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Identifying genes associated with Parkinson’s disease plays an extremely important

role in the diagnosis and treatment of Parkinson’s disease. In recent years, based

on the guilt-by-association hypothesis, many methods have been proposed to predict

disease-related genes, but few of these methods are designed or used for Parkinson’s

disease gene prediction. In this paper, we propose a novel prediction method for

Parkinson’s disease gene prediction, named N2A-SVM. N2A-SVM includes three parts:

extracting features of genes based on network, reducing the dimension using deep neural

network, and predicting Parkinson’s disease genes using a machine learning method.

The evaluation test shows that N2A-SVM performs better than existing methods.

Furthermore, we evaluate the significance of each step in the N2A-SVM algorithm and

the influence of the hyper-parameters on the result. In addition, we train N2A-SVM on the

recent dataset and used it to predict Parkinson’s disease genes. The predicted top-rank

genes can be verified based on literature study.

Keywords: PPI network, Parkinson’s disease, deep learning, node2vec, feature representation

1. INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disease, which is common in the elderly population
and has an average age of onset of 60 years. The exact causes of this pathological change are still
unclear. Genetic factors, environmental factors, aging, and oxidative stress may be involved in the
degenerative death of PD dopaminergic neurons (Urbach-Ross and Thiruchelvam, 2010). Studies
have shown that the occurrence of human diseases is rarely caused by a single gene, and most
diseases are related to multiple genes (Barabási et al., 2011). Currently, there are 178 genes known
to be associated with Parkinson’s disease based on the NCBI (National Center for Biotechnology
Information) website. Lots of genes related to Parkinson’s disease still have not been discovered.
The identification of genes associated with Parkinson’s disease will enhance our understanding for
Parkinson’s disease, help us uncover the underlying molecular mechanisms of disease and aid us
to diagnose disease. Therefore, it is valuable to develop a method that can predict genes associated
with Parkinson’s disease.

In recent years, many methods have been proposed to predict genes associated with
diseases (Peng et al., 2017a,b; Cheng et al., 2018a; Hu et al., 2018; Liao et al., 2018). As more
and more biological data can be utilized, it is possible to identify candidate genes based on
computational methods. Comparing with in vivo or biochemical experimental methods, which
can be extremely costly and time-consuming, computational approaches are more efficient and
can guide the in vivo experiment. Most of existing computational methods are based on the
guilt-by-association hypothesis (Cheng et al., 2018b; Peng et al., 2018b). The assumption is
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that genes associated with the same or similar diseases tend
to accumulate in the same neighborhood of the molecular
network. Therefore, a key step is to measure the distance between
candidate genes and known disease genes in the protein-protein
interaction (PPI) network. Lots of methods have been developed
recently (Sharan et al., 2007; Wang and Marcotte, 2010).

One simple way is to determine if the two proteins are directly
connected in the PPI network, so called direct neighbor counting.
Oti et al. (2006) predicted genes associated with diseases by
counting the number of known causative genes in their direct
network neighbor. However, since two proteins that do not
directly connect in PPI network are also likely to be involved in
the same biological pathway, some researchers use the shortest
path-based method to evaluate the association of two proteins.
Krauthammer et al. (Michael et al., 2004) use this method to
predict genes associated with Alzheimer’s disease, and the results
indicate that the genes predicted by this method are consistent
with manually curated candidates. However, both methods can
only capture local information of the network. In order to
extract global information of the genes in the PPI network,
some global methods have been proposed, such as Random
Walk with Restart (RWR) (Peng et al., 2018c) and the diffusion
kernel. Li et al. (Yongjin and Patra, 2010) show that these
global information-based methods perform better than local
information-based measurement.

In this paper, we propose a new algorithm called N2A-SVM
(Node2vec Autoencoder-Support Vector Machine) to predict
genes associated with Parkinson’s disease. The contributions of
our work are as follows:

• N2A-SVM is able to capture global topology information of a
gene based on Node2vec method.

• N2A-SVM learns low-dimensional representation for each
gene using a deep neural network model.

• N2A-SVM performs significantly better than
existing methods.

2. METHOD

N2A-SVM consists of three steps. In the first step, node2vec is
used to extract the vector representation of each gene in the
PPI network. In the second step, autoencoder is used to reduce
dimension of the obtained vector. Finally, we use a machine
learning method, named SVM, to predict the genes associated
with Parkinson’s disease. The detail in the key steps of the
N2A-SVM is shown in the rest of section.

Step1. Extracting Feature Representation
of Genes
Node2vec is a flexible neighborhood sampling strategy which
allows us to smoothly interpolate between BFS (Breadth
First Search) and DFS (Depth First Search). This method is
implemented by developing a flexible biased random walk
procedure that can explore neighborhoods in both BFS and DFS
fashion (Grover and Leskovec, 2016). Node2vec defines a random
walk with two parameters p and q. Let the current random walk
position be node v. Let the position at previous step be node t. In

order to determine the next position, the transition probabilities
πvx on edges (v, x) leading from v should be evaluated. We set
the unnormalized transition probability as πvx = αpq(t, x) · wvx.
Specifically, αpq is defined as follows.

αpq =











1
p dtx = 0

1 dtx = 1
1
q dtx = 2

(1)

where dtx defines the shortest distance between node t and node
x, and the value of dtx must be 0, 1, or 2.

The parameter p controls the possibility of revisiting a node
during the random walk. When the value of p is high, the
nodes that have been visited will rarely be sampled. This strategy
encourages moderate exploration and avoids 2-hop redundancy
in sampling. On the other hand, if the value of p is low, it would
lead the walk to backtrack a step (Figure 1) and this would keep
the walk “local” close to the starting node u.

Parameter q allows the search to differentiate between “local”
and “global” nodes. As shown in Figure 1, if q > 1, the random
walk has a greater probability of sampling the nodes around
the node v. Such walks can get a local view of the underlying
graph. BFS samples nodes within a small locality. In contrast,
if q < 1, the random walk will go farther away from v, which
can get more global features information. Therefore, the distance
between the sampling node and the given source node u is not
strictly increased. But in turn, the measurement benefits from the
superior sampling efficiency of preprocessing and random walk.
In this article, we get a 512-dimensional vector representation of
each gene in the PPI network via the node2vec algorithm.

Step2. Learning the Low Dimension
Representation of Features
Currently, commonly used linear dimensionality reduction
methods are Principal Component Analysis (PCA), Independent

FIGURE 1 | Illustration of node selection in node2vec algorithm. In this figure,

the current position of random walk is at the node v and the previous step is at

the node t. The neighbors of v are x1, x2, and x3. The values of apq are

calculated based on the distances between the neighbors of v and t.
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Component Analysis (ICA), and Factor Analysis (FA). These
dimensionality reduction methods perform well when high-
dimensional datasets have linear structure and Gaussian
distribution. However, when datasets are highly distorted in
high-dimensional space, these methods are difficult to find
nonlinear structures embedded in datasets and restore the inner
structure. Therefore, we use autoencoder (Peng et al., 2018a) for
low dimension feature learning in this step.

The autoencoder is composed of two components: encoder
and decoder. The encoder belongs to the dimension reduction
part, which is used to dimensional reduction. The decoder
network belongs to the reconstruction part, which is the
inverse of the encoder network and restores low-dimensional
representation to original input data. There is also a code layer
between encoder and decoder. The code layer is the key part of
autoencoder network (see Figure 2).

The workflow of the autoencoder includes several steps: firstly,
the weights of encoder and decoder network are initialized;
secondly, the autoencoder network is trained by minimizing the
error between the input and output (Hinton and Salakhutdinov,
2006). N2A-SVM algorithm uses autoencoder for data de-
noising and data dimensionality reduction. Tensorflow is used to
implement autoencoder.

Step3. Predicting Parkinson’s Disease
Genes
The Parkinson’s disease gene prediction can be considered as
a classification task with two labels. We use Support Vector
Machine (SVM) (Schuldt et al., 2004) algorithm to solve this
bi-classification problem. For classification, SVM constructs a
hyperplane or set of hyperplanes in a high-dimensional space to
classify genes with different labels.

Genes associated with Parkinson’s disease are considered
as positive set. We randomly select genes not associated with
Parkinson’s disease as negative set. The negative set has the same
size as positive set. We used ten-fold cross validation in the
evaluation test.

3. RESULTS AND DISCUSSION

In this section, we evaluate the performance of four methods
of N2A-SVM, RWR (Yongjin and Patra, 2010), Shortest Path

FIGURE 2 | Flowchart of autoencoder. The data x is the n-dimensional feature

vector that obtained in the previous step. y is the output of the encoder

network. Usually, the dimension of y is smaller than dimension of x (m < n). z is

the output of the decoder network and its dimension is the same as x. The

model is optimized by minimizing the difference between x and z.

Length (SPL) (Michael et al., 2004), and Euclidean distance (ED)
(Díaz-Uriarte and Alvarez de Andrés, 2006) on predicting genes
associated with Parkinson’s disease. RWR is a method that are
widely used in network-based disease gene prediction. The ED
and SPL method are used in path-based disease gene prediction.
We also test the effect of each step and different parameters of
the N2A-SVN algorithm on the performance of the algorithm.
Finally, we apply N2A-SVM to predict new Parkinson’s disease
genes. The result shows that some of the genes predicted by the
N2A-SVM algorithm are supported by existing literature.

Performance Evaluation on Parkinson’s
Disease Gene Prediction
We download genes related to Parkinson’s disease from
the ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/). After
removing deduplication, we get 178 genes associated with
Parkinson’s disease. In addition, we use the PPI network that
is also used in (Menche et al., 2015). The network contains
13,460 nodes and 141,296 edges. In the Euclidean distance-based
approach, we calculate the mean of the distances between
each gene not associated with Parkinson’s disease in the PPI
network and all known genes associated with Parkinson’s disease.
Moreover, the SPL method achieves the calculation of the
shortest path length between the Parkinson’s disease related
gene and genes that do not relate to Parkinson’s disease. In
addition, in the RWR-based method, we obtain the diffusion
state of each gene based on the probability matrix. The AUROC
(Area Under the Receiver Operating Characteristic curve)
scores of the tested methods are shown in Figure 3. The
result shows that the AUROC score of N2A-SVM (0.7289)
is the highest, while the score of the second best method
is 0.6527.

In order to test the impact of each step of the N2A-
SVM algorithm on the performance, we test two variations
of N2A-SVM. In the RWA-SVM, we first use the RWR
algorithm to obtain the features representation of each gene.
The number of feature dimensions for each gene is 13,460,
which is the same of the number of genes involved in the
PPI network. Then, the autoencoder is used for dimensionality
reduction. Finally, SVM is used for Parkinson’s disease gene
prediction. In the N2V-SVM, we verify the effect of the
step of dimension reduction on the prediction results. We
directly use the node2vec method for feature extraction, and
the obtained 512-dimensional feature vector is used as the
input of the SVM classification algorithm. By comparison of
three methods, the result shows that N2A-SVM performs better
than RWA-SVM and N2V-SVM. It is indicated that each step
in the N2A-SVM algorithm is crucial to the final prediction
(see Figure 4).

The Impact of Different Parameters on
Disease Gene Prediction
We test three important parameters involved in our algorithm:
p, q in the node2vec algorithm and the dimension size of
feature obtained from autoencoder. For the parameter test, we
fix one parameter and vary other parameters. p and q are
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FIGURE 3 | Performance comparison of the four methods (ED, SPL, RWR, and N2A-SVM).

FIGURE 4 | Performance evaluation by modifying each step of N2A-SVM algorithm.

related to the random walk process in the node2vec algorithm.
We use different values of p and q and test their effect on
the performance. Overall, the performance of the algorithm is
robust to the parameter p and q. The value of AUROC varies
between 0.69 and 0.73 (see Figure 5). We also test the effect
of the features dimension of each gene after dimensionality
reduction using the autoencoder algorithm. As the dimension
increases, we find that the value of AUROC gradually becomes

larger and tends to be stable when the number is larger than
200 (Figure 6).

A Case of Predicting New Parkinson’s
Disease Genes
Finally, we use the N2A-SVM algorithm proposed in this
article to predict the genes associated with Parkinson’s disease.
After training the model, we use the model to predict new
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FIGURE 5 | The effect of different (p, q) on the performance of N2A-SVM. The value of p is one of 2, 20, 200, and the value of q is one of 0.1, 0.01, 0.001, 0.0001.

FIGURE 6 | The effect of different feature dimensions on the performance of

N2A-SVM.

Parkinson’s disease genes that do not included in the database.
We first rank all the genes based on the probability predicted
by the trained model. We select the top ten genes and look
up them in the literature. The 10 genes are TRIM63, MT-
ND4, NDUFB5, NDUFA6, MYOZ1, DHDDS, PICK1, CIC,
PARK2, and HGS. Based on literature review, we find that
some of these genes have been reported to be associated with
Parkinson’s disease. PICK1, PARK2, MOYZ1 are reported in
He et al. (2018) and Padmaja et al. (2012). In addition, three
genes, MT-ND4, NDUFB5 and NDUFA6, affect the synthesis
of mitochondrial complex 1 associated with Parkinson’s disease
(Rodenburg, 2016; Talebi et al., 2016). Among the remaining
four genes, DHDDS is associated with the onset of epilepsy
(Hamdan et al., 2017). It can be found in UniProtKB that the
CIC gene is involved in the formation of the central nervous

system and the development of the brain. HGS is associated
with multiple sclerosis (MS) (Igci et al., 2016), an inflammatory
disease of the central nervous system caused by genetic and
environmental factors. From the 2019 version of the gene table
of neuromuscular disorders (Bonne et al., 2018), we find that
the TRIM63 gene is involved in neuromuscular diseases. In
total, TRIM63, DHDDS, CIC, and HGS are all associated with
neurological diseases.

4. CONCLUSIONS

Identifying genes associated with Parkinson’s disease is of great
importance for the treatment of Parkinson’s disease. In this
article, we present a new algorithm, named N2A-SVM, to predict
Parkinson’s disease gene. N2A-SVM includes three steps: (1)
extracting the vector representation of each gene in the PPI
network using node2vec; (2) reducing dimension of the obtained
vector using autoencoder; (3) predicting the genes associated
with Parkinson’s disease using SVM. We compare N2A-SVM
with RWR and distance-based method and prove that N2A-SVM
performs better than the compared methods. In addition, we use
the N2A-SVM algorithm to discover new genes associated with
Parkinson’s disease. Ten genes most likely to be associated with
Parkinson’s disease have been proved by literature study. In the
future, we will use this method in the prediction of other related
diseases, and hope to apply biological experiments to verify
the results.
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