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Abstract

Background: Improving efficiency of disease diagnosis based on phenotype ontology is a critical yet challenging

research area. Recently, Human Phenotype Ontology (HPO)-based semantic similarity has been affectively and widely

used to identify causative genes and diseases. However, current phenotype similarity measurements just consider the

annotations and hierarchy structure of HPO, neglecting the definition description of phenotype terms.

Results: In this paper, we propose a novel phenotype similarity measurement, termed as DisPheno, which adequately

incorporates the definition of phenotype terms in addition to HPO structure and annotations to measure the similarity

between phenotype terms. DisPheno also integrates phenotype term associations into phenotype-set similarity

measurement using gene and disease annotations of phenotype terms.

Conclusions: Compared with five existing state-of-the-art methods, DisPheno shows great performance in

HPO-based phenotype semantic similarity measurement and improves the efficiency of disease identification,

especially on noisy patients dataset.
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Background

With the high-speed development of next generation

sequencing (NGS) techniques, large-scale biological and

medical data is generated exponentially, which greatly

contributes toMendelian disease and cancer diagnosis [1–3].

However, it is still difficult to make accurate clinic diag-

nosis solely based on sequencing technologies, because of

the complex and incomprehensible relationships between

genetic variants and clinical phenotypes [4].

Some observable features of patients, such as behaviors

and biomedical properties, are defined as patient pheno-

types, which are usually determined by both genetic and

environmental factors [5]. Currently, patient phenotypes
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are widely used to improve efficiency of disease diagno-

sis by analysing the complex relationships between clinic

phenotypes and phenotypes of known diseases.

Human Phenotype Ontology (HPO) is a widely used

ontology resource, which provides a standardized vocab-

ulary of phenotypic abnormalities encountered in human

disease [6]. HPO contains multiple types of information

of phenotype, such as frequency modifier and defini-

tions of phenotype terms. Besides, phenotype terms in

HPO are organized as a directed acyclic graph (DAG) to

describe the phenotypic characteristics and their relation-

ships (An example is illustrated in Fig. 1). Based on HPO,

researchers start to calculate phenotype similarity, which

recently has been widely utilized to improve efficiency of

disease diagnosis, and phenotype semantic similarity has

become a rising research area [7, 8].

In phenotype semantic similarity area, previous

researchers have proposed various HPO-based similarity
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Fig. 1 An illustrative example of Human Phenotype Ontology (HPO). An example of Phenotypic abnormality (HP:0000118) forming a directed

acyclic graph (DAG), in which nodes represent phenotype terms and edges represent “subclass of ” relationships between phenotype terms

measurements. Most of existing semantic similarity mea-

surements are based on Information Content (IC), such

as Phenomizer [9], OWLSim [10] and PhenomeNet [11].

In detail, Phenomizer measures any two phenotype terms

similarity based information content of phenotype ontol-

ogy, which is similar as Masino et al. [12]. PhenomeNet

and OWLSim extend simGIC [13] to calculate phenotype

similarity of two phenotype sets. However, IC-based simi-

larity measurements ignore the associated relationships of

phenotype terms. Besides IC-based measurements, most

existing measurements are similar to GO-based similarity

measurements and neglect the unique topological struc-

ture of HPO [14–22]. And the main difference between

HPO and GO is the biological knowledge representing by

their structure. In the low-level of GO structure, sibling

terms are often similar to each other. In contrast, sibling

terms in the low-level of HPO structure are hard to prove

that they have associations at the gene level or share

any disease symptoms. For instance, phenotype terms

“Split hand (HP:0001171)” and “Areflexia of upper limbs

(HP:0012046)” are two leaf terms in HPO, but between

them, there is no known gene-level associations nor

shared disease symptoms [23].

Thus, it is essential to propose a novel and unique

HPO-based semantic similarity measurement which

designs for considering topological information of HPO.

We designed a new path-constrained IC-based phe-

notype term semantic similarity measurement, termed

as PhenoSim, which considers the unique DAG struc-

ture of HPO [23]. In addition, some practical online

or offline tools have been developed for biological

researchers, including HPOSim [24] and PhenoSimWeb

[25]. HPOSim provides an offline R package, which imple-

ments seven common ontology-based similarity measure-

ments, including Jiang [26], Lin [27], Wang [28] and

Schlicker [29]. PhenoSimWeb is an easy-to-use online

application which implements five phenotype measure-

ments and provides an intuitive visualization interface.

Although above methods are widely used to calculate

phenotype semantic similarity, none of them make the

best of phenotype ontology information, such as def-

inition description of phenotype term and phenotype

annotation information. PhenoSim proposed a phenotype

similarity measurement based on topological structure

of HPO, but it neglects text description and associa-

tion information of phenotype term. Current HPO-based

methods adopt gene or disease annotations to repre-

sent information content of phenotype term. However,

this method cannot describe phenotype term fully and

accurately, since many annotations associated with a phe-

notype are still unknown [30–32]. Therefore, it is essential

and necessary to explore a novel phenotype similarity
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measurement that make the best of phenotype ontology

information, such as hierarchical structure, term annota-

tion and text description of phenotype.

In this paper, we propose a novel phenotype similarity

measurement, named DisPheno, which integrates hier-

archy structure and phenotype term definition of HPO.

Compared with existing methods, the main contributions

of our work can be summarized as:

• To the best of our knowledge, DisPheno is the first

HPO-phenotype similarity measurement integrating

term annotation, hierarchical structure and text

description.
• DisPheno applies Point-wise Mutual Information to

calculate phenotype annotations and integrates into

phenotype-set similarity measurement.
• The evaluation results show that DisPheno

outperforms some state-of-the-art approaches.

Methods

In order to improve the performance of identifying

disease-related phenotypes, we propose a novel pheno-

type similarity measurement, termed as DisPheno, which

is a optimized method of a path-constrained information

content-based similarity measurement. DisPheno mainly

contains four steps. First, it annotates phenotype ontol-

ogy information content using both genes and diseases.

Second, it reconstructs topological structure of pheno-

type term using TF-IDF method [33]. Third, it computes

semantic similarity between two phenotype term ti and

tj considering information content(IC), distance between

terms and DAG structure. Finally, it computes phenotype

term associations using Point-wise Mutual Information

(PMI) method [34] and calculates phenotype set similar-

ity. The framework ofDisPheno is shown in Fig. 2. and the

detailed steps will be introduced as follows.

Step 1. Annotating phenotype ontology information

content

Most of current phenotype similarity measurement are

based on information content(IC), and the types of anno-

tating phenotype term mainly contains gene annotation

and disease annotation. Existing phenotype similarity

measurement are annotated using gene or disease, and

our method integrates these two types of annotations. In

annotating part, we use a weighted coefficient w to adjust

Fig. 2 The workflow of DisPheno. It mainly contains four parts: a Annotating phenotype ontology information content using both gene annotation

and disease annotation; b Reconstructing topological structure of phenotype term by calculating phenotype term definition similarity using TF-IDF;

cMeasuring phenotype semantic similarity based on HPO by integrating term definition-similarity; d Calculating phenotype term association and

set similarity by measuring phenotype term associations using Point-wise Mutual Information(PMI)
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the ratio of two types of annotations. The IC of phenotype

term t can be described as follows:

IC(t) = w ∗ ICgene + (1 − w) ∗ ICdisease

ICgene(t) = ln

(

G

Gt

)

ICdisease(t) = ln

(

D

Dt

)

where ICgene(t) represents the information content of

phenotype term t annotated by genes, G and Gt repre-

sent the size of genes annotated to the root and term

t respectively (ICdisease(t) is similar to gene annotation).

Finally, we can comprehensively integrate the relation-

ships between phenotypes and genes / diseases into the

information content of phenotype terms.

Step 2. Reconstructing topological structure of phenotype

term

Human Phenotype Ontology (HPO) provides a directed

acyclic graph (DAG) to describe the phenotype term and

associations. However, the edge of DAG has no weight

and just indicate the hierarchical relationship. To further

describe the relationship between phenotype terms, we

try to turn original DAG into a weighted directed acyclic

graph (WDAG). In our model, we calculate the cosine

similarity between the definitions of phenotype terms

using TF-IDF method and try to add weights for edges of

original DAG.

To calculate the phenotype term similarity, we need to

convert the term definition into vector by TF-IDF firstly.

TF-IDF is short for term frequency-inverse document fre-

quency, which is often used in data mining and informa-

tion retrieval to measure the importance of a document in

a collection or corpus [33].

Given a phenotype term definition t = {p1, p2, ..., pn},

pi represents a specify word, and the term frequency of

pi is tf (pi, t) = ni/|t|, where ni represents the times that

word pi occurs in phenotype term definition t, and |t| is

the number of words in t. And the inverse document fre-

quency of word pi is idf (pi,T) = log |T |
|{t∈T :pi∈t}|

, where |T |

is the total number of phenotype term in the HPO corpus

and |{t ∈ T : pi ∈ t}| is the number of phenotype term

where the word pi appears. Thus, the Term frequency-

Inverse document frequency(TF-IDF) can be calculated

as:

TF − IDF(pi, t,T) = TF(pi, t) ∗ IDF(pi,T)

After translating the phenotype term definitions into

TF-IDF vectors by calculating the word TF-IDF scores, we

can calculate the term similarity between pair-wise phe-

notype term using cosine similarity based on the TF-IDF

vectors. Then, we can obtain a phenotype term similar-

ity matrix S ∈ Rn∗n, where n is the number of total

phenotype terms. Finally, we add the phenotype term

similarity into the DAG and we can reconstruct the un-

weighted directed acyclic graph into a weighted directed

acyclic graph (WDAG). And the reconstructed WDAG

will be used in the process of calculating phenotype term

similarity.

Step 3. Measuring phenotype semantic similarity

Most phenotype similarity measurements are based on

information content, they just consider the information

content of most informative common ancestor or pheno-

type terms. They neglect the effects of hierarchy structure

and text description of phenotype terms.

In our previous research, PhenoSim has proposed a

path-constrained information content-based phenotype

similarity measurement. The core idea is to consider the

structural accessibility of phenotype terms. In detail, if

there is a directed path between any two phenotype terms

ti and tj in the hierarchy structure of HPO, we consider

that these two terms are highly similar to each other and

“reachable”. Otherwise, these two phenotype terms are

“unreachable” in the DAG structure of HPO.

Based on this measurement, we propose a novel

method, termed as DisPheno, which considering the dis-

tance between term ti and tj and the pathway on the

weighted directed acyclic graph. Thus, we define a novel

phenotype-based similarity measurement as:

sim(ti, tj) =

{

WIC(tMICA) ∗

(

1 −
dist(ti,tj)

mostDepth

)

reachable

0 otherwise

where WIC(tMICA) = min (IC(ti), IC(tj)) ∗ W (ti, tj),

(mostDepth − dist(ti, tj))/mostDepth implies the influ-

ences of distance between ti and tj, and W (ti, tj) is the

weight product from ti to tj among weighted directed

acyclic graph of HPO. Specifically, mostDepth describes

the longest path in the hierarchy structure of HPO, or the

maximum number of edges that leaf node reaches the root

node.

Step 4. Computing phenotype term association and set

similarity

Before calculating the phenotype set similarity, we need

to measure the association among all phenotype terms.

Current phenotype set similarity measurements all adopt

the average value of maximum phenotype term similar-

ity between phenotype term and phenotype set as the

phenotype set similarity. In our model, we introduce

the phenotype association relationships and use Point-

wise Mutual Information(PMI) to compute the phenotype

term associations.

Assuming that if two term ti and tj belongs to same

causative gene (or disease) in the gene-to-phenotype (or

disease-to-phenotype) association file, we hold that term

ti and tj are associated. The pair-wise association between

phenotype terms can be calculated as:
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PMI(ti, tj) = log

(

p(ti, tj)

p(ti) ∗ p(tj)

)

where p(ti, tj) is the probability that term ti and tj appear

on the same gene or disease annotation set simultane-

ously, p(ti) and p(tj) are total probability of term ti and tj
in the phenotype annotation set.

Given a patient and a candidate gene(or disease), the

corresponding phenotype sets are Tp and Tc respectively.

The phenotype set similarity between specific patient and

candidate genes (or diseases) are the average value of

pair-wise phenotype terms similarities betweenTp andTc:

Simset(Tp → Tc) =
1

Np

∑

ti∈Tp

max
tj∈Tc

(sim(ti, tj) ∗ PMI(ti, tj))

Simset(Tc → Tp) =
1

Nc

∑

tj∈Tc

max
ti∈Tp

(sim(tj, ti) ∗ PMI(tj, ti))

where phenotype similarity sim(ti, tj) is measured in pre-

vious step and N described the number of phenotype

terms in set T. Due to the similarity score relies on the

order of the phenotype-set and the above two equation

are asymmetric, we use the following equation to elimi-

nate the asymmetry affects. The symmetrical phenotype

similarity measurement are described as:

Simsym(Tp,Tc) =
1

2
(Simset(Tp → Tc)+Simset(Tc → Tp))

Where Simsym is the average value of set similarities of

two phenotype sets with different order. Phenotype term

and set similarity measurement are the key of identify-

ing true disease from candidate disease set. By modifying

existing HPO-based similarity, we can further improve the

efficiency of disease diagnosis.

Results

Data preparation

The experimental datasets were downloaded fromHuman

Phenotype Ontology (HPO) official website (https://hpo.

jax.org/), which contain 10,838 phenotype terms, 99,186

disease-to-phenotype annotations and 61,784 gene-to-

phenotype annotations.

To evaluate the performance of ourmethod, we used the

patients that simulated in our previous work PhenoSim,

which mainly contains “patients with known causative

genes” and “patients with known diseases” two parts.

Taking into account the clinical situation, we generated

dataset with noise phenotype terms, named noisy dataset,

and imprecision phenotype terms, named imprecision

dataset. The optimal and noisy datasets used in this paper

are same as our previous paper [35]. The details of simu-

lating patients are described as follows.

Optimal dataset Each simulated patient was assigned

one selected disease, and then we randomly added phe-

notype terms that selected disease associated with into

this stimulated patient. In detail, if the randomly gener-

ated number was not greater than the known penetrance

of the phenotype that disease associated with, this pheno-

type will be assigned to this simulated patient. The process

was repeated for 100 times, then we obtained final optimal

simulated patients.

Noisy dataset The noisy dataset is an extension of

optimal, which considers the real clinic dataset. Before

simulating noisy dataset, we firstly generated a noisy

phenotype-set that much larger than the number of opti-

mal phenotypes for every selected disease. The noise

phenotype can be defined as the term which is not asso-

ciated to this disease. After generating noisy phenotype-

set, half number of noisy phenotype terms are selected

and added into the phenotype set of simulated patients.

Finally, we repeated this process for optimal patients and

we generated the noisy simulated patients.

Noisy & Imprecision dataset Besides noisy pheno-

types, clinical datasets usually contain imprecision phe-

notypes which attributes to the limitation of medical

technology. The imprecision data is described as a kind of

phenotype terms that one of their ancestors is associated

with the disease d instead of the explicit phenotype term

itself. In this noisy & imprecision dataset, we randomly

selected half of the optimal terms and replaced them with

one of their ancestors. Then we added noisy phenotype

terms into the imprecision dataset, and the number of

noise terms is half of the imprecision dataset. Finally, opti-

mal, noisy and noisy & imprecision data all account for

one-third of the whole dataset.

Performance evaluation on optimal dataset

We utilized the same evaluation criterion with PhenoSim

to validate the prediction performance of DisPheno [12].

The main idea is to rank the candidate diseases of each

simulated patient. We calculated the phenotype similar-

ity value between the patient and each candidate diseases

using DisPheno, then ranked all the candidate diseases in

descending order by their similarity values. Higher the

true disease’s rank is, the better the algorithm’s perfor-

mance. Finally, we compared DisPheno with other five

existing state-of-the-art measures on all the simulated

datasets.

“Optimal patients with known causative gene”

dataset contains 3300 simulated patients and each patient

corresponds to one causative gene. We tested DisPheno

and other five methods on this optimal dataset and com-

pared the rank of true disease. Specifically, there is map-

ping relationship between causative genes and diseases.

Because the HPO-based similarity measurements are usu-

ally used on disease diagnosis, we ranked the candidate

diseases for each simulated patient instead of causative

genes. In the cumulative rank distribution figure, we

can find that DisPheno performed much better than the

https://hpo.jax.org/
https://hpo.jax.org/
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other methods (Fig. 3). 28.78% of true candidate diseases

rank first using DisPheno which is the highest percentage

among all methods. The percentage of rank among top-3

using DisPheno is 49.86%, while the ratio of other meth-

ods are 42.94% (PhenoSim), 35.69% (Masino), 28.55%

(Lin), 30.69% (Jiang) and 28.42% (Schlicker) respectively.

In addition, 60.43% candidate diseases rank among top-

5 using DisPheno and it is 10.98% higher than PhenoSim

(49.45%) which is the second best method.

“Optimal patients with known disease” dataset con-

tains 24,000 simulated patients and each patient corre-

sponds to one disease.We tested the performance of all six

approaches on this optimal dataset (see Table 1). Although

the percentage of top-1 using DisPheno (83.12%) is less

than the ratio of Schlicker (96.36%), 99.10% of candidate

diseases rank among top-3 which is the highest compared

with other methods. Although top-1 percentage is not

highest, DisPheno shows great performance on disease

identification. In the clinical cancer diagnosis or disease

prediction, it usually provides scientists with several top

candidates instead of the single highest one.

In the optimal datasets, DisPheno performs better than

other five methods. And it also shows great performance

and latent capacity on predicting disease and disease

diagnosis. Considering that clinical phenotype set often

contains lots of noise data, we further validate the perfor-

mance of DisPheno on the simulated patient with noisy

phenotype terms.

Performance evaluation on noisy dataset

“Noisy patients with known causative gene” dataset

contains noisy phenotypes which are not annotated phe-

notype terms of the causative gene. We applied DisPheno

and other five measures on the noisy dataset. Our

method performed the best in all the six measurements

(Fig. 4). The ratio of true diseases rank among top-5

using DisPheno reaches the highest (57.38%), which is

11.20% higher than the second highest method PhenoSim

(46.18%). The percentage of other methods perform on

this dataset are 36.85% (Masino), 10.67% (Lin), 6.80%

(Jiang) and 14.61% (Schlicker). DisPheno shows great per-

formance on noisy patient with known causative gene, it

indicates good application prospect on clinical diagnosis.

“Noisy patients with known disease” dataset contains

noisy phenotypes which are not annotated phenotype

terms of the disease. We applied DisPheno and other five

approaches on the noisy dataset, and our method per-

formed the best in all the six measurements (Fig. 5).

On the noisy patients with known diseases, the perfor-

mance of DisPheno is far superior than the other five

Fig. 3 Cumulative rank distribution of optimal patient dataset with the known causative gene. The x-axis is the rank threshold and the y-axis is the

cumulative probability of true disease rank
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Table 1 The percentage of cumulative rank distribution

Method Top-1 Top-3 Top-5 Top-10

DisPheno 83.12% 99.10% 99.71% 99.87%

PhenoSim 79.50% 98.62% 99.45% 99.83%

Masino 82.48% 97.43% 98.63% 99.16%

Lin 95.68% 97.94% 98.63% 99.35%

Jiang 95.43% 98.17% 99.11% 99.69%

Schlicker 96.36% 98.31% 98.93% 99.53%

DisPheno was compared with other five methods on the optimal patient with the

known disease

algorithms. 56.48% of candidate diseases rank the highest

using DisPheno. Instead, the ratio of other five meth-

ods are 42.74% (PhenoSim), 20.04% (Masino), 0.5% (Lin),

0.32% (Jiang) and 1.82% (Schlicker). The second highest

is PhenoSim, which is 13.74% less than DisPheno. The

great gap shows the performance of our method in dis-

ease identification, especially on noisy simulated patient

dataset.

Overall, DisPheno performs better than other five sim-

ilarity measurements on the stimulated datset with noise

phenotype terms, and it shows great robustness. It implies

huge potential on clinical disease diagnosis.

Performance evaluation on noisy & imprecision dataset

Except noisy phenotype terms, clinical datasets often con-

tains imprecision phenotypes. In this part, we performed

DisPheno on the noisy and imprecision patient dataset

with known disease to evaluate the performance respec-

tively.

Compared with other five methods, DisPheno shows

good and stable performance on simulated patients with

noisy and imprecision phenotypes (see Table 2). The per-

centage of true disease rank among top-10 usingDisPheno

reaches 22.34%, which is much higher than others. It indi-

cates that DisPheno would perform well on the clinical

datasets and it shows great prospects on disease diagnosis.

Effects of parameters on DisPhenomodel

In this part, we test the various parameters on DisPheno

model. In the first part of our model, we utilize both gene

and disease annotations. We run DisPhenomultiple times

by varying the parameter w from 0.0 to 1.0 to test the

performance of different weighted coefficients. Figure 6

shows that DisPheno achieves the best performance when

the weighted coefficient is equal to 0.5 or 0.9.

Besides, we also run different parts of DisPheno to

evaluate the contribution of different components in the

model. Compared with previous algorithm PhenoSim,

this novel model mainly adds four parts to improve the

Fig. 4 Cumulative rank distribution of noisy patient dataset with the known causative gene. The x-axis is the rank threshold and the y-axis is the

cumulative probability of true disease rank
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Fig. 5 Cumulative rank distribution of noisy patient dataset with the known disease. The x-axis is the rank threshold and the y-axis is the cumulative

probability of true disease rank

performance of identifying true disease. First part is uti-

lizing both gene and disease to annotate phenotype terms,

named as Anno. Second part of our model mainly con-

sider the effect of the distance between two phenotype

terms, thus we add (1− dist(ti, tj)/mostDepth) in the pro-

cess of calculating phenotype term similarity, named as

Depth. Besides, we utilize TF-IDF and Cosine Similar-

ity to measure the similarity between any two phenotype

terms based on their definitions. We then add term def-

inition similarities into phenotype topological structure,

Table 2 The percentage of cumulative rank distribution

Method Top-10 Top-20 Top-30 Top-40 Top-50

DisPheno 22.34% 36.00% 44.55% 52.55% 58.07%

PhenoSim 3.86% 11.76% 20.69% 29.03% 36.49%

Masino 7.12% 23.76% 38.21% 48.89% 56.57%

Lin 2.14% 8.16% 15.16% 21.77% 27.98%

Jiang 1.66% 2.57% 3.45% 4.32% 5.25%

Schlicker 1.89% 6.88% 13.67% 20.34% 26.78%

DisPhenowas compared with other five methods on the noisy & imprecision patient

with the known disease

and convert original directed acyclic graph into a weighted

directed acyclic graph. This part is named as Weight.

In the part of calculating phenotype term similarity, we

calculate PMImatrix tomeasure the association of pheno-

type terms. This step is named as PMI. We run our model

with different single part to evaluate the performance of

DisPheno. Figure 7 shows that each part of DisPheno con-

tributes to improve the performance of identifying true

disease from disease candidate sets. From this experimen-

tal results, we can find that the phenotype annotation

method, distance between two phenotype, definition of

phenotype term and association of phenotype sets are all

critical to phenotype similarity measure and it could sig-

nificantly improve the performance of disease diagnosis.

Performance evaluation on gene and disease similarity

To further test the performance ofDisPheno, we also apply

our method on similarity measurement of gene and dis-

ease. Each gene or disease can be annotated by a set of

phenotype terms. Therefore, gene or disease similarity

measurement can be translated into a task of measuring

phenotype set similarity. We run our method DisPheno

on a gene set and a disease set. Both of the two sets con-

tain 20 genes or diseases. We use venn diagram to show
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Fig. 6 The histogram of cumulative rank distribution with different weighted coefficient between gene and disease annotations. The x-axis is the

four different top ranks and the y-axis is the cumulative probability of true disease rank. When the weighted coefficient is 0.5 or 0.9, DisPheno

achieves better performance on the optimal patients with known causative gene dataset

the experimental results of five measurements (DisPheno,

PhenoSim and other three methods randomly selected

fromMasino, Jiang, Lin and Schlicker). In detail, we firstly

rank gene or disease pairwise similarities calculated by all

five methods. Then, we calculate the intersection of top-

20 gene pairs or disease pairs, and visualize the result by

venn diagram.

The venn diagram (Fig. 8) shows that DisPheno is

slightly better than other similarity measurements. We

compare DisPheno and PhenoSim with other three meth-

ods which randomly selected from four phenotype sim-

ilarity measurements. In the task of gene similarity cal-

culation, the top-20 gene pairs of DisPheno are all part

of others. In contract, PhenoSim contains 2 or 4 gene

pairs which do not belong to any intersection. Similarity,

DisPheno has fewer single disease-pairs than others in the

task of measuring disease similarity.

Besides, we used the visualization tool of PhenoSimWeb

to visualize the disease and gene set similarity [25].

PhenoSimWeb is an online application which can be used

to calculated phenotype, gene and disease similarity. It

also can predict disease and causative gene based on the

input phenotype set. PhenoSimWeb contains other useful

tools, such as text description translator and visualization

interface. And the visualization interface of disease set

similarity calculated by DisPheno is shown in Fig. 9. The

main panel is the terms association network, where nodes

represent disease terms and edges represent similarities

between diseases. The upper left is the mini control

panel, where you can adjust threshold and visual layout.

The lower left part is the overall distribution of simi-

larity scores. The upper right shows the neighborhood

of selected disease term “OMIM:601894”. This visualiza-

tion webpage provides user a clear and convenient way to

analysis the results of disease similarity.

PhenoSimWeb is an online phenotype similarity calcu-

lating and visualizing application, which currently con-

tains five phenotype similarity measurements, including

PhenoSim, Masino, Jiang, Lin and Schlicker. And in this

paper, we propose a novel HPO-based phenotype similar-

ity method. We will add our method DisPheno into the

online tool PhenoSimWeb and enrich phenotype similarity

measurement of this web application in the future.

Conclusions

The high-speed development of biological techniques

such as next generation sequencing has greatly improved

efficiency of cancer prediction and disease diagnosis.
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Fig. 7 The histogram of cumulative rank distribution with different parts of DisPheno. The x-axis is the four different top ranks and the y-axis is the

cumulative probability of true disease rank. The navy blue bar is PhenoSimmethod with part Anno and the weighted coefficient is 0.5. The sky blue

contains part Depth based on previous step. The green one contains partWeight. The orange one combines part Depth andWeight. The yellow bar

is the method DisPheno which performs better than others

Fig. 8 The venn diagram of top-20 gene and disease pairwise similarity. The blue and green are DisPheno and PhenoSim. The purple, tomato, yellow

and red are Schlicker, Lin,Masino and Jiang respectively. From the intersection of venn figure, DisPheno performs better than other methods on task

of gene and disease similarity measurement. For instance, the upper-left venn diagram shows that there are 5 pairwise genes are included in all

methods’ results. All top-20 pairwise genes of DisPheno are contained by others. In contrast, there are 2 (PhenoSim), 4 (Jiang) and 6 (Masino)

pairwise genes not belongs to any intersections. a Gene b Disease
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Fig. 9 Disease similarity using visualization interface of PhenoSimWeb. We ran DisPheno on a disease dataset and calculated the pair-wise similarity of

these diseases. Then, we visualized the results using the visualization interface of PhenoSimWeb. The main panel is the diseases association network,

where nodes represent disease terms and edges represent similarities between diseases. The upper left is the mini control panel, where you can

adjust threshold and choose different visual layout. The lower left part is the overall distribution of similarity scores. The upper right shows the

neighborhood of selected disease term “OMIM:601894”

However, intricate phenotype ontology and high genetic

heterogeneity have stunted further improvement of dis-

ease identification. As an useful and powerful tool, HPO-

based phenotype semantic similarity could fill this gap

and accelerate the disease diagnosis effectively. In this

paper, we proposed an unique and novel phenotype sim-

ilarity measurement, called DisPheno, which integrates

multiple types of information: hierarchical structure, phe-

notype term annotation and text description. Compared

with existing five state-of-art methods on the optimal and

noisy datasets, ourmethod performsmuch better than the

others. In summary, DisPheno accelerates the efficiency

of disease identification significantly and it also shows

greatly potentiality in practical clinical studies.
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