
"such [a] differential operation" is furnished by the Schouten differential
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concomitants. Proposition 6.4 and the other results of section 6.5 supra
define that "differential operation" and prove his claim.
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