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Prediction of Yangtze River 
streamflow based on deep 
learning neural network with El 
Niño–Southern Oscillation
Si Ha1, Darong Liu1* & Lin Mu1,2*

Accurate long-term streamflow and flood forecasting have always been an important research 
direction in hydrology research. Nowadays, climate change, floods, and other anomalies occurring 
more and more frequently and bringing great losses to society. The prediction of streamflow, 
especially flood prediction, is important for disaster prevention. Current hydrological models based on 
physical mechanisms can give accurate predictions of streamflow, but the effective prediction period 
is only about 1 month in advance, which is too short for decision making. The artificial neural network 
(ANN) has great potential for predicting runoff and is not only good at handling non-linear data but 
can also make long-period forecasts. However, most of ANN models are unstable in their predictions 
when faced with raw flow data, and have excessive errors in predicting extreme flows. Previous 
studies have shown a link between the El Niño–Southern Oscillation (ENSO) and the streamflow of the 
Yangtze River. In this paper, we use ENSO and the monthly streamflow data of the Yangtze River from 
1952 to 2018 to predict the monthly streamflow of the Yangtze River in two extreme flood years and a 
small flood year by using deep neural networks. In this paper, three deep neural network frameworks 
are used: stacked long short-term memory, Conv long short-term memory encoder–decoder long 
short-term memory and Conv long short-term memory encoder–decoder gate recurrent unit. The 
results show that the use of ConvLSTM improves the stability of the model and increases the accuracy 
of the flood prediction. Besides, the introduction of ENSO to the experimental data resulted in a more 
accurate prediction of the time of the occurrence of flood peaks and flood flows. Furthermore, the best 
results were obtained on the convolutional long short-term memory + encoder–decoder gate recurrent 
unit model.

�e Yangtze River is one of the most important rivers in China, with a large, densely populated, and economically 
developed river basin. Flooding in the Yangtze River is of great concern to people, and China has invested heavily 
in �ood prevention. However, thousands of people still died in several major �oods in the past three decades, 
and the average direct loss is more than 100 billion RMB per  year1. Yangtze River stream�ow forecasting plays an 
important role in �ood prevention and post-disaster relief, as well as in integrated water resources development 
and utilization, scienti�c management, and optimal scheduling. Because many factors a�ect the stream�ow of 
the Yangtze  River2, researchers have used various methods to predict the stream�ow of the Yangtze River over 
the years to obtain valuable prediction data.

Runo� is a natural signal, a complex non-linear time series that is simultaneously in�uenced by a variety of 
factors such as rainfall in the basin, the degree of erosion in the basin, atmospheric circulation, and urban and 
rural water use. Di�erent methods of �ow prediction have been proposed by researchers for predicting runo�. 
�ese methods can be divided into short-term prediction methods, dealing with prediction times of  hours3,4 
to  days5–7, and long-term prediction methods, dealing with scales of  weeks8,  months7,9, and even  years10. �ese 
methods can also be divided according to the type of model employed: hydrological models based on physical 
mechanisms and data-driven models based on data analysis. Hydrological models include the Soil and Water 
Assessment Tool (SWAT), Top  Model11, and the Xinanjiang  model12. �ese models simulate the variability 
and transport of elements such as water quantity and quality in a region by collecting spatial and hydrological 
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information about the river basin to obtain a prediction of river stream�ow. �is class of models has been widely 
validated and applied to achieve river stream�ow prediction. Among the data-driven models, there are tradi-
tional black box time series models such as auto-regressive, moving average, auto-regressive moving average, 
auto-regressive integrated moving average, and auto-regressive integrated moving average with exogenous input 
 models[13–16. �ese models look for patterns by linearly decomposing the stream�ow data, and thus perform well 
when the data has periodic features; however, they perform poorly in the face of complex hydrological data. Data-
driven models also include arti�cial intelligence (AI) models, which are good at dealing with nonlinear data and 
can �nd patterns in noise; therefore, AI-based models perform well when dealing with hydrological problems. 
Such models include arti�cial neural networks (ANNs)17], the support vector machine (SVM)18, backpropagation 
(BP), fuzzy  sets19, evolutionary computation (such as evolution strategies)20, and wavelet conjunction  models21 
etc. �e SVM model performs better than the gene expression programming and M5 model  trees22. Although 
ANNs perform with average accuracy compared to numerical statistical  methods23, they have great potential for 
development. ANNs were inspired by the structure of biological  neurons17 and simulate these biological neu-
rons, essentially constructing a mapping with a large number of parameters to �t the mapping between actual 
observed data and predicted data. �is con�guration of ANNs makes them excellent at handling nonlinear data 
with implicit patterns. �e features of hydrological data are well matched to ANNs, and thus they perform well 
when dealing with hydrological data. Previous studies have also found LSTM to be more accurate than BP and 
SVM for daily stream�ow prediction, but to  over�t24.

In recent years, both physics-based hydrological models and ANNs have been studied and applied in the 
processing of hydrological data. �e physics-based hydrological model requires a large amount of existing hydro-
geological data to construct a hydrogeological model of the study area, and even uses future hydrological data, 
such as future rainfall data. Hydrological models based on physical mechanisms have the following drawbacks: 
(1) they do not yield valid results in data-poor areas; (2) they require the use of high-precision rainfall predic-
tions to support calculations; (3) although they are highly accurate in predicting normal stream�ow, they are less 
sensitive to anomalies (e.g., �oods and droughts) and less accurate in predicting extreme weather; (4) short-term 
forecasts (hours, days) are highly accurate, while long-term forecasts are less accurate. ANNs solve the stream�ow 
prediction problem di�erently, and their structure can well match stream�ow data. Models such as long short-
term memory (LSTM) models are excellent in dealing with the time series problem, and have been widely used 
in natural language  processing25,26, image  recognition27, automated  driving27, and time series  prediction28,29. ANN 
models have the following advantages over hydrological models in predicting stream�ow: (1) they require less 
data, and most studies have achieved good results using only stream�ow data; (2) they predict on many time 
scales, such as daily, weekly, monthly, and yearly time scales; (3) they are better at capturing hidden features in 
historical data and more accurately predict  outliers30. �e ANN can be combined with similar numerical statisti-
cal analysis methods such as moving average (MA) and singular spectrum analysis (SSA) for hydrological data 
prediction. Pre-processing hydrological data with MA and SSA help ANNs to learn patterns in the data. �is 
increases the generalization capability of the  model31. Among the preprocessing methods besides MA and SSA 
some methods use empirical mode decomposition to do preprocessing, combined with deep learning algorithms 
to study the prediction of river �ow and El  Nino32,33. However, it is also pointed out in these articles that the 
results are not accurate when machine learning models are trained directly using the original data.

In recent years, the main focus of ANNs has been to improve the structure of models so that they can better 
exploit implicit connections in the data, and discover connections with longer time horizons, thus improv-
ing prediction performance. Many ANNs have emerged to o�er more and better solutions to the time series 
processing problem. �ese methods include LSTM, which is good at dealing with continuous time series; con-
volutional neural networks (CNNs), which are good at dealing with spatially characterized data like through 
satellite imagery identify disaster  areas34; also there are convolutional long short term memory (Conv LSTM), 
gate recurrent unit (GRU) and encoder–decoder structure.

�e accuracy of river stream�ow prediction from the perspective of training data can be improved not only 
by exploring correlations in stream�ow history data but also by including stream�ow correlations other than 
stream�ow data in the training, thereby improving the prediction results. Previous studies have found relation-
ships between river stream�ow and various data, such as precipitation, sea surface temperature, wetness, sea 
level pressure, evaporation, the El Niño–Southern Oscillation (ENSO), and the East Asian Summer Monsoon 
(EASM). Nalley et al. revealed a relationship between stream�ow ENSO, the North Atlantic Oscillation (NAO) 
and the Paci�c Decadal Oscillation (PDO)35, while Wei et al. found a relationship between the EASM and ENSO 
and the Yangtze River’s stream�ow rate. Moreover, it was found that weak EASMs and ENSOs can lead to extreme 
�oods, while strong EASMs and ENSOs can lead to extreme  droughts36.

Timo et al. studied the temporal and spatial e�ects of ENSO on precipitation �uctuations and �ood occur-
rence in the Mekong River Basin, and their results showed that El Niño was negatively correlated with �ooding 
while La Niña was positively correlated with �ooding. Meanwhile, the average annual �ood cycle in La Niña 
increased by 1 month compared to El Niño years, and the precipitation and stream�ow anomalies during El 
Niño were found to be larger than those during La Niña37. In a study investigating the link between stream�ow 
volume and the ENSO in the Yangtze River, Zhang Zizhan et al. used GRACE data to investigate the link between 
terrestrial water storage and ENSO in the Yangtze River  basin38. �e upstream stream�ow and ENSO phases are 
inversely correlated while the downstream stream�ow and ENSO phases are positively  correlated39. Further-
more, Jiang et al. point out La Niña is strongly associated with drought events and El Niño related to �oods in 
the middle and lower Yangtze River basin, while the opposite is true in the upper Yangtze River  basin40. From 
the above study, it can be seen that there is a correlation between ENSO values and numerous values, especially 
a signi�cant correlation with �oods. In particular, ENSO values are remotely correlated with values of regional 
precipitation and stream�ow in China. �erefore ENSO values are more suitable for �ood prediction than 
rainfall and other data.
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�e types of data used for solving stream�ow prediction problems with arti�cial intelligence include stream-
�ow, precipitation, sea surface temperature, wetness, sea level pressure, and evaporation. As Sharma compared 
the di�erences between the adaptive neuro-fuzzy inference system and the Loading Simulation Program in 
C++ model using these types of data and found that the two methods produced similar  results41. Typically, the 
data used for stream�ow prediction using ANNs are stream�ow, evaporation, and precipitation; ENSO data 
has not been  used3,7,42. To investigate whether the introduction of ENSO values into the stream�ow prediction 
problem will help improve the accuracy of stream�ow prediction, the present paper adds ENSO values to the 
training data of several better-performing and widely used ANN models. We also made a new improvement to 
the ANN,by using ConvLSTM as the encoder in encoder–decoder structure and compared it with stacked LSTM 
in terms of accuracy and �tting ability of �ood prediction.

Methodology
Long short-term memory. Long short-term memory (LSTM) was proposed by Sepp Hochreiter et al. in 
 199743. It is an algorithm based on the recurrent neural network (RNN). LSTM solves the vanishing gradient 
problem by introducing three thresholds and two memory  states44.

LSTM consists of three gates: input gate it ; forget gate ft ; and output gate ot . �e two mnemonic states are 
the cell state Ct and candidate state C̃t . �e formulas used by LSTM are Eqs. (1)–(6). Wi , Wf  , and Wo comprise 
the matrix of parameters to be trained. bi , bf  , and bo are the biases to be trained. xt is the entered data. ht−1 is the 
result of the last moment of memory. ht represents the short term memory and the Ct cell state represents the 
long term memory.

�e formula for the input gate is (1), the formula for the forget gate is (2), and the formula for the output gate 
is (3). �e tanh activation function limits the output to between − 1 and 1 and can be replaced by other activation 
functions. �e three gates multiply the input data and the memory of the previous moment and output. Equa-
tion (4) is the formula for memory, which is the result of multiplying the output data from the current output gate 
with the cell state that has undergone the tanh function; the memory represents the short term memory resulting 
from the action of the output and the long term memory. �e cell state represents the long term memory and is 
calculated as in (5) by multiplying the cell state at the previous moment through the forget gate by the candidate 
state. �e candidate state represents the information to be deposited in the cell state, and is calculated as in (6); 
it is the result of the action of the current input data and the output data from the previous moment. Figure 1 
shows the structure of an LSTM memory unit.

In this paper, the LSTM model is used in stacked LSTM and convolutional LSTM encoder–decoder LSTM. 
Figure 2 illustrates the stacked LSTM used for the experiments in this paper. �e body of the model is a two-
layer LSTM containing 256 memory cells. �e output passes through the dense layer. �ree layers of LSTMs are 
used as a decoder in convolutional LSTM encoder–decoder LSTM to decode the encoded vectors and output 
them through the Dense layer. 

Gate recurrent unit. �e gate recurrent unit (GRU) was proposed by Cho et al. in  201445 to solve the van-
ishing gradient problem in RNN networks. �e GRU can be regarded as the deformation of LSTM. It has fewer 
parameters than LSTM and can produce the same excellent results as LSTM in some cases. �e features of the 
GRU make it possible to shorten the computation time without a�ecting the prediction performance and even 
produce better results, thus making it a frequently used model in machine  learning46.

�e GRU is similar in principle to LSTM, with an update gate (7), a reset gate (8), a memory (9), and a 
candidate hidden layer (10). σ is the Sigmoid function, which limits the output to the range 0 to 1, and the tanh 
function limits the output to the range − 1 to 1. Wz , Wr and W is the parameter matrix. Both the update gate and 
the reset gate calculate the memory of the current input and the previous moment. �e updates gate determines 
the update of the memory and controls how much of the previous moment’s memory and the current input data 
can be retained in the current memory. �e reset gate also determines the update of the memory by control-
ling the candidate state but controls how much of the information from the previous memory is forgotten. �e 
candidate hidden layer represents the memory formed at the current moment. Figure 3 shows the structure of 
a GRU memory unit.

(1)it = σ(Wi[ht−1, xt] + bi)

(2)ft = σ

(

Wf [ht−1, xt] + bf
)

(3)ot = σ(Wo[ht−1, xt] + bo)

(4)ht = ot ◦ tanh(Ct)

(5)Ct = ft ◦ Ct−1 + it ◦ C̃t

(6)C̃t = tanh(Wc[ht−1, xt] + bC)

(7)zt = σ(Wz[ht−1, xt ])
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(8)rt = σ(Wr[ht−1, xt ])

(9)ht = (1 − zt) ◦ ht−1 + zt ◦ h̃t

Figure 1.  Networks of the LSTM unit.

Figure 2.  Stacked LSTM structure.

Figure 3.  Networks of GRU unit.
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In the experiments set up in this paper, the convolutional LSTM encoder–decoder GRU (Conv LSTM 
encoder–decoder GRU) uses a three-layer GRU as the decoder structure to decode the encoded vectors and 
output them through the dense layer.

Convolutional LSTM network. �e convolutional LSTM network (Conv LSTM) was proposed by Shi 
Xingjian et  al. in  201547. In the past, LSTM was used as the encoder layer when building encoder–decoder 
models; however, LSTM has no special design for spatial–temporal sequences and uses full connections between 
layers to transform data. Meanwhile, Conv LSTM uses convolution instead of full connections to transform data. 
Conv LSTM has roughly the same formula as LSTM, using formulas (11)–(16), but the * stands for convolution 
instead of a full-connection operation; otherwise, the meaning and function of each formula is as in the LSTM 
and described above. According to Shi Xingjian’s article, a larger kernel can perceive features with larger spatial 
variation in the data while a smaller kernel can perceive features with a small spatial variation. Figure 4 shows 
the structure of a Conv LSTM memory unit. Compared to the fully connected LSTM there is a lot of redundancy 
in the computation and it does not take spatial correlation into account very well. �e ConvLSTM with the 
addition of convolutional computation has better results in obtaining spatio–temporal relationships. �is makes 
ConvLSTM more suitable than LSTM for predicting hydrological data.

Conv LSTM was originally developed to process a series of radar wave images and extract the motion of clouds 
according to the time series of radar wave images, thus giving accurate short-term predictions. In this paper, 
the stream�ow data and ENSO data are 1-dimensional data that change with time. When using Conv LSTM, 
the time series are �rst grouped according to di�erent periods, and then the grouped 1-dimensional data are 
treated as special 2-dimensional data, and the stream�ow data and ENSO data are composed of a sequence with 
two channels fed into the Conv LSTM network. A�er the above procedure, the convolutional kernel extracts 
the feature information from the time series as spatial features, thus increasing the accuracy of the prediction.

Conv LSTM encoder–decoder RNN. �e encoder–decoder model was proposed by Ilya Sutskever et al. 
to solve the problem of needing a su�cient amount of annotation data for training traditional deep neural net-
works (DNNs)48. �e encoder–decoder structure is shown in Fig. 5. �e encoder encodes the input �eld into a 
vector and the decoder decodes the encoded vector into the output �eld. Ilya Sutskever et al. found encoder–

(10)h̃t = tanh(W[rt ◦ ht−1, xt])

(11)it = σ(Wi ∗ [ht−1, xt] + bi)

(12)ft = σ

(

Wf ∗ [ht−1, xt] + bf
)

(13)ot = σ(Wo ∗ [ht−1, xt] + bo)

(14)ht = ot ◦ tanh(Ct)

(15)Ct = ft ◦ Ct−1 + it ◦ C̃t

(16)C̃t = tanh(Wc ∗ [ht−1, xt] + bC)

Figure 4.  Networks of Conv LSTM unit.
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decoder structure constructed by the LSTM model handles the translation results similar to the best translation 
results at that time. �erefore, the encoder–decoder structure is o�en used to handle the sequence-to-sequence 
problem. �e encoder–decoder model has one feature when dealing with the sequence-to-sequence (seq2seq) 
problem: it is sensitive to the order of the input sequences, which means that encoder–decoder may perform 
well in dealing with the time series problem. Compared to other networks that deal directly with the seq2seq 
problem, the addition of a decoder as a hidden layer increases the complexity of the model and also brings an 
improvement in prediction accuracy. Since stream�ow prediction using time series data consisting of stream-
�ow and ENSO values to predict future stream�ow data can also be used as a sequence-to-sequence problem, 
the encoder–decoder structure is chosen for our experiments.

�e Conv LSTM encoder–decoder RNN used in this paper uses encoder–decoder as the model framework 
(Fig. 6). �e selection of the convolution kernel parameters here is based on the empirical choice of the param-
eter settings that work relatively well for the model. �ere are also search methods such as grid search for the 
selection of model parameters. �is type of search method is used to �nd the best combination of parameters by 
trying di�erent parameters. �e aim is to get the best results for the model on the current data set. However, this 
study attempts to improve the model results by changing the model structure and therefore uses the parameter 
con�gurations that work better empirically. Although the parameters are not necessarily the best results, they can 
re�ect the di�erences in performance due to di�erent model structures. �e encoder uses a Conv LSTM with 64 
convolutional kernels, and the size of the convolutional kernel is (n, 3), where n is the number of training data 
feature values. n = 1 when the data is only stream�ow data, and n = 2 when the training data contains both �ow 

Figure 5.  Architecture of encoder–decoder.

Figure 6.  Conv LSTM encoder–decoder.
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data and ENSO data. �e step size of the extracted time-series features increases when the convolution kernel 
becomes large, while the performance of the extracted time features is close to that of an ordinary LSTM when 
the size of the convolutional kernel is too small. �erefore, the size of the convolution kernel is chosen to be 3. 
�e encoder output is transformed into a one-dimensional feature vector through the �atten layer and then fed 
into the decoder, which uses a three-layer LSTM or GRU with 256 memory units, and �nally, the decoder data 
are transformed into a prediction output through the dense layer. �e GRU and LSTM should not be over-stacked 
in terms of the number of layers. Since the GRU and LSTM are structured to solve the problem of gradient 
vanishing between each memory, without considering the gradient vanishing between layers, too much stack-
ing of the LSTM and GRU will make the model less e�ective. At the same time, as the number of stacked layers 
increases, the memory cost becomes higher and the computation time increases. �e GRU is more suitable for 
simple time-series problems when the number of stacked layers is small. For better prediction results, a three-
layer GRU is used here as the decoder structure. �e number of memory units in the LSTM and GRU directly 
boosts the number of parameters in the RNN network. Increasing the number of memory units increases the 
�tting ability of the model. Empirically, the larger the number of memory units, the smaller the improvement in 
the e�ectiveness of the model, as well as the slow and under�tting of the model. �e choice of using 128 or 256 is 
already a good �t and is fast enough. �e structure combines multiple models while inheriting the advantages of 
each model. �e Conv LSTM as an encoder has excellent temporal feature extraction capability and can sense the 
change in data over time, while the LSTM and GRU as a decoder have similar time series processing capability, 
and the GRU simpli�es the number of parameters compared to the LSTM and saves computational resources.

Experiment
Study area and data. �e Yangtze River is the most important water system in China and the ��h largest 
in the world in terms of stream�ow volume. �e source region is in the alpine zone with 300–400 mm precipita-
tion; the upper reaches are mostly in the sub-humid zone with 400–800 mm precipitation, and the middle and 
lower reaches are in the humid zone with 800–1600 mm precipitation. �e Yangtze River basin, the most �ooded 
and severe basin in China, is also clearly in�uenced by monsoonal rainfall. �ere is a strong link with the El Niño 
 event49. �e middle and lower reaches of the Yangtze River are the areas with the most severe �ooding, especially 
the area between the con�uence of the Yangtze and Han rivers and  Datong50; the �oods that occurred in 1998 
and 2018 caused great economic losses in the Yangtze River basin.

In this experiment, we use stream�ow data from the Hankou and Datong hydrological stations. �e stream-
�ow data are the monthly stream�ow data of the Yangtze River from January 1952 to December 2016 recorded at 
the Hankou and Datong hydrological stations. �e Hankou hydrological station is located in the middle reaches 
of the Yangtze River at the con�uence of the Han and Yangtze rivers (Fig. 7) and controls a watershed area of 
1,488,000  km2. �e Datong hydrological station is located in the lower reaches of the Yangtze River, at the upper 
end of the Chaohe section of the Yangtze River (Fig. 8) and is the main control station for the stream�ow of the 
main stem of the Yangtze River, with a control basin area of 1.705 million  km2. �e prediction time intervals are 
January–December 1998 and January–December 2016. In 1998, the second basin-wide �ooding occurred in the 
Yangtze River basin and was characterized by high volume, prolonged �ooding, and severe coastal  �ooding51. 
�e average monthly water level at Hankou and Datong stations in April was a record high, and the average 
monthly water level at Hankou and Datong stations in June was about 2 m higher than that of the same period 
in  history52. �e model performance is veri�ed by predicting these two abnormal years.

As a large-scale ocean–atmosphere phenomenon in the tropical Paci�c, the El Niño–Southern Oscillation 
(ENSO) is the most important source of interannual climate variability. El Niño represents oceanic warming in 
the tropical central-eastern Paci�c and La Niña is the opposite. Southern oscillation is characterized by a seesaw 
of sea level pressure between the tropical western and eastern Paci�c. �e occurrence of ENSO is accompanied 

Figure 7.  �e location of the Yangtze River basin and Hankou Hydrological Station in Wuhan.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11738  | https://doi.org/10.1038/s41598-021-90964-3

www.nature.com/scientificreports/

by a series of high-intensity climate anomalies. ENSO events in�uence the ecosystem, agriculture, and extreme 
weather of a region.

Generally, ENSO can be described by the Niño index. �at is a 3-month running mean of sea surface tem-
perature anomalies in the Niño 3.4 region (5° N–5° S, 120° W–170° W). Figure 9 shows the Niño 3.4 area. �e 
data collected here are used as ENSO values and for the training of the model.

Normalization. Before the data are fed into the neural network, the stream�ow data and ENSO data from 
Hankou and Datong stations are normalized using Eq. (1) for fast convergence and stability of the model during 
training. Zi is the normalized data, ranging from 0 to 1, Xi is each data, max(X) and min(X) are the maximum 
and minimum values of the data respectively.

Neural network construction. In this paper, three neural networks are used: the LSTM model, the GRU 
model, and the Conv LSTM model. �ese three neural networks are used to build three model frameworks: 
stacked LSTM, Conv LSTM encoder–decoder LSTM model and Conv LSTM encoder–decoder GRU model. 
�ese three model frameworks, ranging from simple to complex, are used to compare the e�ects of di�erent 
numbers of eigenvalues of training data on the accuracy of �ood prediction. �e training data are used for both 
the 1-feature training data and the 2-features training data: 1-feature data contains only monthly stream�ow 
data, while 2-feature data contains monthly stream�ow data and ENSO values. �e period of the training set 

(17)Zi =
Xi−min(X)

max(X)−min(X)

Figure 8.  �e location of the Yangtze River basin and Datong Hydrological Station in Chi Zhou.

Figure 9.  �e Nino 3.4 area.
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segmentation cycle determines the "�eld of view" of the model, which represents the range of data that can be 
seen in a single read. Although the model in this study can remember previous data, the process of forming a 
memory is a�ected by the length of the input data segment, and too small a division period will result in slower 
training and more unstable models. Longer periods result in shorter training times for the model, but relatively 
less variation in �ooding over longer data series, resulting in poorer model performance. We divide the training 
sets into four cycles: 6 months minimum prediction periods (6 m-min-pd), 12 m-min-pd, 18 m-min-pd, and 
24 m-min-pd. We then compare the e�ects of the di�erent number of features on the accuracy of �ood predic-
tion by assessing the training results produced under these four cycles. �e “N” m-min-pd indicates a set of “N” 
months of data for training.

Performance evalution. A�er the model has completed its predictions outputting data in the range 0–1, 
the normalized data Zi need to be reduced to the original size data Xi using Eq. (18) when performing the evalu-
ation.

To measure the di�erence between the true and predicted values, we used the following four statistics.
�e root mean square error (RMSE) is de�ned as Eq. (19).

�e RMSE is the inverse square of the mean square error. �e inverse square method reduces the MSE by an 
order of magnitude so that the scale of the result is the same as that of the original data, making it possible to 
compare the results more intuitively. When evaluating data that are expected to follow a Gaussian distribution, 
the RMSE is more suitable than the MAE to re�ect the model  performance53.

�e coe�cient of determination ( R2 ) is de�ned as Eq. (20).

�e coe�cient of determination re�ects what percentage of the �uctuations in the predicted value yi can be 
explained by the �uctuations in the observed  values54. �e decision coe�cient takes values in the range − ∞ to 
1. R2 close to 1 indicates that the �uctuations in the predicted values are well explained by the �uctuations in the 
observed values. On the contrary, a smaller R2 value means that the �uctuations in the predicted values are less 
linearly related to the observed values and the predicted values are not well explained by the observed values.

Willmott’s Index of agreement (WI) is as shown in Eq. (21).

WI is o�en used in the measurement of hydrological data. It is dimensionless, and is bounded by − ∞ and 
1.0. It also quite �exible and is suitable for a wide range of model performance problems. In general, it is more 
related to model accuracy than are other indices. It was proposed by Nash and Sutcli�e in 1970, Watterson in 
1996, Legates and McCabe’s in 1999, Mielke and Berry in 2001 and re�ned by Willmott in  201155.

Legates–McCabe’s Index (LMI) is written as in Eq. (22).
It is not oversensitive to extreme values and can re�ect additive and proportional between model predictions 

and observations. �e index is better suited as a complement to assessment instruments than other correlation-
based assessment instruments. It is also dimensionless, bounded by 0 and 1.0. �e higher the LMI value, the 
better the �tting e�ect of the  model56.

Among all the equations, where n represents the number of data pairs, yi is the observed values, ŷı represents 
the forecasted value and yi represents the mean of observed values.

Results
As mentioned above, the monthly stream�ow forecasts of the Yangtze River have important reference value for 
�ood prevention, and the trained model needs to provide accurate forecasts not only in normal months but also 
relatively accurate forecasts of peak �ows. In our experiment, the monthly stream�ow forecasts of the Hankou 
and Datong stations, two important control stations in the middle and lower reaches of the Yangtze River, are 
made for the years 1998, 2016 and 2018 using Yangtze River monthly stream�ow data and ENSO values. �e 
1998 �ood was a 100-year return period �ood and is classi�ed as a very large �ood, while the 2016 and 2018 
�oods are representative of small and medium-sized �oods respectively. �e dataset was split using 18-month 
groups and fed into the Conv LSTM encoder–decoder GRU model for prediction. Figure 10 shows the predic-
tion results for 1998, 2016 and 2018 for the Hankou station, and Fig. 11 shows the prediction results for 1998, 
2016, and 2018 for the Datong station. 

�e �ooding trends of the Yangtze River in the past years show that �ooding usually begins to converge in 
the middle reaches of the Yangtze River, with �ood peaks in the middle and lower reaches of the river posing 
a great threat. As an important control station of the middle reaches of the Yangtze River, the Hankou station 

(18)Xi = Zi ∗ (max(X) − min(X)) + min(X)

(19)RMSE =

√
1

m

∑m
i=1

(
yi − ŷi

)2

(20)R2
= 1 −

∑n
i=1 (yi−ŷı )

2

∑n
i=1 (yi−yı )

2
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re�ects the overall level of �ooding in the middle reaches of the Yangtze River; this station’s stream�ow is also an 
important indicator for �ood control in Wuhan as well as downstream areas. �e 1998 �ood stream�ow was huge, 
reaching a peak �ow of nearly 70,000  m3 in August, and the stream�ow in July nearly as high. �e Hankou 1998 
forecast has large deviations for July and August: 13,837.25  m3 between July’s forecasted and observed values, 
and 20,548.57  m3 between August’s forecasted and observed values. In September the predicted �ow was close 
to the observed value and di�ered by 2758.31  m3. �e predicted time of occurrence of the �ood peak di�ered 
by 1 month from the observed value and the predicted value of the �ood peak di�ered from the observed value 
by 14,077.69  m3. In other months, the predicted value �uctuates with the observed value but remains very close. 
From the evaluation index, it can be found that the values predicted by Hankou station in 1998 are close to the 
observed values as a whole, but there is still a big gap in the �ood prediction. �e R2 value reaches 0.83; the LMI 

Figure 10.  �e result of Hankou Station. (A, C, E) Line plots of predicted and observed values. �e blue dashed 
line represents the observed values. �e green solid line are predicted values. (B, D, F) Scatter plots of predicted 
values.
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reaches 0.67; the WI value is low, only 0.95; and the RMSE value is 7849.91  m3. Furthermore, the slope of the 
regression line of the scatter plot is big, and therefore the overall prediction results have some degree of accuracy, 
but there is a big di�erence between the prediction and observation results of the �ood peak. Figure 10C,D show 
the prediction results of the Hankou station in 2016 when the Yangtze River’s stream�ow was smaller than that 
during the 1998 �ood. In 2016, the peak �ow occurred in July (49,355  m3), and the duration of the �ood was 
shorter than that of the 1998 �ood. �e �ood’s peak passed by August and dropped to 49,355  m3 in September. 
�e model predictions are approximately the same as the observed values; only in June is there is a large deviation 
between the predicted value and the observed value (a di�erence of 13,493.98  m3). �e same issue can also be 
observed in Fig. 11C. In terms of the overall trend, the forecast results for 2016 all show that the June forecast is 
greater than the observed value, while the July forecast is less than the observed value. Comparing the forecast 
results for 1998, it can be observed that both the June and July forecasts for 1998 are smaller than the observed 

Figure 11.  �e result of Datong station. (A, C, E) Line plots of predicted and observed values. �e blue dashed 
line represents the observed values. �e green solid line are predicted values. (B, D, F) Scatter plots of predicted 
values.
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values. �is result is because the generalization of the model is considered and no over�tting can occur. From this 
perspective, it can be found that the model performs as expected. Additionally, the predicted values for July and 
August are very close to the observed values. �e peak �ood prediction in July has only a 909.99  m3 di�erence 
from the observed value. �e overall predicted RMSE was 5228.97  m3, the R2 value reached 0.80, the LMI was 
0.64, and the WI was 0.96. �us, better forecasting results are obtained for the 2016 �ood, not only in non-�ood 
months but also in �ood months, and the forecasts can be considered accurate.

�e 1998 �oods not only caused damage in the middle reaches of the Yangtze River, but also resulted in per-
sistently high water levels in the lower basin compared to previous years, with monthly �ows of nearly 80,000 
 m3 observed at the Datong station, which continued from July to August and remained above 60,000  m3 until 
September. Figure 11A,B shows the results of the 1998 �ow forecast using the model with the same parameters 
as the Hankou station forecast model above. �e predicted values above and below the observed values from 
January to June, and the predicted values for July, August, and September are close to the observed values. A large 
di�erence of 10,655.86  m3 is seen between July’s predicted and observed values, and the peak �ow prediction 
for August was accurate and di�ered from the observed value by 3186.73  m3. Meanwhile, the predicted values 
from September to December are almost the same as the observed values. When the �oods occurred the model 
predictions for June and July, di�ered from the observed values in both trend and absolute di�erence, but the 
overall �ood trend was well predicted. �is indicates that the model gives good predictions even in the face of 
a very large �ood such as that of 1998 without over�tting. �e regression line of the predicted and observed 
values is very close to the red line representing the case where predicted values perfectly match observed values.

Figure 11C,D show the 2016 prediction results of the Datong station. It can be seen that the overall predicted 
values are close to the observed values. �is phenomenon has similarities to the predicted trends for Hankou 2016 
above. Although the predicted values for the �ood season di�er from the observed trends, the overall predicted 
trends are accurate and ensure the reliability of the model. For example, June’s predicted values are larger than 
its observed values, while July’s predicted values are smaller than its observed values. �e predicted results for 
the 2018 Datong station are shown in Fig. 11E,F. �e observed �ood peak occurred in July with a maximum 
�ow of approximately 43,000  m3/s and the model predictions gave slightly higher predicted values. �e values 
for R2, LMI and WI are excellent and the RMSE is 3489.90  m3. Figure 11B,D,F show that the model gives more 
accurate predictions at Datong Station in 1998, 2016 and 2018. Both predictions have an R2 of approximately 
0.88, an LMI greater than 0.65, a WI of 0.97 and RMSE values between 3000 and 7000  m3, which means that the 
predictions are accurate.

Comparisons and analysis
�e proposed model uses di�erent segmentation methods to divide the training set’s samples. �e segmented 
time series data of di�erent lengths contain input and output sequences and are fed to the neural network for 
training. Finally, the trained network is veri�ed by using a validation set. Disordering the training data is a 
necessary operation for the neural network since the disordered data can increase the stability and robustness 
of the neural network and prevent the model from converging to the local optimal solution too quickly and 
over�tting. Due to the di�erent lengths of the time series, the implicit links contained in the time series are also 
di�erent. �e stream�ow data and ENSO data have corresponding implicit rules in di�erent period scales, and 
these implicit rules directly a�ect the training e�ect and prediction accuracy of the model. Stream�ow varies 
on an annual cycle. �erefore, in our experiment, we select the period multiplied by the annual cycle to observe 
the prediction accuracy of di�erent cycle time series, which have four lengths: 6 months, 12 months, 18 months, 
and 24 months. By doing this, we can make accurate predictions with results close to those obtained by non-
time series models. When the length of the selected time series is too long, the number of time series segments 
that can be segmented from the data decreases, and the monthly stream�ow data from 1952 to 2016 is too small 
for machine learning. �erefore, the aforementioned lengths of time series data are selected. �e Conv LSTM 
encoder–decoder GRU model, which is the most complex model, is selected for comparison. Below, we present 
the prediction results of the Conv LSTM encoder–decoder GRU model on the stream�ow + ENSO dataset for 
the Hankou station and Datong station for 1998–2016 with di�erent time series lengths.

Figure 12 shows the prediction results for the four time series lengths for the Hankou station in 1998 and 
2016. Figure 12A,B show the predicted stream�ow of the Hankou station in 1998 using the stream�ow data. It 
can be seen that the predicted values obtained with the four lengths are close to each other. �e overall trend of 
the predicted values obtained using 6 m-min-pd is �at. �e overall trend of predicted values using 12 m-min-
pd, 18 m-min-pd, and 24 m-min-pd �uctuates widely. 24 m-min-pd is closest to the observed value in the peak 
�ow prediction, followed by 12 m-min-pd and 18 m-min-pd. �e largest di�erences between predicted and 
observed �ood were obtained for 6 m pd and 18 m pd with almost identical values from September to Decem-
ber. In Fig. 12B, the regression lines for 12 m-min-pd, 18 m-min-pd, and 24 m-min-pd are nearly identical to 
the red line; meanwhile, the regression line for 6 m-min-pd is very far from the red line. By observing Table 1, 
it can be found that the four evaluation indexes of 18 m-min-pd are better than the results obtained from other 
datasets. �e RMSE reaches 7849.91  m3, the WI value reaches 0.95, the LMI value is signi�cantly di�erent 
from those of other cases, and the LMI is 16–24% higher than in other cases, and the R2 is 4–15% higher than 
those of other cases. �e best prediction was achieved in the 1998 results for 18 m-min-pd at Hankow Station. 
Figure 12C,D show the predicted stream�ow of the Hankou station in 2016 using the stream�ow data. It can 
be seen that the most accurate prediction is 12 m-min-pd, followed by 18 m-min-pd, 6 m-min-pd, and �nally 
24 m-min-pd. Similarly, the scatterplots and corresponding regression curves in D show that the results for 6 m 
pd, 12 m pd, and 18 m pd are very close to the red line; meanwhile, 24 m-min-pd has the poorest results and 
deviates greatly from the red line. Furthermore, 24 m-min-pd has the smallest RMSE value (5196.74  m3), with 
18 m-min-pd close behind; the other two cases have large RMSEs. Additionally, 18 m-min-pd has the highest 
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WI and LMI values (0.96 and 0.64, respectively). �erefore, 18 m-min-pd showed the best results and highest 
accuracy for predictions. It can be seen that contact ENSO and stream�ow data have features that are easy for 
machine learning models to grasp on the 18-min-pd time scale. On the 6-min-pd dataset, however, the model 
performs the worst, especially in the 1998 prediction results. Because the �eld of view is too small in the model 
training, it is not possible to observe the complete cycle variation at one time, which has an important impact 
on the formation of the correct �tting parameters. �us, this leads to worse prediction results in 1998 when the 
extreme values deviate more severely.

Figure 13 shows the prediction for the four segmentation methods of stream�ow + ENSO data at the Datong 
station. Table 2 also shows that the 18 m-min-pd indicator is excellent, with a WI of 0.97 and an LMI of 0.66. 
�e maximum WI is 0.94 and the maximum LMI is 0.52. Figure 13C,D show the results of the four data sets 

Figure 12.  Comparison among the Conv encoder–decoder GRU with di�erent periods in Hankou station. �e 
solid lines in A, C plot the predicted values using di�erent periods of data, and the blue dashed lines are the 
observed values. (B, D) Scatter plots of predicted and observed values for the four periods of data.

Table 1.  Comparison of criteria in Conv encoder–decoder GRU with di�erent periods in Hankou station.

Year 6 m min pd 12 m min pd 18 m min pd 24 m min pd

1998

RMSE 10,224.25 8536.23 7849.91 8568.73

WI 0.89 0.94 0.95 0.94

LMI 0.54 0.58 0.67 0.58

R2 0.72 0.80 0.83 0.80

2016

RMSE 5974.99 6157.50 5228.97 5196.74

WI 0.94 0.94 0.96 0.94

LMI 0.53 0.54 0.64 0.61

R2 0.74 0.72 0.80 0.80
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for predicting 2016 �ows at the Datong station, which are very close, with poor overall prediction accuracy for 
6 m-min-pd. 12 m-min-pd, 18 m-min-pd, and 24 m-min-pd predictions are similar. �e 18 m-min-pd and 
24 m-min-pd predicted peak �ows 1 month earlier than observation. 12 m-min-pd was accurate for the month of 
peak �ow, and followed observed values; meanwhile, 18 m-min-pd has the largest di�erence between forecasted 
and true values in July. In Fig. 13D, the regression line for 6 m-min-pd is slightly o� the red line, while the regres-
sion lines for the remaining results are very close to the red line. �e evaluation indicators presented in Table 2 
show that all four results have reached very high values, with the best results for 18 m-min-pd and 24 m-min-pd.

Combining the prediction results for 2 years, we can �nd that 18 m-min-pd outperforms the other datasets in 
most cases, and gives predictions suitable for later reference. We can conclude that the model with 18 m-min-pd 
performs well on the stream�ow + ENSO dataset.

In this study, we experiment with stacked LSTM, Conv LSTM encoder–decoder LSTM, Conv LSTM 
encoder–decoder GRU and select the model with the most accurate predictions. �e results are presented in 

Figure 13.  Comparison among the Conv encoder–decoder GRU with di�erent periods in Datong station. �e 
solid lines in A, C plot the predicted values using di�erent periods of data, and the blue dashed lines are the 
observed values. (B, D) Scatter plots of predicted and observed values for the four periods of data.

Table 2.  Comparison of criteria in Conv encoder–decoder GRU with di�erent period in Datong station.

Year 6 m min pd 12 m min pd 18 m min pd 24 m min pd

1998

RMSE 12,074.85 10,430.62 7249.87 9954.34

WI 0.88 0.92 0.97 0.94

LMI 0.52 0.52 0.66 0.52

R2 0.67 0.75 0.88 0.77

2016

RMSE 6618.38 5957.79 5610.82 5462.29

WI 0.95 0.97 0.97 0.97

LMI 0.62 0.63 0.68 0.66

R2 0.82 0.86 0.87 0.88
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Figs. 14 and 15 and Tables 3 and 4. Figure 14A shows the line graphs of the predictions of the three models for 
the Hankou station, and it can be seen that the predictions of LSTM are quite di�erent from those of the other 
models. Conv LSTM encoder–decoder LSTM and Conv LSTM encoder–decoder GRU have similar predic-
tions, but with Conv LSTM encoder–decoder LSTM having better predictions in September, and Conv LSTM 
encoder–decoder GRU having better predictions in July. Meanwhile, the regression lines of the three models are 
similar, and only the LSTM value is slightly far away from the red line, which means that the overall performance 
of the three models is similar. �e R2 values of the three models are around 0.8, which means that the predictions 
of the three models are close to the observed values; additionally, the Conv LSTM encoder–decoder GRU model 
has the best results regarding the other three evaluation indexes. Figure 14C shows the predictions of the three 
models on the monthly stream�ow of the Hankou station in 2016. �e predictions of the three models are similar 
from January to May. Stacked LSTM’s prediction during the �ood season is di�erent from those of the other 
models and is far from the observed value; meanwhile, the LSTM prediction di�ers from the observed value by 
7038.91  m3, the Conv LSTM encoder–decoder LSTM prediction is similar to the observed value, and the Conv 
LSTM encoder–decoder LSTM prediction is di�erent from the observed value by 0.67  m3. �e �ood peak occurs 
in June, and the observed �ood peak occurs in July. Conv LSTM encoder–decoder GRU’s �ood peak prediction 
is the same as the observed �ood peak. Figure 14D shows that the LSTM model has a di�erent regression line 
than the other models. Table 3 shows that Stacked LSTM has the poorest results and the worst �t to observa-
tions; the other models perform better and the predictions are nearly identical. Combining the 2-year prediction 
data from the Hankow station, it can be concluded that the prediction of Conv LSTM encoder–decoder GRU is 
slightly better than that of Conv LSTM encoder–decoder LSTM, and the prediction of Stacked LSTM is worst.

Figure 15 shows a comparison of the predictions of the three models for 1998 and 2016 for the Datong station. 
�e non-�ood season shows similar results for the three models. �e �ood season shows that the Conv LSTM 
encoder–decoder GRU prediction is closest to the observed value, followed by the Conv LSTM encoder–decoder 
LSTM. �e worst is prediction is produced by Stacked LSTM, and the slope of the regression line for Conv LSTM 
encoder–decoder GRU on scatter plot Fig. 15B is closest to the red line, followed by Conv LSTM encoder–decoder 
LSTM. Stacked LSTM has the largest di�erence. In Fig. 15C, it is found that the results of the three models are 
still similar during the non-�ood season, with the Conv LSTM encoder–decoder LSTM results being closer to the 

Figure 14.  Comparison with di�erent models in Hankou station. �e solid lines in A, C plot the predicted 
values using di�erent models, and the blue dashed lines are the observed values. (B, D) Scatter plots of predicted 
and observed values for three models.
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peak �ow during the �ood season; Stacked LSTM’s predicted stream�ow has a larger gap between the peak �ow 
and the �ood. Conv encoder–decoder GRU’s �ood predictions fall between the results of the other models, with 
the predicted �ood peak occurring in June, 1 month away from the observed �ood peak, with a small di�erence 
in �ood �ows, but the largest di�erence between the predicted July �ows and the observed values. �e regres-
sion line for the Conv LSTM encoder–decoder LSTM is closest to the red line in Fig. 15D. �e four evaluation 
indicators listed in Table 4 show that the 1998 forecast results from Conv LSTM encoder–decoder GRU are the 
best, and those from Conv LSTM encoder–decoder LSTM are the best for the 2016 forecast.

By comparing the model predictions, Conv LSTM encoder–decoder GRU has the best 2-year predic-
tion among the three models. Conv LSTM encoder–decoder GRU has a similar prediction to Conv LSTM 
encoder–decoder LSTM with a 1-year prediction, Conv LSTM encoder–decoder LSTM has the best prediction 

Figure 15.  Comparison with di�erent models in Datong station. �e solid lines in A, C plot the predicted 
values using di�erent models, and the blue dashed lines are the observed values. (B, D) Scatter plots of predicted 
and observed values for three models.

Table 3.  Comparison of criteria with di�erent models in Hankou station.

Year Model Conv En De GRU Conv En De LSTM Stacked LSTM

Hankou

1998

RMSE 7849.91 8675.98 8757.40

WI 0.95 0.94 0.93

LMI 0.67 0.61 0.58

R2 0.83 0.80 0.79

2016

RMSE 5228.97 5216.75 6184.42

WI 0.96 0.95 0.93

LMI 0.64 0.65 0.51

R2 0.80 0.80 0.72



17

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11738  | https://doi.org/10.1038/s41598-021-90964-3

www.nature.com/scientificreports/

with a 1-year prediction, and Stacked LSTM has the worst prediction in all cases. Conv LSTM encoder–decoder 
GRU performs slightly better than Conv LSTM encoder-decoder LSTM. Because of the addition of using Con-
vLSTM as the encoder structure in the stacked LSTM, the feature extraction ability of the model is enhanced. 
Because the di�erence between GRU and LSTM is smaller, the di�erence between the models trained as the 
decoder is smaller. �e main factor to enhance the prediction accuracy is to improve the model using ConvLSTM 
as the encoder. �is is consistent with our expectation of improving the prediction accuracy of the model by 
enhancing the model to extract data features.

Table 4.  Comparison of criteria with di�erent models in Datong station.

Year Model Conv En De GRU Conv En De LSTM Stacked LSTM

Datong

1998

RMSE 7249.87 7697.48 11,542.46

WI 0.97 0.96 0.90

LMI 0.66 0.65 0.50

R2 0.88 0.86 0.69

2016

RMSE 5610.82 5400.94 6523.28

WI 0.97 0.97 0.96

LMI 0.68 0.70 0.65

R2 0.87 0.88 0.83

Figure 16.  Comparison with di�erent features in Hankou station.�e solid lines in A, C plot the predicted 
values using di�erent numbers of feature data, and the blue dashed lines are the observed values. (B, D) �e 
scatter plots corresponding to A, C.
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In this paper, we introduce ENSO values that are implicitly related to the stream�ow data, in addition to the 
previous machine learning approach of using only stream�ow data for training and prediction. �rough this, 
we can enhance the training e�ect by increasing the data dimensions and get more accurate monthly stream�ow 
predictions, and hopefully more accurate �ood predictions. �e best-performing Conv LSTM encoder–decoder 
GRU model is used in this next experiment, and the best-performing 18 m-min-pd data partitioning method is 
used to compare the di�erence in prediction results between the ENSO + stream�ow dataset and the stream�ow 

Figure 17.  Comparison with di�erent models in Datong station. �e solid lines in A, C plot the predicted 
values using di�erent numbers of feature data, and the blue dashed lines are the observed values. (B, D) �e 
scatter plots corresponding to A, C.

Table 5.  Comparison of criteria with di�erent features in Hankou station.

Year 1 feature 2 features

Hankou

1998

RMSE 10,272.88 7849.91

WI 0.89 0.95

LMI 0.58 0.67

R2 0.71 0.83

2016

RMSE 6453.44 5228.97

WI 0.91 0.96

LMI 0.51 0.64

R2 0.70 0.80



19

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11738  | https://doi.org/10.1038/s41598-021-90964-3

www.nature.com/scientificreports/

dataset. �e experimental results are presented in Figs. 16 and 17 and Tables 5 and 6, where A and C plot the line 
graphs of monthly �ows, and B and D present scatter plots, regression lines, and con�dence intervals.

Figure 16A plots the 1998 prediction results from Hankou station. It can be seen that the results from the 
2features data are closer to the observed values during the �ood months, while the October–November prediction 
is almost equal to the observed values. From Fig. 16B, we also �nd that the regression line of the 2features results 
is closer to the red line, but the con�dence intervals are similar in both cases. By comparing the four evaluation 
indicators of Table 5, it can be found that the RMSE of 2features is reduced by 2422.97  m3, WI is increased by 6% 
to 0.95, LMI is increased by 16% to 0.67, and R2 is increased by 17% to 0.83. In Fig. 16C, the prediction results 
of Hankow station in 2016 are presented. �e model using 2features data accurately predicts the timing and 
stream�ow of �ood peaks, while the 1features model �ood peak prediction di�ers by 1 month from the observed 
value and gives a value that di�ers signi�cantly from the observed value in the month in which the �ood peak 
occurs. Besides, in non-�ood seasons, the 2features predictions are closer to the observations. In Fig. 16D it can 
be seen that the con�dence intervals are about the same, but the regression line for 2features is very close to the 
red line; meanwhile, the regression line for 1features di�ers more from the red line. Moreover, all the four evalu-
ation indices are greatly improved (Table 5): the RMSE is reduced by 1224.47  m3, WI is increased by 5% to 0.96, 
LMI is increased by 25% to 0.64, and R2 is increased by 14% to 0.80. Based on these results, we can obtain the 
monthly stream�ow rate of the model in Hankou in 1998 a�er adding ENSO data. Predictions have signi�cantly 
improved, with better results not only in non-�ood months but also in �ood months.

Figure 17A plots the 1998 prediction results of the Datong station. �e 2features data make the prediction 
much more accurate than 1 feature data, and the predictions for July, August, and September are very close to the 
observations; meanwhile, the 1features data make the predictions signi�cantly di�erent from the observations. 
In October–December, the prediction of 2features is almost equal to the observed value. Figure 17B shows that 
the regression line for the 2features is very close to the red line. On Table 6, it is clear that the 2features evaluation 
index has improved signi�cantly, with the RMSE shrinking by 3701.95  m3, WI increasing by 8% to 0.97, LMI 
increasing by 29% to 0.66, and R2 increasing by 22% to 0.88. In Fig. 17C, it is clear that the two eigenvalues yield 
similar prediction results. �e 2features result �ood peak occurs in June, the 1features result �ood peak occurs in 
August, and the observed �ood peak occurs in July; meanwhile, the two predictions for July are almost identical 
and di�er signi�cantly from the observations. �e comparison of the predicted �ood peaks shows that the 2fea-
tures results are closer to the observed maximum �ows. In non-�ood months, most of the 2features results are 
more accurate. �e regression lines for the results on Fig. 17D for both data are very close, but the regression line 
for the predicted results for 2features is slightly more accurate. A slight improvement in the evaluation metrics 
for 2features over 1feature can also be seen through Table 6. Ultimately, these results illustrate that the accuracy 
of the prediction is improved by adding ENSO data, with a signi�cant improvement in the 1998 prediction and 
a small improvement in the 2016 prediction.

In the above comparison, the addition of ENSO data to the 18 m-min-pd division in the Conv LSTM 
encoder–decoder GRU signi�cantly improves the prediction accuracy.

Futhermore, to investigate the e�ect of Enso values on �ow prediction, the predicted monthly �ows for both 
Hankow and Datong stations in 1998 and 2016 are compared under three models and four data divisions, �ese 
results are shown in Tables S1–4. Tables S1 and S2 show the comparison of the four-evaluation metrics for the 
prediction results, and Tables S3 and S4 show the comparison of the maximum �ows for the prediction results. 
Tables S1, S2 show that the prediction results are all improved to varying degrees by the addition of ENSO values, 
and when the model originally had poor predictions, adding data feature values will result in a greater improve-
ment in the accuracy of the predictions, such as stacked LSTM for Hankou station in 2016 using 6 m-min-pd 
data and Datong station in 1998 and 2016. When the model’s original predictions are more accurate, the e�ect of 
increasing the value of the data features on the prediction accuracy is diminished, as observed in the prediction 
results of Conv encoder–decoder LSTM and Conv encoder–decoder GRU. Besides, comparing the 1998 predic-
tion results with the 2016 prediction results, the prediction error in 1998 is found to be larger than the prediction 
error in 2016 on both hydrological stations. �is is found on the two datasets. �e di�erences that appear on WI, 
LMI, and R2 are small, ranging from 2 to 10% on average. Meanwhile, the di�erences in the RMSE values are 
larger. In Datong, the mean value of RMSE in 1998 is 4334.98  m3 larger than the mean value of RMSE in 2016. 
�is di�erence is 3850.99  m3 in Hankou. It is evident that the di�erence in the overall trend of the model in 

Table 6.  Comparison of criteria with di�erent features in Datong station.

Year Model 1 feature 2 features

Datong

1998

RMSE 10,951.82 7249.87

WI 0.90 0.97

LMI 0.51 0.66

R2 0.72 0.88

2016

RMSE 6905.13 5610.82

WI 0.95 0.97

LMI 0.57 0.68

R2 0.81 0.87
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predicting mega-�oods and large �oods is small. By observing Tables S3, and S4 it can be found that the di�erence 
in RMSE originates from the extreme anomalies during the �ood. In the case of the maximum �ow prediction, 
the maximum �ows predicted by each model were closer to the observed maximum �ows with the addition of 
ENSO data, and the months in which the maximum �ows were predicted to occur were more accurate. However, 
even a�er the introduction of ENSO, the model still has some gaps in the prediction of extreme outliers. �en 
better prediction of extreme outliers while ensuring the model’s over�tting is the direction of future research.

Figure 18 shows the variation of loss and valid loss of the three models during the training process. Observing 
loss and valid loss is a way to understand the training process of a model in machine learning. It is a good indica-
tion of how well the models were trained and whether over�tting. Occurred during training than observing the 
model prediction results. �e ANN in this has the same parameter settings for this assessment. �e solid line in 
the �gure is the Loss and the dashed line is the Val Loss. Figure 18A �nds that the Conv LSTM encoder–decoder 
LSTM and Conv LSTM encoder–decoder GRU models have similar declines in loss and valid loss, and both are 
faster than in the stacked LSTM. Figure 18B shows that the trend of the parameters tends to smooth out and the 
models are trained at their best. It can be found that the Conv LSTM encoder–decoder model has a very small 
variation in loss and valid Loss, which indicates that the model �ts better and also gives more stable predic-
tions. In contrast, the values of loss and valid loss of the stacked LSTM �uctuate signi�cantly, indicating that the 
model is over�tted to a certain extent, and the predictions given by the model will vary greatly with the number 
of training sessions. It can also be seen that the Conv encoder–decoder GRU has the lowest valid loss, this also 
shows that the model has the best performance.

Conclusion
In this paper, three network structures, stacked LSTM, Conv LSTM encoder–decoder LSTM, and Conv LSTM 
encoder–decoder GRU, are trained using two eigenvalues datasets, ENSO and monthly stream�ow, to predict 
the monthly stream�ow of the Yangtze River in Hankou and Datong stations in 1998, 2016 and 2018. �e best 
results were obtained with the Conv LSTM encoder–decoder GRU: the R2 exceeded 0.80, the RMSE was less 
than 8000  m3, the WI was over 0.95, and the LMI over 0.65, indicating more accurate �ood prediction.

�is paper compares the prediction results of the three network structures for two �ood years, 1998 and 
2016, and shows that the prediction accuracy of all three network structures is improved by adding ENSO data. 
�e improvement of Conv LSTM encoder–decoder LSTM and Conv LSTM encoder–decoder GRU is smaller 
than that of stacked LSTM. �e �nal prediction results achieved a maximum evaluation index of R2 = 0.88, 
LMI = 0.66, and WI = 0.97 and a minimum prediction di�erence of 389  m3 for the �ood peak. We performed 
statistical calculations on the parameters in Tables S1 and S2 and obtained an overall improvement of 21.91% 
in the evaluation metrics for the stacked LSTM model a�er the introduction of the ENSO value, 10.87% for the 
Conv encoder–decoder LSTM model, and 10.87% for the Conv encoder–decoder �e overall evaluation metrics 
of the GRU model improved by 11.91%. It can be seen that the enhancement of the dataset results in di�erent 
magnitudes of improvement in the prediction for each of the three network structures; this is because Conv 
LSTM encoder–decoder LSTM and Conv LSTM encoder–decoder GRU already have strong feature extraction 
capabilities for time series, while Stacked LSTM has relatively weak feature extraction capabilities. �e added 
deep connection between ENSO data and �ow data enables the network structure to extract more information, 
thus compensating for the time series feature extraction de�ciency to some extent and greatly improving the 
accuracy of prediction. We experimented with a deep learning model using Conv LSTM as Encoder to predict 
�ood data. �e results show that the prediction results are improved by using the Conv LSTM encoder–decoder 

Figure 18.  Comparison of model loss changes.
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model. Not only is the accuracy of the prediction results improved, but the degree of model �t is increased. �e 
over�tting of the model was reduced.

We found that the neural network model predicts the middle and lower reaches of the Yangtze River repre-
sented by the �ows at Hankou and Datong stations. By adding ENSO data to the stream�ow data, the prediction 
ability of each model on di�erent parameters is greatly improved, which reveals that there is an implicit relation-
ship between ENSO and �ow data that can be learned by the neural network. Comparing the prediction results 
for 1998, 2016 and 2018, it is found that the error for 1998 is larger than that for 2016 and 2018. Furthermore, 
the predicted results for 1998 are all smaller than the observed values, this does not occur for the other years. 
�e reason for this discrepancy may be that the �ow in the Yangtze River basin is increasingly in�uenced by 
human factors over time, such as the �ree Gorges Dam. Perhaps these factors are already implicit in the �ow 
data, allowing the model to still give good results. However, this makes the model’s predicted value in recent 
years will be greater than the observed value. �e prediction accuracy might be improved if relevant data about 
human activities are added. �e di�erence between the stream�ow of the Yangtze River in the last century and 
the stream�ow changes in the current century is due to this in�uence, which leads to the fact that the prediction 
model cannot learn similar unnatural river stream�ow changes simply by adding ENSO data. We note that the 
number of stream�ow data samples collected is only about 700, which is small for machine learning. Augmenting 
the model with ENSO data can be seen as augmenting the training set and compensating for this lack of data.

�e variation in stream�ow volume in the Yangtze River is not only related to the ENSO data but also many 
other variables; thus, the data can be enhanced by adding more variables, which would make the prediction 
more accurate. Di�erent regions in the Yangtze River basin have di�erent relationships with climate change, 
and di�erent locations in the Yangtze River have di�erent relationships with upstream stream�ow; thus, more 
sites could be used for joint prediction. It is also possible to try using the improved model in combination with 
methods such as numerical analysis, to obtain better predictions.
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