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Abstract. Skin wounds have been extensively studied as their 
healing represents a critical step towards achieving homeo-
stasis following a traumatic event. Dependent on the severity of 
the damage, wounds are categorized as either acute or chronic. 
To date, chronic wounds have the highest economic impact 
as long term increases wound care costs. Chronic wounds 
affect 6.5 million patients in the United States with an annual 
estimated expense of $25 billion for the health care system. 
Among wound treatment categories, active wound care repre-
sents the fastest‑growing category due to its specific actions 
and lower costs. Within this category, proteases from various 
sources have been used as successful agents in debridement 
wound care. The wound healing process is predominantly 
mediated by matrix metalloproteinases (MMPs) that, when 
dysregulated, result in defective wound healing. Therapeutic 
activity has been described for animal secretions including fish 
epithelial mucus, maggot secretory products and snake venom, 
which contain secreted proteases (SPs). No further alternatives 

for use, sources or types of proteases used for wound healing 
have been found in the literature to date. Through the present 
review, the context of enzymatic wound care alternatives will 
be discussed. In addition, substrate homology of SPs and 
human MMPs will be compared and contrasted. The purpose 
of these discussions is to identify and propose the stages of 
wound healing in which SPs may be used as therapeutic agents 
to improve the wound healing process.
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1. Introduction

A wound of the skin is generally described as the interrup-
tion of the epithelial surface caused by a physical or thermal 
challenge (1). Skin wounds have been extensively studied as 
their healing represents a critical step in achieving homeostasis 
following a traumatic event. Dependent on the severity of the 
damage, wounds are categorized into either acute or chronic (2). 
To date, chronic wounds have the highest economic impact as 
long term treatment increases wound care costs (3). It is esti-
mated that 1-2% of the population of the developing world will 
experience a chronic wound in their lifetime (4). According to 
Brem et al (5), in 2007 chronic wounds had affected 6.5 million 
patients in the United States, with an annual estimated health 
care expense of $25 billion (6). However, to date, the actual 
cost of chronic wound care in the United States is unknown (7). 
There has been a relatively high increase in the incidence of 
chronic wounds, and this may be closely associated with 
the increase in factors which impair wound healing, such as 
diabetes, obesity, or therapeutics such as chemotherapy, steroids 
and non‑steroidal anti‑inflammatory drugs (6).
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The cost of chronic wound care represents a complicated 
scenario for patients and health care systems, leading to a 
necessity for the development of healing solutions which are 
both quicker and more cost-effective. To date, the available 
wound treatment therapeutics are: dressings, such as antimi-
crobial, films and alginate; hydrocolloids, collagen products, 
gauze composites and hydrogels; and active wound care (8). 
Active wound care represents the fastest growth category 
(20.6% compound annual growth rate between 2016-2022) 
as it is an alternative that has a more specific action and is 
more cost-effective (9). Within the active wound care category, 
proteases from a range of sources have been employed as 
successful agents in debridement (10), enhancing wound 
healing (11), coagulation (12) and keloid scar treatments (13). 
Of these, debridement comprises the principal dermato-
logical application in enzymatic wound care, a proven and 
well-established principle (14).

The wound healing process is predominantly mediated by 
matrix metalloproteinases (MMPs) (15-17). Dysregulation of 
MMPs results in defective wound healing, which has made 
them targets of study in cases of chronic wounds, diabetic foot 
injury, keloid healing and burned skin (10). The topical appli-
cation of non‑human proteases has demonstrated beneficial 
therapeutic effects in events where MMPs fail due to dysregu-
lation, for example in hemostasis (18), wound closure (19) and 
debridement (20).

Debridement is the most widely explored enzymatic wound 
care application, in which the most frequently used proteases 
are collagenases, serine proteases and cysteine proteases. The 
therapeutic activity of animal secretions from fish epithelial 
mucus (21), maggot (Lucilia sericata) secretory products (22) 
and snake venom (23) have also been demonstrated. These 
secretions contain different types of proteases capable of 
degrading the same substrates as MMPs. Besides these, no 
further use cases, sources or types of proteases for wound 
healing were found based on the currently available literature.

Through the present review, the context of enzymatic 
wound care alternatives will be discussed, along with a 
comparison of substrate homology of secreted proteases (SPs) 
and human MMPs. This review will aid in the identification of 
which stages of the wound healing process SPs may be used as 
therapeutic agents.

2. Chronic wound healing management: Practical context 
of traditional and enzymatically based debridement 
approaches

Debridement is the first step to enhance repair of chronic 
wounds. According to the European Wound Management 
Association, this procedure is considered a basic necessity to 
induce the physiological process of tissue repair (24). Through 
debridement, necrotic tissue is removed by external means 
to create a stable and healthy scaffold for re-epithelializa-
tion (25). In healthy individuals under normal circumstances, 
debridement is performed naturally following clot formation 
by neutrophil-derived MMPs and other components (26). 
However, when the MMP machinery fails, there is an accumu-
lation of devitalized tissue. As a consequence, the steadiness 
of prolonged catabolism diminishes re-epithelialization and 
results in chronic wounding (27).

This failure represents an important baseline to treat 
chronic wounds, as devitalized epithelium builds up a physical 
barrier that precludes the healing process by interfering 
with the repair machinery, mimicking signs of infection, 
providing nutrients to anaerobic pathogenic agents, such as 
Clostridium perfringens or Bacteroides sp., and promoting 
cytokine production that in severe cases generates a septic 
response (28).

Debridement can be performed through autolytic, surgical, 
biological or enzymatic means (28). Of these, autolytic debride-
ment is the most conservative treatment strategy. It enhances 
the action of endogenous phagocytic cells and proteases such 
as MMPs through dressings that provide the ideal catalytic 
conditions for removal of necrotic tissue (29). Among the 
dressings available for autolysis, films (polydimethylsiloxane), 
gauzes, hydrocolloids, hydrogels, alginates, hydrofibers and 
foams have been proposed (25,30). This strategy is selec-
tive, painless, inexpensive and suitable for most types of 
wounds (31). However, this process is slow, dependent on 
suitable reaction conditions and on the physiological response 
of the patient, and carries the risk of skin degradation due to 
prolonged exposure to moisture (maceration) (32) within the 
surrounding skin (28).

Surgical debridement strategies are performed by excising 
necrotic tissue until only healthy skin regions are exposed (33). 
Available variants of surgical debridement include ultrasound 
debridement, plasma-mediated bipolar radio-frequency abla-
tion, versa‑jet (fluid jet technology) and hydrosurgery (34,35). 
Surgical debridement is the fastest and most effective route of 
treatment, but is an expensive method that requires a sterile 
surgical environment, trained practitioners, and specific 
instruments, and is contraindicated for patients with clotting 
disorders (28,36).

By contrast, biological debridement promotes the removal 
of devitalized epithelium through the digestive action of 
Lucilia sericata sterile maggots (31). Maggots are caged 
in wound-sized hydrocolloid dressings that are placed in 
the affected area (37). The secretion of several components 
including proteolytic enzymes, such as trypsin and chymo-
trypsin serine proteases, then catalyze non-viable skin into a 
liquid feedstock that facilitates maggot feed (38). This alter-
native has proved to be efficient in several types of chronic 
wounds (39) and ulcers (40,41) by providing quick wound 
debridement, reduction in the use of biofilms, disinfection from 
bacteria (40,42-45) and improved pain control (46). However, 
due to the negative image several societies impose on maggots, 
this alternative has not been well accepted by patients and 
practitioners (47). Furthermore, it is contraindicated for the 
treatment of fistulae, exposed vessels and wounds in proximity 
to vital organs (42).

A potential compromise is enzymatic debridement, in 
which proteases from different sources (bacterial, vegetal or 
animal) is applied to the wounded area to remove necrotic 
tissue (48,49). Enzymatic debridement is selective and suit-
able for infected wounds (36), without the need for complex 
equipment or application procedures. This alternative also 
takes less time and requires fewer applications to accomplish 
debridement compared with dressings used for autolytic 
treatments (50). Other reported enzymatic wound healing 
approaches are anti- or pro-coagulation through venom toxins 
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from Bothrops sp. (51,52). These enzymes may frequently 
be inhibited by salts, temperature and hydrogen peroxide, 
which are common elements of aseptic solutions. A stinging 
sensation and exudate may also be observed as an after-effect 
of enzymatic treatment (36).

From these four mentioned alternatives, three are directly 
dependent on proteases to perform the debriding activity. 
The direct or indirect use of proteases is therefore the second 
most commonly used tool after surgical debridement. In 
the current literature, the most commonly used proteases 
in direct enzymatic debridement are bromelain, papain 
and bacterial collagenases (53). Other enzymes have been 
demonstrated to intervene as anti- or pro-coagulation agents 
and in non‑specific wound healing from animal secretions. 
The most common commercially and non-commercially 
available proteases associated with wound healing are listed 
in Table I.

Animal secretions with high quantities of protease content, 
including fish epithelial mucus and snake venom, have been 
reported to enhance wound healing. Wound healing proper-
ties were reported for the secreted mucus of the fish species 
Netuma barba (54), Channa striatus (55) and Clarias gari-
epinus (56). A reduction in healing time of almost 60% was 
achieved following the topical application of mucus prepara-
tions in the wounds of mice, rats, guinea pigs and humans (57). 
For snake venom, anti- or pro-coagulation and epithelial cell 
migration properties were observed with the toxins from the 
venom of Bothrops moojeni, B. atrox (51), B. alternatus (18) 
and B. jararaca (58).

Thus far, the primary application of proteases in wound 
treatment has been debridement. Information regarding the use 
of proteases being used for other wound healing treatments is 
scarce, suggesting that relatively little attempt has been made 
to propose the use of proteases in different stages of the wound 
healing process (57,59). Several therapeutic benefits have been 
described from animal secretions, but studies on their possible 
use in wound healing stages are limited. It may be beneficial to 
determine whether the existing types of SPs present in animal 
secretions with reported therapeutic effects (maggots, fish and 
snakes), can mimic human MMPs.

3. MMPs in skin wound healing: Comparison and substrate 
homology with proteases secreted from other animals

Wound healing is the process by which an epithelial 
discontinuity is closed and is divided into four major steps: 
Hemostasis, inflammation, cell migration‑proliferation and 
skin remodeling (60,61). The interaction and co-ordination of 
several elements such as cytokines, growth factors, coagulation 
elements, extracellular matrix (ECM) components, paren-
chymal cells and MMPs (62,63) enable the correct progression 
of these major steps (Fig. 1).

It has been reported that MMPs predominantly mediate 
the wound healing process and are involved in several events 
in each stage, including ECM degradation (64), cell prolifera-
tion/migration, mesenchymal cell differentiation (65), wound 
contraction, angiogenesis and re-epithelialization (66-68). At 
present, 25 different MMP variants have been identified in the 
human genome (64,69). Of these, 11 are responsible for skin 
remodeling and wound healing (Table II).

The presence of SPs has been reported in the secretions of 
fish (70), maggots (71,72) and snake venom (73). As MMPs are 
one of the primary participants of the wound healing process, 
a similarity may exist in the catalytic mechanisms of SPs and 
MMPs. This similarity may explain the therapeutic effect 
provided by these secretions.

Maggot therapy efficiency in the treatment of necrotic, 
infected chronic wounds is due to the activity of several SPs. 
This secretion consists of serine proteases (trypsin-like and 
chymotrypsin-like) and metalloproteases (71,72). As a secre-
tion, maggot proteases (MaPs) contribute to the wound healing 
process, primarily in fibroblast stimulation and bacterial 
disinfection. MaPs degrade fibrin clots and fibronectin (74), 
enhancing fibroblast metabolism and migration (22,75). In 
addition, MaPs increase TGF-β (transforming growth factor-β) 
signaling in wounds treated with maggots (76), which enhances 
endothelial cell and keratinocyte migration, thus promoting 
wound closure. Furthermore, MaPs inhibit neutrophil 
migration and decrease the production of pro‑inflammatory 
mediators in neutrophils and monocytes (44,77), leading to 
recruitment of pro-angiogenic growth factors (78) and healthy 
granulation tissue (79). MaPs are also considered antimicrobial 
enzymes (80), capable of eliminating Staphylococcus aureus 
and Pseudomonas aeruginosa (44,81) as well as degradation 
of biofilms produced by S. epidermidis and S. aureus (41).

From MaPs, only a chymotrypsin-like protease has been 
isolated from maggot secretions, which exhibited clotting 
and proteolytic activity in fibronectin, suggesting its use in 
hemostasis and for temporary collagen-rich replacement of 
ECM (74,82). These proteases also reduce biofilms in patients 
with leg ulcers (40,41).

Similar to maggot secretions, fish mucus and snake venom 
have been hypothesized as wound healing treatment agents. 
In traditional medicine, they have been used as a therapy for 
skin burns and hemostasis (51,55,56,83). Fish epithelial mucus 
consists primarily of glycoproteins and immune biomol-
ecules (84). Immune components, metalloproteases, serine 
proteases, and cathepsins B, D and L, have been identified in 
fish epithelial mucus (85,86). Enzymatic components from 
crude secretions contribute to accelerated clot formation and 
agglutination of red cells (87).

In the case of metalloproteases, fish matrix metallopro-
teinases (FMMPs) 9 and 13 and fish mucus meprins (FMM) 
have been described as components of fish mucosal secre-
tions (88,89). FMMPs 9 and 13 have analogous variants in 
human tissue, which participate in wound contraction and 
re-epithelialization (66,90). FMMs can degrade collagen IV, 
fibrillar procollagen and fibronectin (91‑93), which are also 
degraded by MMPs 3, 10, 11 and 12 (Table II). These proteases 
are involved in wound contraction, monocyte/macrophage 
metabolism and re-epithelialization (66).

Cathepsins are a family of proteases that have been 
identified in fish epithelial mucus, and these cathepsins in 
fish mucus have not been characterized. It is hypothesized 
that the cathepsins in fish mucus may exhibit a therapeutic 
effect on wound healing based on the available data regarding 
their properties on human skin. These proteases are normally 
present in lysosomal vesicles, but their presence has also been 
demonstrated extracellularly (94). In human physiology, they 
participate in wound healing during hemostasis (95), ECM 
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remodeling (96) and keratinocyte migration (97). Cathepsin-L 
substrate affinity has been described for laminins, fibronectin, 
elastin and collagen (98,99). Cathepsin-D has affinity for 

fibronectin, proteoglycans, and collagens I and II (100), while 
substrate affinity of Cathepsin‑B has been described primarily 
for collagen II, IX and XI (101). These substrates are also 

Table I. Applications of proteases in wound healing treatments classified by their reported therapeutic effect.

A, Debridement and skin burns

Author, year Enzyme Source (Refs.)

Ford et al, 2006 Papain + urea (Accuzyme SE) Carica papaya (152)
Ford et al, 2006 Papain, Urea, Chlorophyllin Copper  (152)
 Complex Sodium (Panafil SE)
Muhammad et al, 2014; Papain/Chymopapain  (20,153)
Yaakobi et al, 2007
Klasen, 2000 Collagenase Clostridium sp. (14)
Smith & Nephew, Inc., 2014 Collagenase (Santyl®) C. histolyticum (154)
Giudice et al, 2017 Bromelain (NexoBrid) Ananas comosus (155)
Gorecki and Toren, 2005 Bromelain cysteine protease  (156)
Klein and Houck, 1980 Bromelain cysteine protease  (157)
Niehaus et al, 2012 Debrilase Lucilia sericata (158)
Niehaus et al, 2012 Serine protease  (159)
Rosenberg, 2012 Bromelain, trypsin enzyme H-4, collagenase,  Several (160)
 papain/papain-urea
Freeman et al, 2012 Collagenase, elastase, papain, bromelain,   (161)
 hydrolase, streptokinase

B, Anticoagulation and procoagulation

Author, year Enzyme Source (Refs.)

Waheed et al, 2017 Moojenin (Defibrase®) Bothrops moojeni (51)
Waheed et al, 2017 Batroxobin (Reptilase) B. atrox (51)
Chan et al, 2016 Thromboplastin-like and thrombin-like  (52)
 (Hemocoagulase)
De Marco Almeida et al, 2015 Venom B. alternatus (18)
Yaakobi et al, 2004 Collagenase Non specified (162)
Rodeheaver et al, 1974 Trypsin/ADAMS SVMP Bovine (163)
Glyantsev et al, 1996 Collagenase Crab (specie non specified) (27)
Ferreira et al, 2017 Buffalo cryoprecipitate and Serine protease Crotalus durissus terrificus (59)

C, Enhancing wound healing

Author, year Enzyme Source (Refs.)

Fierro-Arias et al, 2017 Collagenase C. histolyticum (13)
Gao et al, 2015 rMMP8 and MMP9 inhibitor Non specified (164)
Pasha et al, 2015 Cream/composite Channa striatus (143)
Rilley and Herman, 2005 Collagenase Clostridium sp. (19)
Ferreira et al, 2018 Jararhagin B. jararaca (58)
Mukherjee et al, 2017 Mucus Echinoida sp. (83)
Costa-Neto, 2004 Globe eye Netuma barba (54)
Manan Mat Jais, 2007 Mucus C. striatus (55)

MMP, matrix metalloproteinase; SVMP snake venom metalloprotease; rMMP, recombinant MMP.
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target proteins for MMPs 1, 8, 13 and 14 (66,102), which 
supports the reported role of cathepsins in wound contraction 
and hemostasis.

Additionally, fish mucus serine proteases (FMSPs) are 
present in mucosal secretions (103), albeit with only poor 
substrate characterization thus far. Nevertheless, this family 
of proteases has reported activity on collagen, elastin, fibrin 
and fibrinogen (104,105). Thus, this protease may be useful 
during hemostasis, generating platelet aggregation and fibrin 
clot formation (106). Additionally, FMSPs degrade fibrin, 
which may assist in the change of ECM from temporary 
to collagen-rich, resulting in cellular proliferation and 
migration (107). This family of enzymes also interferes 
with the maturation of MMPs (66) and the desquamation 
processes (108).

Snake venoms, particularly from the Viperidae family, are 
rich in proteases. There secretion is comprised of two types of 

proteases: Snake venom metalloproteases (SVMPs) and snake 
venom serine proteinases (SVSPs) (73). These enzymes cata-
lyze a broad range of ECM components, coagulation factors 
and proteins involved in platelet aggregation (109,110).

SVMPs can intervene in hemostasis, as these hydro-
lyze glycoprotein Ib and factor X, which promote 
coagulation (110-112) and platelet aggregation (113,114), 
respectively. During inflammation, SVMPs enhance the infil-
tration of inflammatory cells (115,116) as well as increasing 
neutrophil and macrophage numbers (117-119), which 
increases soluble collagen levels and enhances angiogenesis 
through increasing vascular endothelial growth factor (VEGF) 
and TGF-β1 release (58). During cell migration and prolifera-
tion, it has been demonstrated that SVMPs degrade fibrin and 
fibronectin (112,120), resulting in the change from temporary 
to collagen-rich ECM. SVMPs also activate migration of 
skin fibroblasts (121) and endothelial cells (111,122‑124). In 

Figure 1. Simplified diagram of the interactions between different cell types during wound healing, the contribution of MMPs and proposed wound healing 
mechanisms of SPs. Skin injury repair begins with hemostasis, a process which stops blood loss and provides a temporary matrix facilitating further steps in 
wound healing. Fibrin-rich ECM formation stimulates neutrophil-activated monocyte recruitment through TNF-α and PDGF. Both neutrophils and monocytes 
produce several growth factors, such as TNF-α, TGF-α, TGF-β, EGF and FGF, to enhance migration and proliferation of fibroblasts, endothelial cells, and 
keratinocytes to the site of injury. Fibroblasts stimulate other cells to produce collagen deposits in the ECM, wound contraction, angiogenesis and re-epitheli-
zation. Studies suggest that SPs, such as FMC, FMMP, FMM, FMSP, MaP, SVMP and SVSP, may behave similarly to endogenous MMPs during these stages. 
Ang, angiopoietin; CTGF, connective tissue growth factor; Col, collagen; ECM, extracellular matrix; EGF, epidermal growth factor; FGF, fibroblast growth 
factor; FMC, fish mucus cathepsin; FMMP, fish mucus matrix metalloprotease; FMM, fish mucus meprin; FMSP, fish mucus serine protease; FN, fibronectin; 
Hy, hyaluronan; IL-1, interleukin-1; MaP, maggot protease; MMP, matrix metalloproteinase; PDGF, platelet-derived growth factor; PG, proteoglycan; SVMP, 
snake venom metalloprotease; SVSP, snake proteinase; TGF, transforming growth factor; TNF-α, tumor necrosis factor-α; VEGF, vascular endothelial growth 
factor.
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addition, SVSPs exhibit proteolytic activity on Factor V and 
fibrinogen, promoting fibrin clot formation (125‑127). SVSPs 
also promote aggregation of platelets (128).

Following analysis of reported interventions of SPs in 
wound healing, it could be presumed that they can intervene 
as helpers in several intermediate steps of the wound healing 
processes including coagulation, ECM degradation for 
re-epithelialization, or wound contraction, among other steps. 
The hypothesized mechanisms of SPs during the process of 
wound healing are presented in Fig. 1. Study of these variants 
may assist in the development of novel specific alternatives for 
active chronic wound healing care.

4. Potential of SPs as novel alternatives for wound healing 
care

Substrate homology analysis among MMPs and SPs suggest 
that animal enzymes may act similarly to the ones physiologi-
cally present in human skin. As presented in Fig. 1, previously 
compared SPs may be used to facilitate several steps involved 
in the process of wound healing, or to compensate for the 
physiological variants when they do not function properly. To 
understand this from a clearer perspective, it is important to 
comprehend in which of the most common chronic wounds 
types SPs may serve as suitable co-adjuvants.

In the current literature, chronic wounds have been classified 
into pressure ulcers, venous ulcers or diabetic ulcers (129,130). 
Pressure ulcers are caused by pressure, shear force, friction or 
a combination of these (131). The prevention and cure of pres-
sure ulcers is associated with daily movement of extremities 
and frequent body positioning during hospitalization (132). In 
this case, the use of proteases may serve as palliative care in 
bed preparation for wounded patients as opposed to assisting 
the metabolic processes of wound healing.

Chronic venous ulcers are associated with inflamma-
tion, mechanical damage and erratic structural remodeling 
of the vein. Pathological hemodynamics results in changes 
to microcirculation; this produces thrombosis, proinflam-
matory activity and impaired MMP-3 activity (133), leading 
to cell dysfunction and finally to ulceration (134). For 
ulceration and potential necrosis, maggot therapy has shown 
efficacy (40,41) by decreasing inflammation and neutrophil 
migration (77,135). It also degrades eschar, debrides the wound 
and serves as a bacterial disinfectant (40,42-45). Furthermore, 
fish mucus proteases have been shown to exhibit antibacterial 
activity (55,136), which may be useful for bacterial disinfec-
tion of ulcers.

Diabetic foot ulcers are wounds that manifest after a 
cascade of metabolic dysregulations initiated by long-term 
hyperglycemia (137). As a result of prolonged exposure to high 
blood sugar levels, there is a decrease in fibrinolytic activity, 
thus increasing blood viscosity and coagulation in this type of 
wound (138). In addition, hyperglycemia results in a reduction 
of growth factors and receptor levels (such as TGF-β1), accom-
panied by a prolonged inflammatory phase due to upregulation 
of MMP‑9 (139,140), which interrupts the inflammatory and 
proliferative phases of wound healing (141).

As an alternative therapy for diabetic foot ulcers, maggot 
treatment has demonstrated improved efficacy and efficiency 
compared with conventional methods (142). Furthermore, 
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MaPs (74), FMMPs (91) and a certain type of SVMP (112,120) 
have been reported to exhibit fibrinolytic activity which may 
ameliorate the characteristic viscosity of diabetic ulcers. 
Additionally, it has been reported that TGF-β signaling is 
increased in the presence of MaPs (76) and SVMPs (58), and this 
may also assist wound healing in this type of ulcer. However, 
certain SVMPs can promote coagulation (110-112,120); thus, 
meticulous care must be taken to separate and study each 
component embedded within the secretion instead of applying 
it as a whole.

In another report, fish mucus application enhanced the 
healing of laparotomy wounds (143). Therefore, SPs may be 
used to reduce the time taken for wound healing or for the 
removal of necrotic tissue, depending on the wound patho-
physiology.

Despite the positive effects of SPs in wound healing, further 
research must be performed to determine the specific mecha-
nisms of action, regulation, site delivery and bioavailability 
of proposed proteases before they may be recommended as 
feasible pharmacological candidates for treatment of chronic 
wounds. The application of SPs may be limited however, as 
its use for treatment of burn wounds exhibits highly variable 
results in patients (14).

It is also important to determine how SPs may affect 
other wound healing mechanisms when used as an adjuvant 
with other healing methods such as skin transplants. In this 
procedure, lost skin is covered with healthy tissue or artificial 
composites (144,145) that provide the necessary elements 
(cells, growth factors, MMPs and scaffolds) for the healing 
process (146). The success of a skin transplant is primarily 
dependent on angiogenesis between the skin graft and the 
injury, which is predominantly mediated by MMP-2, 9 and 
14 (147). Thus, SPs have been proposed as potential adjuvants 
to increase tissue compatibility during skin transplants.

Nevertheless, studies on SP-aided transplants is still 
ambiguous. For example, the use of botulinum toxin A during 
skin transplantation in murine models enhances the expression 
of VEGF and prolonged the survival of skin grafts (148). By 
contrast, Kucukkaya et al (149) demonstrated that the same 
toxin reduces wound-graft contraction. Thus, the effects of SPs 
on skin transplants requires additional studies to determine its 
benefits during skin transplantation.

5. Future perspectives

Studies and development of less expensive wound healing 
treatment alternatives must be encouraged. Treatment of all 
types of even the most common chronic wounds still incur 
a high cost, and the reported care expenses are $50,000 for 
a diabetic ulcer (25), $500-$70,000 dollars for a pressure 
ulcer (150) and $390-$50,967 dollars per venous ulcer (151). 
The proposal of proteases obtained from animal secretions is 
a promising area to explore, as these act on specific substrates 
involved in the wound healing process. Furthermore, it is 
important to determine the molecular events specific to each 
chronic wound case, as these may represent key tags on how 
the proposed SPs may intervene. Under these conditions, active 
wound care represents a viable solution if its use is based on 
specific requirements. Importantly, SP characterization is 
crucial to dispense with the use of secretions in wound repair, 

and instead use only the SPs. This may also allow heterologous 
production, immobilization or improvement of the therapeutic 
properties of the characterized SPs through mutagenesis. In 
addition, time‑efficient diagnostic tests on for detection of 
molecular targets in skin wound healing may be developed 
to guide practitioners on which tool to use for chronic wound 
care, resulting in improved wound healing and thus restoration 
of homeostasis.
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