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This is a pedagogical review on primordial non-Gaussianities from inflation models. We introduce formalisms and techniques
that are used to compute such quantities. We review different mechanisms which can generate observable large non-Gaussianities
during inflation, and distinctive signatures they leave on the non-Gaussian profiles. They are potentially powerful probes to the
dynamics of inflation. We also provide a nontechnical and qualitative summary of the main results and underlying physics.

1. Introduction

An ambitious goal of modern cosmology is to understand
the origin of our Universe all the way to its very beginning.
To what extent this can be achieved largely depends on what
type of observational data we are able to get. Thanks to many
modern experiments, we are really making progress in this
direction.

One of the representative experiments is the Wilkinson
Microwave Anisotropy Probe (WMAP) satellite [1–6]. It
measures the light coming from the last scattering surface
about 13.7 billions years ago. This cosmic microwave back-
ground (CMB) is emitted at about 379,000 years after the Big
Bang, when electrons and protons combine to form neutral
hydrogen atoms and photons start to travel freely through the
space. Our Universe was very young at that moment and the
large scale fluctuations were still developing at linear level. So
the CMB actually carries valuable information much earlier
than itself, which can potentially tell us about the origin of
the Big Bang.

There are two amazing facts about the CMB temperature
map. On the one hand, it is extremely isotropic, despite the
fact that the causally connected region at the time when CMB
formed spans an angle of only about 0.8 degree on the sky
today. On the other hand, we do observe small fluctuations,
with ∆T/T ∼ 10−5.

The inflationary scenario [7–9] naturally solves the
above two puzzles. It was proposed nearly thirty years ago

to address some of the basic problems of the Big Bang
cosmology, namely, why the universe is so homogeneous and
isotropic. In this scenario, our universe was once dominated
by dark energy and had gone through an accelerated expan-
sion phase, during which a Hubble size patch was stretched
by more than 60 e-folds or so. Inhomogeneities and large
curvature were stretched away by this inflationary epoch,
making our current observable universe very homogenous
and flat. In the mean while, the fields that were responsible
for and participated in this inflationary phase did have
quantum fluctuations. These fluctuations also got stretched
and imprinted at superhorizon scales. Later they reentered
the horizon and seeded the large scale structures today
[10–14].

The inflationary scenario has several generic predictions
on the properties of the density perturbations that seed the
large scale structures.

(i) They are primordial. Namely, they were laid down
at superhorizon scales and entering the horizon after
the Big Bang.

(ii) They are approximately scale-invariant. This is
because, during the 60 e-folds, each mode experi-
ences the similar expansion when they are stretched
across the horizon.

(iii) They are approximately Gaussian. In simplest slow-
roll inflation models, the inflaton is freely propa-
gating in the inflationary background at the leading
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order. This is also found to be true in most of the
other models and for different inflationary mech-
anisms. So the tiny primordial fluctuations can be
treated as nearly Gaussian.

The CMB temperature anisotropy is the ideal data that
we can use to test these predictions. The obvious first step
is to analyze their two-point correlation functions, that is,
the power spectrum. All the above predictions are verified
to some extent [1]. The presence of the baryon acoustic
oscillations proves that the density perturbations are indeed
present at the superhorizon scales and reentering the horizon
as the horizon expands after the Big Bang. The spectral index,
ns = 0.963± 0.012, is very close to one, therefore, the density
perturbations are nearly scale invariant. Several generic types
of non-Gaussianities are constrained to be less than one
thousandth of the leading Gaussian component.

But is this enough?
Experimentally, the amplitude and the scale-dependence

of the power spectrum consist of about 1000 numbers for
WMAP. For the Planck satellite, this will be increased up
to about 3000. However, we have about one million pixels
in the WMAP temperature map alone, and 60 millions for
Planck. So the information that we got so far is highly
compressed comparing to what the data could offer in
principle. This high compression is only justified if the
density perturbations are Gaussian within the ultimate
sensitivities of our experiments, so all the properties of the
map is determined by the two-point function. Otherwise, we
are expecting a lot more information in the non-Gaussian
components.

Theoretically, inflation still remains as a paradigm. We
do not know what kind of fields are responsible for the
inflation. We do not know their Lagrangian. We also would
like to distinguish inflation from other alternatives. Being
our very first data on quantum gravity, we would like to
extract the maximum number of information from the CMB
map to understand aspects of the quantum gravity. All these
motivate us to go beyond the power spectrum.

To give an analogy, in particle physics, two-point correla-
tion functions of fields describe freely propagating particles
in Minkowski spacetime. More interesting objects are their
higher-order correlations. Measuring these are the goals
of particle colliders. Similarly, the power spectrum here
describes the freely propagating particles in the inflationary
background. To find out more about their interaction details
and break the degeneracies among models, we need higher-
order correlation functions, namely, non-Gaussianities. So
the role non-Gaussianities play for the very early universe is
similar to the role colliders play for particle physics.

With these motivations in mind, in this paper, we explore
various mechanisms that can generate potentially observable
primordial non-Gaussianities, and are consistent with the
current results of power spectrum. We will not take the
approach of reviewing models one by one. Rather, we divide
them into different categories, such that models in each
category share the same physical aspect which leaves a unique
fingerprint on primordial non-Gaussianities. On the one
hand, if any such non-Gaussianity is observed, we know what

we have learned concretely in terms of fundamental physics.
On the other hand, explicit forms of non-Gaussianities
resulted from this exploration provide important clues
on how they should be searched in data. Even if the
primordial density perturbations were perfectly Gaussian,
to test it, we would still go through these analyses until
various well-motivated non-Gaussian forms are properly
constrained.

1.1. Road Map. The following is the outline of the paper.
For readers who would like to get a quick and qualitative
understanding of the main results instead of technical details,
we also provide a shortcut after the outline.

In Section 2, we review the essential features of the
inflation model and density perturbations.

In Section 3, we review the first-principle in-in formal-
ism and related techniques that will be used to calculate the
correlation functions in time-dependent background.

In Section 4, we compute the scalar three-point function
in the simplest slow-roll model. We list the essential assump-
tions that lead to the conclusion that the non-Gaussianities
in this model is too small to be observed.

In Section 5, we review aspects of inflation model build-
ing, emphasizing various generic problems which suggest
that the realistic model may not be the algebraically simplest.
We also introduce some terminologies used to describe
properties of non-Gaussianities.

Sections 6, 7, and 8 contain the main results of this paper.
We study various mechanisms that can lead to large non-
Gaussianities, and their distinctive predictions in terms of the
non-Gaussian profile.

In Section 9, we give a qualitative summary of the main
results in this paper. Before conclusion, we discuss several
useful relations among different non-Gaussianities.

Here is a road map for readers who wish to have a non-
technical explanation and understanding of our main results.
After reading the short review on the inflation model and
density perturbations in Section 2, one may read the first and
the last paragraph of Section 4 to get an idea of the no-go
statement, and then directly proceed to read Section 5. After
that, one may jump to Section 9 where the main results are
summarized in non-technical terms.

The subject of the primordial non-Gaussianities is a fast-
growing one. There exists many nice reviews and books
in this and closely related subjects. The introductions
to inflation and density perturbations can be found in
many textbooks [15–20] and reviews [21–25]. Inflationary
model buildings in particle physics, supergravity, and string
theory are reviewed in [26–32]. Comprehensive reviews on
the developments of theories and observations of primor-
dial non-Gaussianities up to mid 2004 can be found in
[33, 34]. Recent comprehensive reviews on theoretical and
observational developments on the bispectrum detection in
CMB and large-scale structure has appeared in [35, 36]. A
recent comprehensive review on non-Gaussianities from the
second-order postinflationary evolution of CMB, which acts
as contaminations of the primordial non-Gaussianities, has
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appeared in [37]. A recent review on how primordial non-
Gaussianities can be generated in alternatives to inflation can
be found in [38].

2. Inflation and Density Perturbations

In this section, we give a quick review on basic elements of
inflation and density perturbations. We consider the simplest
slow-roll inflation. The action is

S = MP

2

∫
d4x

√−gR

+

∫
d4x

√−g
[
−1

2
gµν∂µφ∂νφ −V

(
φ
)]
.

(1)

The first term is the Einstein-Hilbert action. The second
term describes a canonical scalar field coupled to gravity
through the metric gµν. This is the inflaton, which stays on
the potential V(φ) and creates the vacuum energy that drives
the inflation. We first study the zero-mode background
evolution of the spacetime and the inflaton. The background
metric is

ds2 = gµνdx
µdxν = −dt2 + a2(t)dx2, (2)

where a(t) is the scale factor and x is the comoving spatial
coordinates. The equations of motion are

H2 = 1

3M2
P

(
1

2
φ̇2

0 + V
)

, (3)

Ḣ = − φ̇2
0

2M2
P

, (4)

φ̈0 + 3Hφ̇0 + V ′ = 0. (5)

The first equation determines the Hubble parameter H ,
which is the expansion rate of the universe. The second
equation is the continuity condition. The third equation
describes the evolution of the inflaton. Only two of them are
independent.

The requirement of having at least O(60) e-fold of
inflation imposes some important conditions. By definition,
to have this amount of inflation, the Hubble parameter
cannot change much within a Hubble time H−1. This gives
the first condition

ǫ ≡ − Ḣ

H2
≪ O(1). (6)

We also require that the parameter ǫ does not change much
within a Hubble time,

η ≡ ǫ̇

ǫH
≪ O(1). (7)

In principle, η can be close to O(1) but ǫ kept small. In such
a case, ǫ grows exponentially with e-folds and the inflation
period tends to be shorter. More importantly, such a case
will not generate a scale-invariant spectrum, as we will see
shortly, thus cannot be responsible for the CMB. The two

conditions (6) and (7) are called the slow-roll conditions.
Using the background equations of motion, we can see that
the slow-roll conditions impose restrictions on the rolling
velocity of the inflaton. The first condition (6) implies that

φ̇2
0

2H2M2
P

= ǫ≪ O(1). (8)

So the energy driving the inflation on the right-hand side
of (3) is dominated by the potential. Adding the second
condition (7) further implies that

φ̈0

φ̇0H
= −ǫ +

η

2
≪ O(1). (9)

So the first term φ̈0 in (5) is negligible and the evolution
of the zero-mode inflaton is determined by the attractor
solution

3Hφ̇0 + V ′ = 0. (10)

Using (10), the slow-roll conditions can also be written in a
form that restricts the shape of the potential,

ǫV ≡
M2

P

2

(
V ′

V

)2

≪ O(1), ηV ≡M2
P

V ′′

V
≪ O(1).

(11)

They are related to ǫ and η by

ǫ = ǫV , η = −2ηV + 4ǫV . (12)

So the shape of the potential has to be rather flat relative to its
height. We emphasize that, although in this example several
definitions of the slow-roll conditions are all equivalent, the
definitions (6) and (7) are more general. In other cases that
we will encounter later in this paper, these two conditions are
still necessary to ensure a prolonged inflation and generate a
scale-invariant spectrum, but the others no longer have to be
satisfied. For example, the shape of potential can be steeper,
or the inflationary energy can be dominated by the kinetic
energy.

Now let us study the perturbations. To keep things simple
but main points illustrated, in this section, we will ignore
the perturbations in the gravity sector and only perturb the
inflaton,

φ(x, t) = φ0(t) + δφ(x, t). (13)

We also ignore terms suppressed by the slow-roll parameters,
which we often denote collectively as O(ǫ). For example, the
mass of the inflaton is V ′′ ∼ O(ǫ)H2, and will be ignored.
The quadratic Lagrangian for the perturbation theory is
simply

L =
∫
d3x

[
a3

2
δ̇φ2 − a

2

(
∂iδφ

)2

]
, (14)

and the equation of motion follows:

δ̈φ(k, t) + 3Hδ̇φ(k, t) +
k2

a2
δφ(k, t) = 0, (15)
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where we have written it in the comoving momentum space,

δφ(k, t) =
∫
d3xδφ(x, t)eik·x. (16)

The solution to the differential equation (15), u(k, t), is called
the mode function. It is not difficult to check that

a3u(k, t)u̇∗(k, t)− c.c. = t-independent const. (17)

To quantize the perturbations according to the canoni-
cal commutation relations between δφ and its conjugate
momentum δπ ≡ ∂L/∂δφ̇,

[
δφ(x, t), δπ

(
y, t
)]
= iδ

(
x − y

)
,

[
δφ(x, t), δφ

(
y, t
)]
= 0,

[
δπ(x, t), δπ

(
y, t
)]
= 0,

(18)

we decompose

δφ = u(k, t)ak + u∗(−k, t)a†−k, (19)

δπ = a3u̇(k, t)ak + a3u̇∗(−k, t)a†−k, (20)

with the commutation relations
[
ap, a†−q

]
= (2π)3δ3

(
p + q

)
,

[
ap, a−q

]
= 0,

[
a†p , a†−q

]
= 0.

(21)

One can check that the commutation relations (18) and (21)
are equivalent because of (17), given that the constant on
the right-hand side of (17) is specified to be i. This gives the
normalization condition for the mode function.

We now write down the mode function explicitly by
solving (15):

u(k, τ) = C+
H√
2k3

(1 + ikτ)e−ikτ + C−
H√
2k3

(1− ikτ)eikτ ,

(22)

where we have used the conformal time τ defined as dt ≡
adτ. The infinite past corresponds to τ → −∞ and the
infinite future τ → 0. We also used the relation τ = −1/Ha+
O(ǫ). This mode function is a superposition of two linearly
independent solutions with the normalization condition

|C+|2 − |C−|2 = 1 (23)

followed from (17). Consider the limit in which the mode
is well within the horizon, that is, its wavelength a/k much
shorter than the Hubble length 1/H , and consider a time
period much shorter than a Hubble time. In these limits, the
mode effectively feels the Minkowski spacetime, and the first
component in (22) with the positive frequency asymptotes
to the vacuum mode of the Minkowski spacetime as we can
see from (23). We choose this component as our vacuum
choice, and it is usually called the Bunch-Davies state.
The annihilation operator ap annihilates the corresponding
Bunch-Davies vacuum, ap|0〉 = 0.

The mode function

u(k, τ) = H√
2k3

(1 + ikτ)e−ikτ (24)

has the following important properties. It is oscillatory
within the horizon k|τ| ≫ 1. As it gets stretched out of
the horizon k|τ| ≪ 1, the amplitude becomes a constant
and frozen. Physically this means that, if we look at different
comoving patches of the universe that have the superhorizon
size, and ignore the shorter wavelength fluctuations, they
all evolve classically but with different δφ. This difference
makes them arrive at φ f , the location of the end of inflation,
at different times. This space-dependent time difference
δt ≈ δφ/φ̇0 leads to the space-dependent inflationary e-fold
difference

ζ ≈ Hδt ≈ H
δφ

φ̇0
. (25)

Again we ignore terms that are suppressed by the slow-roll
parameters. This e-fold difference is the conserved quantity
after the mode exits the horizon, and remains so until the
mode reenters the horizon sometime after the Big Bang. It
is the physical quantity that we can measure, for example,
by measuring the temperature anisotropy in the CMB,
ζ ≈ −5∆T/T [39]. The information about the primordial
inflation is then encoded in the statistical properties of
this variable. So we would like to calculate the correlation
functions of this quantity. Using (25), (19), (24), and (8), we
get the following two-point function:

〈
ζ2
〉
≡
〈

0
∣∣ζ(k1, 0)ζ(k2, 0)

∣∣0
〉
= Pζ

2k3
1

(2π)5δ(k1 + k2),

(26)

where Pζ is defined as the power spectrum and in this case it
is

Pζ =
H2

8π2M2
Pǫ

. (27)

The spectrum index is defined to be

ns − 1 ≡ d lnPζ
d ln k

= −2ǫ − η, (28)

where the relation d ln k = Hdt is used. If ns = 1, the
spectrum is scale invariant. The current data from CMB tells
us that ns = 0.963 ± 0.012 [1]. So as we have mentioned,
this requires a small η, which is also a value that tends to give
more e-folds of inflation.

If this were the end of story, all the primordial den-
sity perturbations would be determined by this two-point
function and they are Gaussian. The rest of the paper will
be devoted to making the above procedure rigorous and to
the calculations of higher-order non-Gaussian correlation
functions in this and various other models.

3. In-In Formalism and Correlation Functions

In this section, we review the in-in formalism and the related
techniques that are used to calculate the correlation functions
in time-dependent background. The main procedure is
summarized in the last subsection.
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3.1. In-In Formalism. We start with the in-in formalism
[40–45], following Weinberg’s presentation [45].

We are interested in the correlation functions of super-
horizon primordial perturbations generated during infla-
tion. So our goal is to calculate the expectation value of an
operator Q, which is a product in terms of field perturbations
δφa and δπa, at the end of inflation. The subscript a labels
different fields. In inflation models, these fields are, for
example, the fluctuations of the scalars and metric and their
conjugate momenta. In the Heisenberg picture,

〈Q〉 ≡ 〈Ω|Q(t)|Ω〉, (29)

where t is the end of inflation and |Ω〉 is the vacuum state for
this interacting theory at the far past t0.

We start by looking at how the time-dependence in Q(t)
is generated.

The Hamiltonian of the system

H
[
φ(t),π(t)

]
≡
∫
d3xH

[
φa(x, t),πa(x, t)

]
(30)

is a functional of the fields φa(x, t) and their conjugate
momenta πa(x, t) at a fixed time t. On the left-hand side of
(30), we have suppressed the variable x and index a which are
integrated or summed over. The φa(x, t) and πa(x, t) satisfy
the canonical commutation relations

[
φa(x, t),πb

(
y, t
)]
= iδabδ

3
(

x − y
)
,

[
φa(x, t),φb

(
y, t
)]
=
[
πa(x, t),πb

(
y, t
)]
= 0,

(31)

and their evolution is generated by H following the equations
of motion:

φ̇a(x, t) = i
[
H
[
φ(t),π(t)

]
,φa(x, t)

]
,

π̇a(x, t) = i
[
H
[
φ(t),π(t)

]
,πa(x, t)

]
.

(32)

We consider a time-dependent background, φa(x, t) and
πa(x, t) which are c-numbers and commute with everything,
and the perturbations, δφa(x, t) and δπa(x, t),

φa(x, t) ≡ φa(x, t) + δφa(x, t),

πa(x, t) ≡ πa(x, t) + δπa(x, t).
(33)

The background evolution is determined by the classical
equations of motion,

φ̇a(x, t) = ∂H

∂πa
, π̇a(x, t) = −∂H

∂φa

. (34)

The commutation relations (31) become those for the
perturbations,

[
δφa(x, t), δπb

(
y, t
)]
= iδabδ

3
(

x − y
)
,

[
δφa(x, t), δφb

(
y, t
)]
=
[
δπa(x, t), δπb

(
y, t
)]
= 0.

(35)

We expand the Hamiltonian as

H
[
φ(t),π(t)

]
= H

[
φ(t),π(t)

]
+
∑
a

∫
d3x

∂H

∂φa(x, t)
δφa(x, t)

+
∑
a

∫
d3x

∂H

∂πa(x, t)
δπa(x, t)

+ H̃
[
δφ(t), δπ(t); t

]
,

(36)

where we use H̃ to denote terms of quadratic and higher-
orders in perturbations.

Using (34), (35), and (36), the equations of motion (32)
become

δφ̇a(x, t) = i
[
H̃
[
δφ(t), δπ(t); t

]
, δφa(x, t)

]
,

δπ̇a(x, t) = i
[
H̃
[
δφ(t), δπ(t); t

]
, δπa(x, t)

]
.

(37)

So the evolution of the perturbations, δφa and δπa, is

generated by H̃ . It is straightforward to verify that the
solutions for (37) are

δφa(x, t) = U−1(t, t0)δφa(x, t0)U(t, t0),

δπa(x, t) = U−1(t, t0)δπa(x, t0)U(t, t0),
(38)

where U satisfies

d

dt
U(t, t0) = −iH̃

[
δφ(t0), δπ(t0); t

]
U(t, t0) (39)

with the condition at an initial time t0 being

U(t0, t0) = 1. (40)

To have a systematic scheme to do the perturbation

theory, we split H̃ into two parts,

H̃
[
δφ(t), δπ(t); t

]
=H0

[
δφ(t), δπ(t); t

]
+ HI

[
δφ(t), δπ(t); t

]
.

(41)

The H0 is the quadratic kinematic part, which in the
perturbation theory will describe the leading evolution of
fields. Fields whose evolution are generated by H0 are called
the interaction picture fields. We add a superscript “I” to label
such fields. They satisfy

δφ̇I
a(x, t) = i

[
H0

[
δφI(t), δπI(t); t

]
, δφI

a(x, t)
]

,

δπ̇I
a(x, t) = i

[
H0

[
δφI(t), δπI(t); t

]
, δπI

a(x, t)
]
.

(42)

The solutions are

δφI
a(x, t) = U−1

0 (t, t0)δφa(x, t0)U0(t, t0),

δπI
a(x, t) = U−1

0 (t, t0)δπa(x, t0)U0(t, t0),
(43)

where U0 satisfies

d

dt
U0(t, t0) = −iH0

[
δφ(t0), δπ(t0); t

]
U0(t, t0) (44)
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with

U0(t0, t0) = 1. (45)

So the idea is to encode the leading kinematic evolution
in terms of the interaction picture fields, and calculate the
effects of the interaction through the series expansion in
terms of powers of HI . To do this, we rewrite (29) as
〈
Ω
∣∣Q[δφa(x, t), δπa(x, t)

]∣∣Ω〉

=
〈
Ω
∣∣U−1(t, t0)Q

[
δφa(x, t0), δπa(x, t0)

]
U(t, t0)

∣∣Ω〉

=
〈
Ω
∣∣F−1(t, t0)U−1

0 (t, t0)Q
[
δφa(x, t0), δπa(x, t0)

]

×U0(t, t0)F(t, t0)|Ω〉

= 〈Ω|F−1(t, t0)Q
[
δφI

a(x, t), δπI
a(x, t)

]
F(t, t0)|Ω〉,

(46)

where

F(t, t0) ≡ U−1
0 (t, t0)U(t, t0). (47)

Using (39), (44), and (41), we get

d

dt
F(t, t0) = −iU−1

0 (t, t0)HI
[
δφ(t0), δπ(t0); t

]
U0(t, t0)F(t, t0)

= −iHI

[
δφI(t), δπI(t); t

]
F(t, t0)

≡ −iHI(t)F(t, t0),

(48)

with

F(t0, t0) = 1. (49)

The solution to (48) and (49) can be written in the following
way,

F(t, t0) = T exp

(
−i
∫ t

t0
HI(t)dt

)
, (50)

where the operator T means that, in each term in the Taylor
series expansion of the exponential, the time variables have
to be time-ordered. The operator T will be used to mean the
reversed time-ordering.

In summary, the expectation value (29) is

〈Q〉 =
〈
Ω

∣∣∣F−1(t, t0)QI(t)F(t, t0)
∣∣∣Ω
〉

,

= 〈Ω|
[
T exp

(
i
∫ t

t0
HI(t)dt

)]
QI(t)

×
[
T exp

(
−i
∫ t

t0
HI(t)dt

)]
|Ω〉.

(51)

Notice that in

HI(t) ≡ HI

[
δφI(t), δπI(t); t

]
,

QI(t) ≡ Q
[
δφI

a(x, t), δπI
a(x, t)

]
,

(52)

all the field perturbations are in the interaction picture.

The perturbation theory is also often done in terms of the
Lagrangian formalism. In the following, we show that they
are equivalent. In the above, we perform perturbations on
the Hamiltonian, and define δπa by perturbing πa ≡ ∂L/∂φ̇a,
(here we use ∂ to denote the functional derivative)

δπa =
∂L

∂φ̇a

(
φa, φ̇a

)
− ∂L

∂φ̇a

(
φa, φ̇a

)
. (53)

The Hamiltonian H̃ is defined by (36). So using the
definition

H ≡
∫
d3x

∂L

∂φ̇a
φ̇a − L, (54)

together with the classical equations of motions (34) and

π̇a = ∂L/∂φa, the definition (36) for H̃ becomes

H̃ =
∫
d3x

∂L

∂φ̇a

(
φa, φ̇a

)
δφ̇a

+

∫
d3x

∂L

∂φa

(
φa, φ̇a

)
δφa − L

(
φa, φ̇a

)
+ L
(
φa, φ̇a

)
.

(55)

If we perturb the Lagrangian directly, we keep the part of the
Lagrangian that is quadratic and higher in perturbations δφa
and δφ̇a,

L̃
(
δφa, δφ̇a, t

)
≡ L

(
φa, φ̇a

)
− L

(
φa, φ̇a

)

−
∫
d3x

∂L

∂φa

(
φa, φ̇a

)
δφa

−
∫
d3x

∂L

∂φ̇a

(
φa, φ̇a

)
δφ̇a.

(56)

The δπa is defined directly as

δπa ≡
∂L̃

∂
(
δφ̇a

) = ∂L

∂φ̇a

(
φa, φ̇a

)
− ∂L

∂φ̇a

(
φa, φ̇a

)
, (57)

where in the second step (56) has been used. So these two

definitions of δπa are equivalent. The Hamiltonian H̃ is

defined through L̃,

H̃ ≡
∫
d3x

∂L̃

∂δφ̇a
δφ̇a − L̃. (58)

Again, using (56), we can see that the two definitions of H̃
are equivalent.

3.2. Mode Functions and Vacuum. The Hamiltonian H0 in
the above formalism is typically chosen to be the quadratic
kinematic terms for field perturbations δφa without mixing,

H0 =
∫
d3x

∑
a

[
1

2A
δπ2

a +
B

2

(
∂iδφa

)2
+
C

2
δφ2

a

]
. (59)
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So they describe free fields propagating in the time-
dependent background. The A, B, and C are some time-
dependent background fields, and they are all positive. The
solutions to the equations of motion (42) in momentum
space, ua(k, t), are called the mode functions, where k denotes
the comoving momentum. They satisfy the Wronskian
condition

Aua(k, t)u̇∗a (k, t)− c.c. = i, (no sum over a). (60)

Note that we have specified the time-independent constant
on the right-hand side of (60) to be i for the same reason
that we see in Section 2. Namely, we decompose δφI

a as

δφI
a(k, t) = ua(k, t)aa(k) + u∗a (−k, t)a†a(−k), (61)

where the annihilation and creation operators satisfy the
following relations,

[
aa(k), a†b

(
−p
)]
= (2π)3δabδ

3
(

k + p
)
,

[
aa(k), ab

(
−p
)]
= 0,

[
a†a(k), a†b

(
−p
)]
= 0.

(62)

These commutation relations are equivalent to (35) because
of (60), but the constant needs to be i. This gives the
normalization condition for the mode functions.

Being the solutions of the second-order differential equa-
tion, generally the mode function is a linear superposition
of two independent solutions. So we need to specify the
initial condition. For inflation models, as long as the field
theory applies, one can always find an early time at which
the physical momentum of the mode is much larger than
the Hubble parameter and study a time interval much less
than a Hubble time. Under these conditions, the equations of
motion approach to those in the Minkowski limit, in which
the mode function is a linear superposition of two indepen-
dent plane waves, one with positive frequency and another
negative. The ground state in the Minkowski spacetime is
the positive one. The mode function which approaches this
positive frequency state in the Minkowski limit is called
the Bunch-Davies state. In physical coordinates, this limit
is proportional to e−ikpht , (for kph ≫ m), where kph is
the physical momentum. In terms of the conformal time
τ ≡

∫
dt/a(t) and the comoving momentum coordinate

k ≡ kph/a(t) which we often use, this limit is proportional
to e−ikτ . We have seen an example in Section 2 and will see
more similar examples later with different A, B and C. The
corresponding vacuum |0〉 is the Bunch-Davies vacuum and
annihilated by aa(k) defined in (61), aa(k)|0〉 = 0.

We also would like to write the vacuum of the interacting
theory (51) in terms of the vacuum of the free theory |0〉
defined above. Unlike the scattering theory where the vac-
uum of the free theory is generally different from the vacuum
of the interaction theory, the process that we are studying
here do not generate any nontrivial vacuum fluctuations
through interactions. This is a direct consequence of the
identity

F−1F = 1. (63)

Figure 1: An example of Feynman diagram.

So we can replace |Ω〉 in (51) with the Bunch-Davies vacuum
|0〉 that we have specified above.

The integrand HI(t) in (50) is highly oscillatory in the
infinite past due to the behavior of the mode function
∝ e−ikτ . Their contribution to the integral is averaged
out. For the Bunch-Davies vacuum, this regulation can
be achieved by introducing a small tilt to the integration
contour τ0 → −∞(1 + iǫ) or performing a Wick rotation
τ → iτ. The imaginary component turns the oscillatory
behavior into exponentially decay, making the integral well
defined.

3.3. Contractions. When evaluating (51), one encounters
(anti)time-ordered integrals, of which the integrands are
products of fields, such as δφI

a and δπI
a, or δφI

a and δφ̇I
a,

sandwiched between the vacua. In contrast to the Minkowski
space, in the inflationary background, we do not have a
simple analogous Feynman propagator which takes care
of the time ordering. Therefore, we will just evaluate the
integrands, but leave the complication of the time ordering
to the final integration.

To evaluate the integrand, one can shift around the
orders of fields in that product, following the rules of the
commutation relations. A contraction is defined to be a
nonzero commutator between the following components of
two fields, [δφ+

a , δφ−b ], where δφ+
a and δφ−b denote the first

and second term on the right-hand side of (61), respec-
tively. After normal ordering, namely moving annihilation
operators to the right-most and creation operators to the
left-most so that they give zeros hitting the vacuum, it is
not difficult to convince oneself that the only terms left
are those with all fields contracted. Feynman diagrams can
be used to keep track of what kind of contractions are
necessary.

In the following, we demonstrate this using a simple
example. We consider a field δφI and quantize it as usual,

δφI(k, t) ≡ δφ+ + δφ−

= u(k, t)ak + u∗(−k, t)a†−k.
(64)

So a contraction between the two terms, δφ(k, t′) on the left
and δφ(p, t′′) on the right, is defined to be
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[
δφ+(k, t′), δφ−

(
p, t′′

)]
=u(k, t′)u∗

(
−p, t′′

)
(2π)3δ3

(
k + p

)
.

(65)

For example, we want to compute a contribution to the four-
point function 〈δφ4〉 from a tree-diagram containing two
three-point interactions of the following form:

H I ∝
∫ 3∏

i=1

dpiδφ̇
I
(

p1, t
)
δφ̇I

(
p2, t

)
δφ̇I

(
p3, t

)
. (66)

These two H Is come from expanding F−1 or F in (51). The
corresponding Feynman diagram is Figure 1.

In Figure 1, the two cubic vertices each represent the
three-point interaction (66). Each line represents a contrac-
tion. The four outgoing legs connect to the four δφ(pi, t) (i =
1, 2, 3, 4) in 〈δφ4〉. The following is a term from the
perturbative series expansion of (51). We demonstrate in the
following one set of contractions represented by the diagram
in Figure 1,

δφ̇I
(

p1, t′
)
δφ̇I

(
p2, t′

)
δφ̇I

(
p3, t′

)
δφI (k1, t) δφI (k2, t) δφI (k3, t) δφI (k4, t) δφ̇I

(
q1, t′′

)
δφ̇I

(
q2, t′′

)
δφ̇I

(
q3, t′′

)

=
[
δφ̇+

(
p1, t′

)
, δφ− (k1, t)

] [
δφ̇+

(
p2, t′

)
, δφ− (k2, t)

] [
δφ+ (k3, t) , δφ̇−

(
q1, t′′

)] [
δφ+ (k4, t) , δφ̇−

(
q2, t′′

)]

×
[
δφ̇+

(
p3, t′

)
, δφ̇−

(
q3, t′′

)]
.

(67)

Note that all terms are contracted. The result can be
further evaluated using (65). After integration over momenta
indicated in (66), the final momentum conservation will
always manifest itself as (2π)3∑

i(ki). There are other sets of
contractions represented by the same diagram for the same
term. Namely, there are three ways of picking two of the
three pis (qis), so we have a symmetry factor 9; also, there
are 24 permutations of the four kis. We need to sum over
all these possibilities. We also need to sum over all possible
terms containing two H Is in the perturbative series, which
are not listed here, with their corresponding time ordered
integral structure.

3.4. Three Forms. Now we deal with the time ordered
integrals in the series expansion. There are two ways to
expand (51).

In the first form, we simply expand the exponential in
(50). For example, for an even n, the nth order term is

in(−1)n/2
∫ t

t0
dt1

∫ t1

t0
dt2 · · ·

∫ tn/2−1

t0
dtn/2

×
∫ t

t0
dt1

∫ t1

t0
dt2 · · ·

∫ tn/2−1

t0
dtn/2

× 〈HI
(
tn/2
)
· · ·HI

(
t1

)
QI(t)HI(t1) · · ·HI(tn/2)〉

+ 2 Re
n/2∑
m=1

in(−1)m+n/2
∫ t

t0
dt1

∫ t1

t0
dt2 · · ·

∫ tn/2−1−m

t0
dtn/2−m

×
∫ t

t0
dt1

∫ t1

t0
dt2 · · ·

∫ tn/2−1+m

t0
dtn/2+m

× 〈HI
(
tn/2−m

)
· · ·HI

(
t1

)
QI(t)HI(t1) · · ·HI(tn/2+m)〉.

(68)

Each term in the above summation contains two factors
of multiple integrals, one from F−1 and another from F.
Each multiple integral is time ordered or antitime-ordered,
but there is no time ordering between the two. We call this
representation the factorized form.

In the second form, we rearrange the factorized form
so that all the time variables are time-ordered, and all the
integrands are under a unique integral. The nth order term
in this form is [45]

in
∫ t

t0
dt1

∫ t1

t0
dt2 · · ·

∫ tn−1

t0
dtn

× 〈[HI(tn), [HI(tn−1), . . . , [HI(t1),QI(t)] · · · ]]〉.
(69)

We call this representation the commutator form.
Each representation has its computational advantages

and disadvantages.
The factorized form is most convenient to achieve the

UV (ti → t0) convergence. As mentioned, after we tilt or
rotate the integration contour into the positive imaginary
plane for the left integral, and negative imaginary plane
for the right integral, all the oscillatory behavior in the
UV becomes well-behaved exponential decay. However, this
form is not always convenient to deal with the IR (ti →
t) behavior. For cases where the correlation functions have
some nontrivial evolution after modes exit the horizon, as
typically happens for inflation models with multiple fields,
the convergence in the IR is slow. Cancellation of spurious
leading contributions from different terms in the sum (68)
can be very implicit in this representation, and could easily
lead to wrong leading order results in analytical estimation
or numerical evaluation.

The commutator form is most convenient to get the
correct leading order behavior in the IR. The mutual can-
cellation between different terms are made explicit in terms
of the nested commutators, before the multiple integral is
performed. However, such a regrouping of integrands makes
the UV convergence very implicit. Recall that the contour
deformation is made to damp the oscillatory behavior in the
infinite past. In the commutator form, for any individual
term in the integrand, we can still generically choose a unique
convergence direction in terms of contour deformation.
Although the directions are different for different terms, they
can be separately chosen for each of them. But now the prob-
lem is, if these different terms have to be grouped as in the
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nested commutator so that the IR cancellation is explicit, the
two directions get mixed. Hence, the explicit IR cancellation
is incompatible with the explicit UV convergence in this case.

To take advantage of both forms, we introduce a cutoff tc
and write the IR part of the in-in formalism in terms of the
commutator form and the UV part in terms of the factorized
form [46],

n∑

i=1

∫ t

tc
dt1 · · ·

∫ ti−1

tc
dti {commutator form}

×
∫ tc

−∞
dti+1 · · ·

∫ tn−1

−∞
dtn {factorized form}.

(70)

This representation is called the mixed form. This form
is particularly efficient in numerical computations when
combined with the Wick-rotations in the UV.

We will not always encounter all these subtleties in every
model, but there does exist such interesting examples, as we
will see in Section 7.1.

3.5. Summary. To end this section, we summarize the
procedure that we need to go through to calculate the
correlation functions in the in-in formalism.

Starting with the Lagrangian L[φ(t), φ̇(t)], we perturb it

around the homogenous solutions φa and φ̇a of the classical
equations of motion,

φa(x, t) = φa(t) + δφa(x, t),

φ̇a(x, t) = φ̇a(t) + δφ̇a(x, t).
(71)

Keep the part of the Lagrangian that is quadratic and

higher in perturbations and denote it as L̃. Define the

conjugate momentum densities as δπa = ∂L̃/∂(δφ̇a). We can
also equivalently expand the Hamiltonian H[φ(t),π(t)] by
perturbing φa(x, t) and πa(x, t).

Work out the Hamiltonian in terms of δφa and δπa, and
separate them into the quadratic kinematic part H0, which
describes the free fields in the time-dependent background,
and the interaction part HI . Relabel δφas and δπas in the
Hamiltonian density as the interaction picture fields, δφI

as
and δπI

as. These latter variables satisfy the equations of
motion followed from the H0. We quantize δφI

a and δπI
a

in terms of the annihilation and creation operators as in
(61) and (62). The mode functions ua(k, t) are solutions of
the equations of motion from H0, normalized according to
the Wronskian conditions (60) and specified by an initial
condition such as the Bunch-Davies vacuum. The correlation
function for Q(t) is given by

〈Q(t)〉 ≡ 〈0|
[
T exp

(
i
∫ t

t0
HI(t)dt

)]
QI(t)

×
[
T exp

(
−i
∫ t

t0
HI(t)dt

)]
|0〉,

(72)

where Q(t) is a product in terms of δφI
a(x, t) and δπI(x, t). If

we want to work with δφI
a and δφ̇I

a instead of δφI
a and δπI

a, we
replace δπI

a with δφ̇I
a using the relation δφ̇I

a = ∂H0/∂(δπI
a).

Choose appropriate forms in Section 3.4 and series-
expand the integrand in powers of HI to the desired orders.
Perform contractions defined in Section 3.3 for each term
in this expansion. Each term gives a nonzero contribution
only when all fields are contracted. Draw Feynman diagrams
that represent the correlation functions, and use them as a
guidance to do contractions. Finally sum over all possible
contractions and perform the time-ordered integrations.

4. A No-Go Theorem

Simplest inflation models generate negligible amount of
non-Gaussianities that are well below our current experi-
mental abilities [47, 48]. By simplest, we mean

(i) single scalar field inflation

(ii) with canonical kinetic term

(iii) always slow-rolls

(iv) in Bunch-Davies vacuum

(v) in Einstein gravity.

This list is extracted based on Maldacena’s computation of
three-point functions in an explicit slow-roll model [47]. We
now review this proof. The notations here follow [49, 50] and
will be consistently used later in this paper.

The Lagrangian for the single scalar field inflation with
canonical kinetic term is the following:

S =
∫
d4x

√−g
[
MP

2
R + X −V

(
φ
)]

, (73)

where φ is the inflaton field, X = −(1/2)gµν∂µφ∂νφ is the
canonical kinetic term and V is the slow-roll potential. The

first term is the Einstein gravity and MP = (8πG)−1/2 is
the reduced Planck mass. For convenience we will set the
reduced Planck mass MP = 1. The signature of the metric
is (−1, 1, 1, 1).

The inflaton starts near the top of the potential and
slowly rolls down. As we have reviewed in Section 2, to ensure
that the inflation lasts for at least O(60) e-folds, the potential
is required to be flat so that the slow-roll parameters (11)
are both much less than one most of the time. The energy
of the universe is dominated by the potential energy, and the
inflaton follows the slow-roll attractor solution (10). Also as
discussed in Section 2, we will use the following more general
slow-roll parameters:

ǫ = − Ḣ

H2
, η = ǫ̇

ǫH
. (74)

To study the perturbation theory, it is convenient to use
the ADM formalism, in which the metric takes the form

ds2 = −N2dt2 + hi j
(
dxi + N idt

)(
dx j + N jdt

)
. (75)

The action becomes

S = 1

2

∫
dt dx3

√
hN
(
R(3) + 2X − 2V

)

+
1

2

∫
dt dx3

√
hN−1

(
Ei jE

i j − E2
)

,

(76)



10 Advances in Astronomy

where the index of N i can be lowered by the 3D metric hi j
and R(3) is the 3D Ricci scalar constructed from hi j . The
definitions of Ei j and E are

Ei j =
1

2

(
ḣi j −∇iN j −∇ jNi

)
,

E = Ei jh
i j .

(77)

In the ADM formalism, the variables N and N i are
Lagrangian multipliers whose equations of motion are easy
to solve. In single field inflation, we have only one physical
scalar perturbation [51]. We choose the uniform inflaton
gauge (also called the comoving gauge) in which the scalar
perturbation ζ appears in the three dimensional metric hi j in
the following form:

hi j = a2e2ζδi j , (78)

and the inflaton fluctuation δφ vanishes. The a(t) is the
homogeneous scale factor of the universe, so ζ is a space-
dependent rescaling factor. In this paper we do not consider
the tensor perturbations.

We plug (75) and (78) into the action (76) and solve the
constraint equations for the Lagrangian multipliers N and
N i. We then plug them back to the action and expand up
to the cubic order in ζ in order to calculate the three-point
functions. To do this, in the ADM formalism, it is enough
to solve N and N i to the first-order in ζ . This is because
their third-order perturbations will multiply the zeroth
order constraint equation which vanishes, and their second-
order perturbations will multiply the first-order constraint
equation which again vanishes. After some lengthy algebra,
we obtain the following expansions:

S2 =
∫
dt d3x

[
a3
ǫζ̇2 − aǫ(∂ζ)

2
]

, (79)

S3 =
∫
dt d3x

[
a3
ǫ

2ζζ̇2 + aǫ2ζ(∂ζ)
2 − 2aǫζ̇(∂ζ)

(
∂χ
)

+
a3
ǫ

2
η̇ζ2ζ̇ +

ǫ

2a
(∂ζ)

(
∂χ
)
∂2χ

+
ǫ

4a

(
∂2ζ
)(
∂χ
)2

+ f (ζ)
δL

δζ

∣∣∣∣∣
1

]
,

(80)

where

χ = a2
ǫ∂−2ζ̇ , (81)

δL

δζ

∣∣∣∣∣
1

= 2a

(
d∂2χ

dt
+ H∂2χ − ǫ∂2ζ

)
, (82)

f (ζ) = η

4
ζ2 + terms with derivatives on ζ. (83)

Here ∂−2 is the inverse Laplacian and δL/δζ|1 is the variation
of the quadratic action with respect to the perturbation ζ .
We now can follow Section 3 and proceed to calculate the
correlation functions. For simplicity, we will always neglect
the superscript “I” on various interaction picture fields.

We restrict to the case where the slow-roll parameters are
always small and featureless. We first look at the quadratic
action. In this case, we can analytically solve the equation
of motion followed from (79) in terms of the Fourier mode
of ζ ,

uk =
∫
d3xζ(t, x)e−ik·x, (84)

and get the mode function

uk = u(k, τ) = iH√
4ǫk3

(1 + ikτ)e−ikτ , (85)

where τ ≡
∫
dt/a ≈ −(aH)−1 is the conformal time. The nor-

malization is determined by the Wronskian condition (60).
We have chosen the Bunch-Davies vacuum by imposing the
condition that the mode function approaches the vacuum
state of the Minkowski spacetime in the short wavelength
limit k/a≫ 1/H ,

uk −→ − Hτ√
4ǫk

e−ikτ . (86)

The dynamical behavior of ζ that has been explained around
(24) and (25) is made precise here. In particular, ζ is exactly
massless without dropping any O(ǫ) suppressed terms. In
addition, from (78), we can see that, for superhorizon modes,
the only effect of ζ is to provide a homogeneous spatial
rescaling. And ζ is the only scalar perturbation. So the fact
that ζ is frozen after horizon exit will not be changed by
higher-order terms.

If we choose the spatially flat gauge, we make ζ disappear
and the scalar in this perturbation theory becomes the
perturbation of φ. The relation between ζ and δφ in (25)
(with O(ǫ) corrections) is thus a gauge transformation
through a space-dependent time shift.

We quantize the field as

ζ(k, τ) = ukak + u∗k a
†
−k, (87)

with the canonical commutation relation [ak, a†k′] =
(2π)3δ3(k − k′). We can easily compute the two-point
function at the tree level,

〈
ζ(k1)ζ(k2)

〉
= Pζ

2k3
1

(2π)5δ3(k1 + k2), (88)

where

Pζ =
H2

8π2
ǫ

. (89)

Since ζ remains constant after it exits the horizon, the H and
ǫ are both evaluated near the horizon exit.

We next look at the cubic action. For single field models,
HI ,3 = −L3. Keeping in mind that χ is proportional to ǫ, one
can see that the first line of (80) is proportional to ǫ2. For the
featureless potential, η̇ = O(ǫ2), where ǫ collectively denotes
either ǫ or η. So the second line of (80) is proportional
to ǫ3, and negligible. The third line can be absorbed by a
field redefinition ζ → ζn + f (ζn). The only term in f (ζn)
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that will contribute to the correlation function is written out
explicitly in (83). All the others involve derivatives of ζ so
vanish outside the horizon. Thus this redefinition eventually
introduces an extra term,
〈
ζ(k1)ζ(k2)ζ(k3)

〉

=
〈
ζn(k1)ζn(k2)ζn(k3)

〉

+
η

4

(〈
ζ2
n(k1)ζn(k2)ζn(k3)

〉
+ 2 perm.

)
+ O

(
η2
(
Pζ
k

)3
)
.

(90)

According to (72), we expand the exponential to the first-
order in HI ,3 to get the leading result

〈
ζ3
n

〉
= −i〈0|

∣∣∣∣∣
∫ t

t0
dt
[
ζn(k1)ζn(k2)ζn(k3),HI ,3

]
∣∣∣∣∣|0〉. (91)

To estimate the order of magnitude of the bispectrum,
we only need to keep track of the factors of H and ǫ. For
example, from the first term in (80), we have

∫
dtH3(t) ⊃

−
∫
dx3dτa2

ǫ
2ζζ ′2, where we used the conformal time τ and

the prime denotes the derivative to τ. Using a ∝ H−1, ζ ∝
ζ ′ ∝ H/

√
ǫ, we see that this three-point vertex contributes

∝ H
√
ǫ. Together with the three external legs ζ3 and the

definition Pζ ∝ H2/ǫ, we get

〈
ζ3
〉
= −i

∫
dt
〈[
ζ3,HI ,3(t)

]〉
∝ H4

ǫ

∝ O(ǫ)P2
ζ . (92)

Similar results can be obtained for the other two terms
in the first line of (80). As we will define more carefully
later, the size of the three-point function is conventionally
characterized by the number fNL, which is defined as 〈ζ3〉 ∼
fNLP

2
ζ . So the contribution from the first line of (80) is

fNL = O(ǫ). The extra term due to the redefinition (90)
contributes fNL = O(η). This completes the order-of-
magnitude estimate. To get the full non-Gaussian profile, we
need to compute the integrals explicitly and get

〈
ζ(k1)ζ(k2)ζ(k3)

〉
= (2π)7δ3(k1 + k2 + k3)P2

ζ

1∏
ik

2
i

S,

(93)

where

S = ǫ

8

[
−
(

k2
1

k2k3
+ 2 perm.

)
+

(
k1

k2
+ 5 perm.

)

+
8

K

(
k1k2

k3
+ 2 perm.

)]
+
η

8

(
k2

1

k2k3
+ 2 perm.

)
,

(94)

where K = k1 + k2 + k3 and the permutations stand for those
among k1, k2, and k3.

The slow-roll parameters are of order O(0.01), so fNL ∼
O(0.01) for these models. Even if we start with Gaussian
primordial perturbations, nonlinear effects in CMB evolu-
tion will generate fNL ∼ O(1) [37], and a similar number
for large scale structures due to the nonlinear gravitational
evolution or the galaxy bias [35]. It seems unlikely that we
can disentangle all these contaminations and detect such
small primordial non-Gaussianities in the near future.

5. Beyond the No-Go

5.1. Inflation Model Building. The following are two exam-
ples of slow-roll potentials in the simplest inflation models
that we studied in Section 4:

Vsmall = V0 −
1

2
m2φ2, (95)

Vlarge =
1

2
m2φ2. (96)

The first type (95) belongs to the small field inflation models.
The slow-roll conditions (11) require the potential to be flat
enough relative to its height, that is, the mass of the inflaton
should satisfy m ≪ H . The second type (96) belongs to the
large field inflation models. The potential also needs to be flat
relative to its height, but here one achieves this by making
the field range φ very large, typically φ ≫ MP. The other
conditions that we listed in Section 4 should also be satisfied
by these models. These are the classic examples, which
exhibit algebraic simplicities and illustrate many essential
features of inflation.

However, when it comes to the more realistic model
building in a UV complete setup, such as in supergravity
and string theory, situations get much more complicated.
For example, it is natural that we encounter multiple light
and heavy fields, and the potentials for them form a complex
landscape. These multiple fields live in an internal space,
whose structure can be very sophisticated. In string theory,
some of them manifest themselves as extra dimensions
and can have intricate geometry and warping. All these
elements have to coexist with the inflationary background
that introduces profound back-reactions.

Even with varieties of model building ingredients, it
has been proven to be very subtle to construct an explicit
and self-consistent inflation model. Indeed various problems
have been noticed over the years in the course of the inflation
model building. For example, consider the following prob-
lems.

(i) The η-Problem for Slow-Roll Inflation [52]. As we have
seen, in order to have slow-roll inflation [8, 9], the mass of
the inflaton field has to be light enough, m≪ H , to maintain
a flat potential. However, in the inflationary background, the
natural mass of a light particle is of order H . This can be
seen in many ways, and in some ideal situations they are
equivalent to each other. For example, one way to see this
is to consider the coupling between the Ricci scalar and the
inflaton, ∼ Rφ2. In the inflationary background R ∼ H2.
Unless we have good reasons to set the coefficient of this
term to be much less than one, it will give inflaton a mass
of order H , spoiling the inflation. Another way to see this is
to note that the effective potential in supergravity takes the
form V = V0 exp(K/M2

P)×other terms. Here schematically
K ∼ φ2 + · · · is the Kahler potential and its dependence on
φ is normalized as such to give the canonical kinetic term
for φ. So the first term in the expansion of V is of order
V0φ2/M2

P ∼ H2φ2 and model independent. Therefore, either
symmetry needs to be imposed or other tuning contributions
introduced to solve this η-problem.
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(ii) The h-Problem for DBI Inflation [53]. DBI inflation [54]
is invented to generate inflation by a different mechanism.
It makes use of the warped space in the internal field space
[55, 56]. These warped space impose speed limits for the
scalar field, so even if the potential is steep, the inflaton is not
allowed to roll down the potential very quickly. A canonical
example of warped space is

ds2 = h(r)2
(
−dt2 + a(t)2dx2

)
+ h(r)−2dr2, (97)

where r is the extra dimension (or internal space), h(r) = r/R
is the warp factor, and R is the length scale of the warped
space. The position of a 3 + 1 dimensional brane in the r-
coordinate is the inflaton. So the inflaton velocity is limited
by the speed limit in the r-direction, h2. In order to provide
a speed limit that is small enough for inflation, the warp
factor has to be small enough, h≪ HR. However one of the
Einstein equations with the metric (97) takes the following
form

(
dh

dr

)2

−H2h−2 = 1

R2
+ other source terms, (98)

where the second term on the left-hand side is due to the
back-reaction of the inflationary spacetime. It is easy to see
that the naive h = r/R should be modified for h < HR,
precisely where the inflation is supposed to happen. Without
contributions from other source terms, such a deformed
geometry closes up too quickly and leads to an unacceptable
probe-brane back-reaction if we demand the inflaton still
follow the speed limit. Therefore, either symmetry, or tuning
using other source terms from the right-hand side of (98),
is necessary to solve this h-problem. The η-problem and h-
problem are closely related in an AdS/CFT setup.

(iii) The Field Range Bound [57, 58]. Large field inflation
models require the field range to be much larger than
MP. In supergravity and string theory, starting from a ten-
dimensional theory with 10-dim Planck mass M10, the 4-dim
Planck mass MP is obtained by integrating out the six extra
dimensions,

M8
(10)

∫
d6yd4x

√
−G(10)R(10) ⊃M8

(10)V(6)

×
∫
d4x

√−g(4)R(4) ≡M2
P

∫
d4x

√−g(4)R(4),

(99)

where we use L and V(6) ∼ L6 to denote the size and
volume of the extra dimensions, respectively. The field range
∆φ often appears as the distance in the extra dimensions,
∆φ ∼ ∆L·M2

(10), with the factor M2
(10) being the proportional

coefficient. Clearly, ∆L � L. If the field range manifests itself
within a warped throat with a length scale R, we still require
R < L, and so ∆L � L. Together with MP =M4

(10)L
3, we get

∆φ �
MP(

M(10)L
)2 . (100)

We further note that the microscopic length scale L has to be
much larger than the 10-dim Planck length M−1

(10) for the field

theory to make sense. So M(10)L≫ 1, and the field range ∆φ
in these models is generically sub-Planckian. For example,

for a warped throat with charge N , (M(10)L)2 � (M(10)R)2 ∼
N1/2, we have

∆φ �
MP√
N
. (101)

We have ignored a detailed numerical coefficient appearing
on the right-hand side of (101), which is model dependent.
For example, considering the volume V(6) to be the sum of
the throat and a generic bulk volume, it is O(0.01) [57];
considering an extreme case where the throat does not attach
to a bulk, it is O(1) [58]. Notice that, due to the dependence
of MP on the volume V(6), increasing the volume only makes
the bound tighter.

(iv) The Variation of Potential [59]. Even in cases where there
is no fundamental restriction on the excursion of fields, one
encounters problems constructing the large field inflationary
potential. Large field potentials that arise from a fundamental
theory take the following general from:

V
(
φ
)
=

∞∑
n=0

λnm
4−n
fundφ

n, (102)

where mfund represents typical scales in the theory. For field
theory descriptions to hold, such scales are much less than
MP. For example, mfund can be the higher dimensional
Planck mass, string mass, or their warped scales. The λns
are dimensionless couplings of order O(1). Unless some
symmetries are present to forbid an infinite number of terms
in (102), or a high degree of fine-tuning is assumed, the
shape of potential (102) varies over a scale of order mfund ≪
MP. This variation is too dramatic for the potential to be a
successful large field slow-roll potential.

None of the arguments in the above list is meant to show
that the specific type of inflation is impossible. In fact, these
have been the driving forces for the ingenuity and creativity
in the field of inflation model building. This list is used to
demonstrate some typical examples of complexities in reality.
Often times, solving one problem will be companied by other
structures that make the model step beyond the simplest one.
So we may want to keep an open mind that the algebraic
simplicity may not mean the simplicity in Nature.

Following is a partial list of possibilities that allow us to
go beyond the no-go theorem in Section 4.

(i) Instead of single field inflation, we can consider qua-
sisingle field or multifield inflation models (Sections
7 and 8).

(ii) Instead of canonical kinetic terms, there are models
where the higher derivative kinetic terms dominate
the dynamics (Section 6.1).

(iii) Instead of following the attractor solution such as
the slow-roll precisely, features can be present in the
potentials or internal space, that temporarily break
the attractor solution, or cause small but persistent
perturbations on the background evolution (Sections
6.2 and 6.3).
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(iv) Instead of staying in the Bunch-Davies vacuum, other
excitations can exist due to, for example, boundary
conditions or low scales of new physics (Section 6.4).

(v) Although strong constraints, from experimental
results and theoretical consistencies, exist on non-
Einstein gravities, early universe may provide an
opportunity for their appearance. We use this cat-
egory to include a variety of possibilities, such as
modified gravities, noncommutativity, nonlocality
and models beyond field theories.

There are also strong motivations from data analyses
for us to search and study different large non-Gaussianities.
The signal-to-noise ratio in the CMB data is not large
enough for us to detect primordial non-Gaussianities model-
independently. A well-established method is to start with
a theoretical non-Gaussian ansatz, and construct optimal
estimators that compare theory and data by taking into
accounts all momenta configurations. This then gives con-
straints on the parameters characterizing the theoretical
ansatz. Therefore, the following two important possibilities
exist. First, the primordial non-Gaussianities exist in data
could be missed if we did not start with a right theoretical
ansatz. Second, even if a non-Gaussian signal was detected
with one ansatz, it does not mean that we have found
the right one. So different well-motivated non-Gaussian
templates are needed for clues on how corresponding data
analyses should be formed. From a different perspective, even
if the primordial density perturbations were Gaussian, we
would still do the similar amount of work and reach the
conclusion after various well-motivated non-Gaussian forms
are properly constrained.

5.2. Shape and Running of Bispectra. In this paper, we will
be mainly interested in the three-point correlation functions
of the scalar primordial perturbation ζ . They are also called
the bispectra. In this subsection, we introduce some simple
terminologies that we often encounter in studies of bispectra.

The three-point function is a function of three momenta,
k1, k2, and k3, which form a triangle due to the translational
invariance. Assuming also the rotational invariance, we are
left with three variables, which are their amplitudes, k1, k2,
and k3, satisfying the triangle inequalities. The information
is encoded in a function S(k1, k2, k3) that we define as

〈ζ3〉 ≡ S(k1, k2, k3)
1

(k1k2k3)2 P̃
2
ζ (2π)7δ3

⎛
⎝

3∑

i=1

ki

⎞
⎠, (103)

where P̃ζ is the fiducial power spectrum, and we fix it to be

a constant P̃ζ ≡ Pζ(kwmap) = 6.1 × 10−9, where kwmap =
0.027 Mpc−1. We have chosen the above definition so that it
can be uniformly applied to different types of bispectra that
we will encounter in this paper. In the literature, different
notations have been used. The differences are simple and
harmless. For example, different functions such as A =
k1k2k3S or F = S/(k1k2k3)2 are sometimes defined. We
choose S since it is dimensionless and, for scale-invariant
bispectra, it is invariant under a rescaling of all momenta.

This quantity is the combination that is used to plot the
profiles of bispectra in the literature any way, despite of
different conventions. Also, the precise power spectrum Pζ
instead of P̃ζ is often used in the definition (103). Here,
we absorb the momentum dependence of Pζ in S. This is
because the three-point function is an independent statistic
relative to the two-point. In cases where both the power
spectrum and bispectrum have strong scale dependence, it
is not convenient if they are defined in an entangled way.

Under different circumstances, different properties of S
are emphasized. The conventions involved may not always
be precisely consistent with each other, since they are chosen
to best describe the case at hand. Following are some typical
examples.

The dependence of S on k1, k2, and k3 is usually split into
two kinds.

One is called the shape of the bispectrum. This refers to
the dependence of S on the momenta ratio k2/k1 and k3/k1,
while fixing the overall momentum scale K = k1 + k2 +
k3. Several special momentum configurations are shown in
Figure 2.

Another is called the running of the bispectrum. This
refers to the dependence of S on the overall momentum scale
K = k1 + k2 + k3, while fixing the ratio k2/k1 and k3/k1.

For bispectra that are approximately scale invariant,
the shape is a more important property [50, 60]. We will
encounter such cases in Sections 6.1, 7.1, and 8.1. The
amplitude, also called the size, of the bispectra is often
denoted as fNL by matching

S(k1, k2, k3)
k1=k2=k3−−−−−→

limit

9

10
fNL. (104)

In this case, fNL is approximately a constant but can also have
a mild running, that is, a weak dependence on the overall
momentum K [61, 62]. An index nNG − 1 ≡ d ln fNL/d ln k
is introduced to describe this scale dependence. The power

spectrum also has a mild running, Pζ = (k/k0)ns−1P̃ζ .
In this paper, when we give explicit forms of S in the
approximately scale-invariant cases, for simplicity, we mostly
ignore these mild scale dependence and concentrate on
shapes. Shapes of bispectra have been given names according
to the overall dependence of S on momenta. For example, for
the equilateral bispectrum, S peaks at the equilateral triangle
limit and vanishes as ∼k3/k1 in the squeezed triangle limit
(k3 ≪ k1 = k2). The local bispectrum peaks at the squeezed

triangle limit in the form ∼ (k3/k1)−1, such as the two shape
components in (94). To visualize the shapes, we often draw
3D plots S(1, x2, x3), where x2 and x3 vary from 0 to 1 and
satisfy the triangle inequality x2 + x3 ≥ 1.

There are also cases where the running becomes the
most important property, while the shape is relatively less
important [63, 64]. In such cases, the bispectra are mostly
functions of K . So fNL defined in (104) has strong scale
dependence. Instead, one can choose a constant fNL to
describe the overall running amplitude. We will encounter
such cases in Sections 6.2 and 6.3. In these cases, the shape
plot S(1, x2, x3) may look nontrivial but this is because it does
not fix K .
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(a) (b) (c)

Figure 2: Momentum configurations: (a) equilateral, (b) squeezed, and (c) folded.

The above dissection will become less clean for cases
where both properties become important.

One thing is clear. The fNL, that is always used to quantify
the level of non-Gaussianities, is only sensible with an extra
label that specifies, at least qualitatively, the profile of the
momentum dependence, such as shapes and runnings.

It is useful to quantify the correlations between different
non-Gaussian profiles, because as we mentioned in data
analyses an ansatz can pick up signals that are not completely
orthogonal to it. In real data analyses this is performed in the
CMB l-space. To have a simple but qualitative analogue in
the k-space, we define the inner product of the two shapes as

S · S′ ≡
∫

Vk

S(k1, k2, k3)S′(k1, k2, k3)w(k1, k2, k3)dk1dk2dk3,

(105)

and normalize it to get the shape correlator [60, 65]

C(S, S′) ≡ S · S′
(S · S)1/2(S′ · S′)1/2 . (106)

Following [65], we choose the weight function to be

w(k1, k2, k3) = 1

k1 + k2 + k3
, (107)

so that the k-scaling is close to the l-scaling in the data
analyses estimator. Later in this review, when we use this
correlator to estimate the correlations between shapes, we
take the ratio between the smallest and largest k to be 2/800,
close to that in WMAP. A more precise correlator should be
computed in the l-space in the same way that the estimator is
constructed. We refer to [35] for more details.

In typical data analyses [66–70], the estimator involves
a triple integral of the bispectrum over the three momenta
ki. To have practical computational costs, it is necessary that
this integral can be factorized into a multiplication of three
integrals, each involves only an individual ki. This requires
the bispectrum to be of the form f1(k1) f2(k2) f3(k3), or a sum
of such forms. Such a form is called the factorizable form
or separable form. The factor K−n may be tolerable since it
can be written as (1/Γ(n))

∫∞
0 tn−1e−Kt. If the analytical result

is too complicated, to make contact with experiments we
will try to construct simple factorizable ansatz or template to
capture the main features of the original one. New methods

that are applicable to nonfactorizable bispectrum forms and
are more model-independent are under active development
[71].

6. Single Field Inflation

In this section, we relax several restrictions of the no-go
theorem on single field inflation models and study how
large non-Gaussianities can arise. We present the formalisms
and compute the three-point functions. We emphasize how
different physical processes during inflation are imprinted
as distinctive signatures in non-Gaussianities. Obviously,
any mechanism that works for single field inflation can be
generalized to multifield inflation models.

6.1. Equilateral Shape: Higher Derivative Kinetic Terms. In
this subsection, we study large non-Gaussianities generated
by noncanonical kinetic terms in general single field inflation
models, following [50].

Consider the following action for the general single field
inflation [72]:

S =
∫
d4x

√−g
[
MP

2
R + P

(
X ,φ

)]
. (108)

Comparing to (73), we have replaced the canonical form X−
V with an arbitrary function of X ≡ −(1/2)gµν∂µφ∂νφ and
φ. This is the most general Lorentz-invariant Lagrangian as
a function of φ and its first derivative. It is useful to define
several quantities that characterize the differential properties
of P with respect to X [49, 72]:

c2
s =

P,X

P,X + 2XP,XX
,

Σ = XP,X + 2X2P,XX =
H2
ǫ

c2
s

,

λ = X2P,XX +
2

3
X3P,XXX ,

(109)

where cs is called the sound speed and the subscript “X”
denotes the derivative with respect to X . The third derivative
is enough since we will only study the three-point function
here.

It is a nontrivial question which forms of P will give rise
to inflation. The model-independent approach we take here
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is to list the conditions that an inflation model has to satisfy,
no matter which mechanism is responsible for it. Namely, we
generalize the slow-roll parameters in (74) to the following
slow-variation parameters:

ǫ = − Ḣ

H2
, η = ǫ̇

ǫH
, s = ċs

csH
, (110)

and require them to be small most of the time during the
inflation. The smallness of these parameters guarantees the
Hubble constant H , the parameter ǫ, and the sound speed
cs to vary slowly in terms of the Hubble time. Similar to
the arguments given in the case of slow-roll inflation in
Section 2, these are necessary to ensure a prolonged inflation
as well as an approximately scale-invariant power spectrum
that we observed in the CMB.

Following the same procedure that is outlined in
Section 4, we get the quadratic and cubic action for the scalar
perturbation ζ [47, 49, 50]. The quadratic part is

S2 =
∫
dt d3x

[
a3 ǫ

c2
s
ζ̇2 − aǫ(∂ζ)

2

]
. (111)

If the slow-variation parameters are always small and
featureless, we can analytically solve the equation of motion
followed from (111) and get the following mode function:

uk(τ) = iH√
4ǫcsk3

(1 + ikcsτ)e−ikcsτ . (112)

Notice the appearance of cs comparing to (85). The two-
point function is

〈
ζ(k1)ζ(k2)

〉
= Pζ

2k3
1

(2π)5δ3(k1 + k2), (113)

with the power spectrum

Pζ =
H2

8π2
ǫcs

, (114)

where the variables are evaluated at the horizon crossing of
the corresponding k-mode.

To calculate the bispectrum, we look at the cubic action.
In the following, we list three terms that are most interesting
for this subsection,

S3 =
∫
dt d3x

{
− a3

ǫ

Hc2
s

[(
1− 1

c2
s

)
+

2λ

Σ

]
ζ̇3

+
3a3
ǫ

c2
s

(
1− 1

c2
s

)
ζζ̇2

−aǫ
(

1− 1

c2
s

)
ζ(∂ζ)

2
+ · · ·

}
.

(115)

The full terms can be found in in [50, equations (4.26)–
(4.28)].

The order of magnitude contribution from these three
terms can be estimated similarly as we did in (92), but now
we not only keep factors of H and ǫ, but also factors of cs.

Take the first term as an example, we write it in terms of the
conformal time,
∫
dτH3(τ) ⊃

∫
dτd3x

aǫ

Hc2
s

[(
1− 1

c2
s

)
+

2λ

Σ

]
ζ
′3. (116)

Comparing (112) with (85), we see that there is an extra
factor of cs companying τ. So we estimate dτ ∝ c−1

s and

a ≈ −(Hτ)−1 ∝ csH−1. Also, ζ ∝ H/
√
ǫcs, but ζ ′ ∝ csζ .

Overall, the vertex (116) contributes

∝ H√
ǫcs

[(
1− 1

c2
s

)
+

2λ

Σ

]
. (117)

Multiplying the three external legs ζ3, and using the defini-
tion

〈
ζ3
〉
∼ fNLP

2
ζ (118)

and Pζ ∝ (H/
√
ǫcs)

2, we get

fNL ∼ O

(
1

c2
s

)
+ O

(
λ

Σ

)
. (119)

The other two terms are similar. A detailed calculation reveals
that

〈
ζ(k1)ζ(k2)ζ(k3)

〉
= (2π)7δ3(k1 + k2 + k3)

(
Pζ
)2 1∏

ik
2
i

×
(
Sλ + Sc + So + Sǫ + Sη + Ss

)
,

(120)

where we have decomposed the shape of the three-point
function into six parts. The first two come from the leading
order terms that we listed in (115),

Sλ =
(

1

c2
s
− 1− 2λ

Σ

)
3k1k2k3

2K3
, (121)

Sc =
(

1

c2
s
− 1

)⎛
⎝− 1

K

∑

i> j

k2
i k

2
j +

1

2K2

∑

i /= j

k2
i k

3
j +

1

8

∑

i

k3
i

⎞
⎠

× 1

k1k2k3
.

(122)

In terms of fNL their sizes are

f λNL =
5

81

(
1

c2
s
− 1− 2λ

Σ

)
, (123)

f cNL = −
35

108

(
1

c2
s
− 1

)
. (124)

The next four terms come from the subleading terms that
we did not list explicitly in (115) as well as the subleading
contributions from the first two terms. Their orders of
magnitude are

f oNL = O

(
ǫ

c2
s

,
ǫλ

Σ

)
,

f
ǫ,η,s

NL = O
(
ǫ,η, s

)
.

(125)

The detailed profiles can be found in [50].
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The full results we obtained can be used in different
regimes.

(i) If we look at the limit, cs ≪ 1 or λ/Σ ≫ 1, the
leading order results give two shape components,
Sλ and Sc. This result can also be obtained using a
simple method of considering only the fluctuations
in scalar field while neglecting those in gravity [73,
74]. Intuitively, this is because the higher derivative
terms are responsible for the generation of large
non-Gaussianities, and the gravity contribution is
expected to be small as we saw in Section 4. There-
fore, one expands P(X ,φ) using φ(x, t) = φ0(t) +
δφ(x, t). The derivatives of P with respect to φ are
ignored because the inflation and scale invariance
imposes an approximate shift symmetry on P in
terms of inflaton φ. We then get two terms in the
cubic Lagrangian density,

L3 = a3

(
1

2
P,XX φ̇0 +

1

6
P,XXX φ̇

3
0

)
δ̇φ3

− a

2
P,XX φ̇0δ̇φ

(
∇δφ

)2
.

(126)

This gives two leading bispectra the same as (121)
and (122). The approach that we present here gives
a rigorous justification to such an method. The
subleading order component So may be observable as
well. At this limit where the higher derivative terms
of the inflaton field are dominant, the Lagrangian
of the above effective field theory are generalized
[75] to include, for example, the ghost inflation [76]
whose Lagrangian cannot be written in a form of
P(X ,φ). Another two slightly different equilateral
shapes arise. However, it is worth to mention that,
generally in single field models and Einstein gravity,
going beyond P(X ,φ) requires adding either terms
that explicitly break the Lorentz symmetry, or terms
with higher time derivatives on φ which cannot be

eliminated by partial integration, such as (�φ)2.
Different treatment of such terms and discussions on
their effects can be found in [77–79].

(ii) If we take the opposite, slow-roll limit, cs → 1 and
λ/Σ → 0, we recover the two shape components Sǫ
and Sη that we got in Section 4, with unobservable
size fNL ∼ O(ǫ).

(iii) We can also look at the intermediate parameter space.
In slow-roll inflation models, one can also add higher
derivative terms [49, 80]. But in order not to spoil
the slow-roll mechanism, the effect of these terms
can only be subdominant. This corresponds to cs ≈
1 and λ/Σ < O(1). Using the full results, we can
see that the size of the non-Gaussianity is fNL <
O(1). Therefore, it is important to emphasize that,
for the class of models we consider here, nonslow-
roll inflationary mechanisms, such as the example
that will be given below, are necessary to generate
observable large non-Gaussianities.
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Figure 3: Shape of Sλ in (121).
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Figure 4: Shape of Sc in (122).

(iv) The other terms that we did not list in (115) (see
[50]) and their canonical limit (80) are also useful.
These terms are exact for arbitrary values of ǫ, η, and
s, so the usage of the action is beyond the category
of models that we focus on in this subsection. As we
will see in Sections 6.2 and 6.3, it can be applied to
the cases of sharp or periodic features where these
parameters do not always remain small.

In the rest of this subsection, we focus on the first case.
In Figures 3 and 4, we draw the shapes of Sλ and Sc.

The two shapes are similar. They both peak at the equilateral
limit, and behave as S ∼ k3/k1 in the squeezed limit k3 ≪
k1 = k2. We call these shapes the equilateral shapes. There
are some small differences between Sλ and Sc, for example,
around the folded triangle limit k2 + k3 = k1. A factorizable
shape ansatz for the equilateral shape that is often used in
data analyses is the following [81]:

S
eq
ansatz = −6

(
k2

1

k2k3
+ 2 perm.

)
+ 6

(
k1

k2
+ 5 perm.

)
− 12,

(127)
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Figure 5: An ansatz (127) for the equilateral shape.

and is shown in Figure 5. As we can see, it represents the most
important features of Figures 3 and 4.

The shape of So is more complicated, but we expect they
have the similar shapes as the equilateral one because their
squeezed limits behave the same [50]. The three other shapes
Sǫ, Sη and Ss are all close to the local shapes as their squeezed
limit scale as k1/k3 for k3 ≪ k1 = k2.

The scale dependence in Pζ , cs and λ/Σ will introduce
mild running for the three-point function. We usually regard
only the contributions from cs and λ/Σ as the running of the
non-Gaussianity.

The underlying physics of the equilateral shape can be
readily understood in terms of their generation mechanism.
In single field inflation, the long wavelength mode that exits
the horizon are frozen and can have little interaction with
modes within the horizon. The large interaction only occurs
among modes that are crossing the horizon at about the same
time. These modes then have similar wavelengths. This is
why the shape of the non-Gaussianity peaks at the equilateral
limit in momentum space.

This physical origin also suggests the caveat that, as
long as there are large interactions involving modes with
similar wavelengths, an equilateral-like shape may arise. For
example, such cases can happen in multifield models where
there are particle creation [82, 83] (see however [84]).

(i) An Example: Dirac-Born-Infeld (DBI) Inflation. An
explicit example of the above general results is the DBI
inflation [54, 73, 85–92]. These inflation models describe a 3
+ 1 dimensional brane moving in warped extra dimensions.
The location of the brane is a scalar field in 4D effective field
theory, and it is the inflaton. The warped extra dimensions
provide a nontrivial internal field space for the inflaton. In
terms of the 4D effective field theory, the action is

−
∫
d4x

√−g

×
[
f
(
φ
)−1
√

1 + f
(
φ
)
gµν∂µφ∂νφ − f

(
φ
)−1

+ V
(
φ
)]
.

(128)

The nontrivial part is the kinetic term involving the square-
root. It can be understood as a generalization of the
following two familiar situations. It is a higher dimensional
generalization of the action of a relativistic point particle

∫
dt
√

1− f ẋ2, (129)

where the speed of light f −1/2 varies with x. It is also a
relativistic generalization of the usual canonical kinetic term
in the nonrelativistic limit | f (φ)gµν∂µφ∂νφ| ≪ 1,

−
∫
d4x

√−g
[

1

2
gµν∂µφ∂νφ + V

(
φ
)]
. (130)

Because the speed limit of the inflaton f −1/2 can vary in the
internal space, if it can be made small enough near the top of
potential where the inflaton is about to roll down, the warped
space restricts the rolling velocity even if the potential is too
steep for slow-roll inflation to happen. So the inflaton rolls
ultra relativistically, but with very small velocity, and this
generates the DBI inflation.

The physical consequence is now easy to obtain using
the general results in this subsection. In our notation the
Lagrangian is

P = − f −1
√

1− 2 f X + f −1 −V. (131)

The sound speed is

cs =
√

1− 2 f X , (132)

which is the inverse of the Lorentz boost factor γ, so cs ≪
1. The component (123) vanishes identically, and we have a
large bispectrum of shape Ac with size (124).

DBI inflation is still driven by the potential energy. The
general single field inflation models also include the k-
inflation [93], where the inflation is driven by the inflaton
kinetic energy. Model construction of single field k-inflation
can be found in [93–95]. The bispectra for such models are
computed in [50, 94].

Multifield generalization have been studied in [96–102],
where this type of kinetic terms are generalized to multiple
fields. The three-point functions involving these different
fields have the same or similar shapes.

The current CMB constraint on the equilateral ansatz
(127) is −214 < f

eq
NL < 266 [1].

6.2. Sinusoidal Running: Sharp Feature. Although various
slow-variation parameters in (110) have to be small most
of the time during inflation, they can become temporarily
large. Such cases can happen if there are sharp features in
inflaton potentials or internal field space, so the behavior of
inflatons temporarily deviates from the attractor solution,
and then relaxes back within several Hubble time, or stay
longer but with small deviation amplitudes. Motivations
for such models include the following. It may be possible
explanations for features in power spectrum [103–106], and
if so the associated non-Gaussianity is a cross-check. And
there are brane inflation models that are very sensitive to
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sharp features present in the potential or in the internal space
[107].

As an example, we study a sharp feature in the slow-
roll potential. The fact that a sharp feature in potential can
enhance non-Gaussianities has long been anticipated and
qualitative estimates have been made by different methods
[108–110]. The precise method of analyzing the size, running
and shape of such non-Gaussianities [63, 64] is made
possible with the developments of the formalisms that we
reviewed in Sections 3.1, 4, and 6.1. This will be the subject
of this subsection.

We start by studying the behavior of the slow-roll
parameters. We use a small step in potential as an example
and will ignore numerical coefficients. We use c ∼ ∆V/V to
denote the relative height of the step, and d the width of the
step. In the attractor solution, the inflaton velocity is given
by φ̇ ∼ V ′/H ∼

√
ǫV . As it falls down the step, the potential

energy cV gets converted to the kinetic energy, so we have

φ̇ �
√
V(c + ǫ). (133)

The amplitude of density perturbations is given by Pζ ∼
H4/φ̇2, so such a sharp feature causes glitches in the power
spectrum. It will leave a dip with relative size ∆Pζ /Pζ ∼√

1 + c/ǫ − 1 since φ̇ increases first, followed by oscillations
caused by a nonattractor component of the mode function
before it settles down again in the attractor solution. To
fit the CMB data, φ̇ cannot change much. As we can see,
the sensitivity of the power spectrum to the step size c is
proportional to ǫ, and we need c/ǫ � 1. Reducing the width
d of sharp feature increases the amplitude of the glitches, but
this is only for a large d over which the inflaton spends more
than one e-fold to cross. Further reducing d will not change
the amplitude of the glitches since (133) is saturated, but the
sharpness will determine how deep within the horizon the
modes are affected.

So ǫ does not change much, ∆ǫ ∼ ∆(φ̇2)/H2 ∼ c.
But it changes within a very short period, ∆t ∼ ∆φ/φ̇ ∼
d/
√
V(c + ǫ). So η can be very large,

∆η ∼ ∆ǫ

Hǫ∆t
∼ c

√
c + ǫ

dǫ
. (134)

It is also clear that the feature is associated with a charac-
teristic physical scale and generates a scale-dependent power
spectrum and higher-order correlation functions.

With these qualitative behavior in mind, we now study
the three-point function. An important fact of the for-
malisms in Sections 4 and 6 is that the expansion is exact
in terms of the slow-variation parameters. So it is valid
even if these parameters are not always small, as long as the
expansion in ζ ∼ O(10−5) is perturbative.

In all terms in the cubic expansion (80), ζ appears at most
with one time derivative; the field redefinition gives a term
that is proportional to η at the end of the inflation; and the
other terms are all suppressed by powers of ǫ, which remains
small even in the presence of a sharp feature. So the most
important term is

∫
dt d3x

1

2
a3
ǫη̇ζ2ζ̇ , (135)
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Figure 6: Behavior of the slow-roll parameters for a step (solid line,
c = 0.0018, d = 0.022MP) and bump (dashed line, c = 0.0005,
d = 0.01MP) sharp feature on (1/2)m2φ2 potential. Note that in the
absence of the sharp feature, ǫη′ is of order O(10−4).

in which the coupling is proportional to η̇. The correlation
function 〈ζ(k1)ζ(k2)ζ(k3)〉 is dominated by

i

⎛
⎝∏

i

ui(τend)

⎞
⎠
∫ τend

−∞
dτa2

ǫη′

×
(
u∗1 (τ)u∗2 (τ)

d

dτ
u∗3 (τ) + sym

)
(2π)3δ3

⎛
⎝∑

i

ki

⎞
⎠ + c.c.

(136)

Precise evaluation of this expression has to be done numer-
ically. But it is not difficult to see the generic properties of
bispectra associated with a sharp feature.

For long wavelength modes that already crossed the
horizon at the time of the sharp feature, kiτ ≪ 1, the
mode function is already frozen and the integration (136)
gives vanishing contribution. For short wavelength modes
that are still well within the horizon, the modes are not
affected if their momenta are larger than the inverse of the
time scale characterizing the sharpness of changes in slow-
roll parameters. The modes most affected are those which
are near the horizon crossing. These modes are all oscillatory,
∼ e−ikiτ . As we have studied, η′ is temporarily boosted, so it
can be roughly approximated as several hat-functions that
satisfy

∫
dτη′ = 0. Examples of such behavior are shown

in Figure 6. If we simply approximate the hat-functions by
several delta-functions, η′ ∝ δ(τ−τ∗), the integration (136)
will give something like

S ∼ f feat
NL sin

(
K

k∗
+ φ0

)
, (137)

where k∗ ≡ 1/τ∗ is the scale corresponding to the location of
feature, φ0 is a phase and

f feat
NL ∼ ∆η ∼ O

(
c
√
c + ǫ

dǫ

)
. (138)

Comparing with the effect on the power spectrum, one can
keep the size of glitches in the power spectrum small while
make fNL large, for example, by fixing c/ǫ and decreasing d.
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Figure 7: Numerical result (dashed line) for the bispectrum
running for a sharp step (c = 0.0018,d = 0.022) along the k1 =
k2 = k3 ≡ k direction, compared with the simple ansatz (137) (solid
line).

This ansatz describes the most important running behav-
ior of this bispectrum. Notice that the oscillatory frequency
in the k-space is of order 1/k∗, which is the scale of the
feature. A rescale in k∗ can be compensated by a rescale
in all ki. Also notice that the oscillatory frequency, 3/k∗,
along the k1 = k2 = k3 ≡ k direction is 3/2 of that in
the power spectrum, 2/k∗. (For power spectrum, the sharp
feature introduces a small non-Bunch-Davies component for
the mode function. The oscillatory frequency in the power
spectrum is determined by the phase of the coefficient for this
component. This is obtained through matching conditions
across the feature, and the phase is ∼ 2k/k∗; see Section
5.3 of [107] for an example. From this result we can see
that, observationally, while sharp features located at large
scales (such as ℓ ∼ 30) introduce glitches that need to be
distinguished from statistical fluctuations, those located at
much shorter scales (such as ℓ ∼ 1000) introduce oscillatory
modulation that coherently shifts all points over several
acoustic peaks in the same direction, which is completely
different from statistical fluctuations of data points.)

In practice, (137) is a crude ansatz that needs to be
refined. First of all, we have only considered the modes
that have not exited the horizon. For those that did, as we
mentioned, their correlation function is as small as usual.
The ansatz needs to be cut off for the long wavelength
modes K/k∗ ≪ 1. A more detailed analysis [64] reveals,
using the hat functions as an approximation of the slow-
roll parameter behavior, that the bispectrum falls off as K2

for these long wavelength modes. Secondly, the fact that in
(137) all short wavelength modes are equally affected is due
to the sharp-change approximation. Smoother functions will
only affect a finite range of modes within the horizon. So the
amplitude of the ansatz should decay and how fast depends
on the sharpness of feature. To take into account both effects,
empirically, we can multiply (137) with an envelope function

∝
(
K

k∗

)n
e−K/mk∗ , (139)

where n and m are parameters chosen to fit the numerical
results. For example, n = 2 and m = 5 for Figure 7. Lastly,

in the very squeezed limit, k3 ≪ k1|K/k∗|, S can no longer
be approximated as a function of K only and starts to have a
nontrivial shape [64]. Here we concentrate on the signature
running behavior.

A numerical result with

V
(
φ
)
= 1

2
m2φ2

[
1 + c tanh

(
φ − φs
d

)]
(140)

is shown in Figure 7. A subtlety encountered in the numerical
integration is how to handle the oscillatory behavior at τ →
−∞. One can do a tilt into the imaginary plane, −τ →
−∞(1 + iǫ), as prescribed in the analytical procedure in
Section 3.2; or more efficiently, perform integration by part
to increase the convergence of the integrand at the τ → −∞
end. One may also try the method of Wick rotation, but this
will first require solving the background equations of motion
in the Wick-rotated space, since here we do not have the
analytical expression for the mode function.

Sharp features can also appear elsewhere instead of
potentials, for example, in the internal warped space for
DBI inflation [107]. The qualitative running behavior in
bispectrum is similar, and overall large non-Gaussianities
become a superposition of the approximate scale-invariant
equilateral shape and the sinusoidal running.

Non-attractor initial conditions can be included as a case
of sharp features, except that we only observe the relaxation
part.

6.3. Resonant Running: Periodic Features. In this subsection,
we consider a different type of features. These features may
or may not be sharp, but the most important property is
their periodicity. Such features will induce an oscillatory
component to the background evolution, in particular, to the
couplings in the interaction terms. We denote this oscillatory
frequency as ω. We know that each mode oscillates when it
starts the life well within the horizon. This frequency keeps
on decreasing as the mode gets stretched by the inflation,
until it reaches H when the mode becomes frozen. So the
mode scans through all frequencies that is larger than H , up
to some very high cutoff scale such as MP. Therefore, as long
as

ω > H , (141)

the oscillatory frequency of the modes in the integral will
hit ω at some point during the inflation. This causes
a resonance between the couplings and modes, hence a
constructive contribution to the correlation function [64].
Without the resonance, as we encountered previously,
the highly oscillatory modes simply average out within
the horizon. In contrast to the previous mechanisms,
here the non-Gaussianities are generated when modes are
subhorizon.

We now study the properties of such a non-Gaussianity,
following reference [64].
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To estimate the integral, we use the unperturbed mode
function. Similar to the sharp feature case, we get

〈
ζ(k1)ζ(k2)ζ(k3)

〉

≈ i
H4

64ǫ3
∏

ik
3
i

(2π)3δ3

⎛
⎝∑

i

ki

⎞
⎠

×
∫ 0

−∞

dτ

τ
ǫη′
(
1− i(k1 + k2)τ − k1k2τ

2
)
k2

3e
iKτ

+ two perm. + c.c..
(142)

In this case, we are interested in the region |Kτ| ≫ 1 in
order to have resonance. So the last term dominates as long
as the momentum triangle is not too squeezed so one of
the kis becomes <1/τ at the resonance point. The oscillatory
coupling is dominantly contributed by η′. The integral is
proportional to

∫
dττ sin(ωt) exp(iKτ). (143)

This integral can be done analytically using the relation t ≈
−H−1 ln(−Hτ). But its most important properties can be
understood as follows in terms of the physical picture that
we described.

First, let us look at its oscillatory running in K-space. The
phase of the background repeats itself after ∆Ne = 2πH/ω e-
fold, during which the wave-number K changes by −K∆Ne.
So the running of the non-Gaussianity in K-space is also
oscillatory with the period given by

∆K = K∆Ne =
2πKH

ω
. (144)

Note that this period is changing with K in a specific way that
we will see more clearly in a moment.

Next, let us look at the size of the non-Gaussianity. Each
K-mode briefly resonates with the oscillatory coupling when
its frequency sweeps through the resonance frequency ω.
Once its frequency differs from ω by ∆ω, the integration in
the 3pt starts to cancel if is performed over ∆t1 ∼ π/∆ω. In
the meanwhile it takes ∆t2 ∼ ∆ω/(ωH) to stretch the mode
and change its frequency from ω to ω−∆ω. Equating ∆t1 and
∆t2 gives the time period over which the resonance occurs for
this mode,

∆t ∼
√

π

ωH
. (145)

This corresponds to the number of oscillation periods

ω∆t

2π
∼
√

ω

4πH
(146)

that we need to integrate over to estimate the resonance
contribution. Note that one period in the integral (143)
for K/a = ω contributes πτ∗/K , where τ∗ is evaluated
at the resonant point. Multiplying the total number of the

resonant periods (146), using the definition (103) and P̃ζ ≈
H2/(8π2

ǫ), we see that the amplitude of S(k1, k2, k3) is

f res
NL ∼

√
π

16
ηA′τ∗

√
ω

H
∼
√
π

8
√

2

ω1/2η̇A
H3/2

. (147)

Slow-roll parameters acquire small oscillatory components,
and here ηA denotes the amplitude of such an oscillation.
Other prefactors of ki are cancelled according the definition
of S and the S turns out to be a function of K only. In the last
step of (147), we have listed the accurate numerical number,
which differs from the estimate by a factor of

√
2.

Summarizing both the running behavior and the ampli-
tude, we get the following ansatz for the bispectrum:

Sres
ansatz = f res

NL sin

(
C ln

(
K

k∗

))
, (148)

where

C = 2πK

∆K
= ω

H
(149)

and k∗ gives a phase. The argument C lnK in (148) appears
because of (144). This gives a scale dependent oscillatory
frequency in the K-space. In fact, this kind of dependence
makes the density perturbations in the resonance model
semiscale-invariant. We call it periodic-scale-invariant—
they are invariant under a discrete subgroup of rescaling.
Namely, the ansatz (148) is invariant if we rescale all ki
by n∆K/K = 2πnH/ω e-fold, where n is an integer.
Other rescaling causes a phase shift. This property is a
direct consequence of the symmetry of the Lagrangian. It is
periodic, so invariant under a discrete shift of the inflaton
field. This periodic-scale-invariance should also be respected
by the full-bispectrum results, as well as other correlation
functions.

As mentioned, we have derived this ansatz from the last
term in (142). Other terms will become important in the
squeezed limit. The full integration (142) has been worked
out in [111], and the leading order results are

Sres = f res
NL

⎡
⎣ sin

(
C ln

(
K

k∗

))

+
1

C

∑

i /= j

ki
k j

cos

(
C ln

(
K

k∗

))
+ O

(
1

C2

)⎤
⎦,

(150)

where O(1/C2) terms are neglected because we need 1/C =
H/ω ≪ 1 for large resonance. The numerical coefficient in
(147) turns out to be

√
π/(8

√
2). As we can see, the extra

terms satisfy the symmetry we mentioned and indeed give
large corrections in the very squeezed limit, for example,
k3 < k1H/ω. These terms also ensure a consistency condition
that we will study in Section 9.2. An example is plotted in
Figure 8. The spike at the very squeezed limit is due to the
second term in (150). Overall, we see that the leading shape
of this bispectrum is quite trivial, being almost a function
of K only, until it gets to the very squeezed limit. The
most distinctive feature of this type of non-Gaussianities is
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Figure 8: The running and shape of the resonance bispectrum
(150) with C = 100.

the running behavior captured in (148). Unfortunately, this
ansatz is not factorizable if the K-range is too large.

More arbitrary scale-dependence can be introduced if
the features are applied over a finite range, or with varying
periodicity and amplitude.

As a useful comparison, the resonant running here and
sinusoidal running that we studied in the last subsection
are clearly distinguishable from each other observationally.
The resonant running oscillates with periods that are always
much smaller than the local scale, ∆K ≪ K ; the frequency
has a specific scale-dependence, ∆K/K = const.; and the
frequency in the power spectrum (∼ sin(C ln k) in k-space)
is exactly the same as that in the bispectrum (∼ sin(C lnK)
in K-space). In contrast, the bispectrum of the sinusoidal
running oscillates with a fixed period that approximately
equals to the scale at the location of the sharp feature,
∆K ∼ k∗; the frequency is scale-independent; and the power
spectrum (∼ sin(2k/k∗) in k-space) has twice an oscillatory
frequency of the bispectrum (∼ sin(K/k∗) in K-space).

As an illustration, we look at an example,

V
(
φ
)
= 1

2
m2φ2

[
1 + c sin

(
φ

Λ

)]
. (151)

In this example, the inflaton is rolling over the small
but periodic ripple laid on the potential. This induces an
oscillatory component in the slow-roll parameters with an
amplitude η̇A ≈

√
6 cmφ/Λ2 and a frequency ω ≈ φ̇/Λ ≈

2 m/(
√

6Λ). So we have

f res
NL ∼

cM3
P

Λ5/2φ1/2
,

C ≈ 2(
φΛ
) .

(152)

A numerical example is shown in Figure 9. As we can
see, the ansatz (148) gives a very accurate fit to the actual
running behavior. The mode function and power spectrum
are the superposition of the usual unperturbed solution
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Figure 9: Numerical result (solid line) of the bispectrum running
for the example (151) (m = 3 × 10−6MP, c = 5 × 10−7,Λ =
0.0007MP,φ ≈ 15MP), compared with the ansatz (148) (dashed
line).

and a small oscillatory component [64, 112, 113]. We can
choose parameters so that the size of the ripples on the
power spectrum is small, but bispectrum is made large. This
is because the non-Gaussianities rise more quickly if we
increase the frequency, while the mode function has difficulty
responding efficiently when the external source oscillates too
fast. This mechanism may be realized in terms of brane
inflation [107] where the periodic feature comes from duality
cascade in warped throat [114], or the monodromy inflation
[115, 116] where the periodic feature comes from instanton
effects [112, 113].

6.4. Folded Shape: A Nonstandard Vacuum. In this subsec-
tion, we study the effect of nonstandard vacuum on the
primordial non-Gaussianities. We consider a different wave-
function from the Bunch-Davies vacuum when modes are
well within the horizon. To start, let us first discuss several
motivations for this case.

(i) A non-Bunch-Davies vacuum can actually occur
much more simply than it might sound like. Any
deviation from the attractor solution of the inflaton
generically generates a component of non-Bunch-
Davies vacuum. This is because a general mode
function is a superposition of two components,
c1(k)u(k, t) + c2(k)u∗(k, t), and in attractor solution
we choose one of the component asymptotic to the
Bunch-Davies vacuum. A disturbance will generically
introduce a mixture with the other component. In
this sense, we have already encountered such a case
when we studied the effect of a sharp feature in
Section 6.2. Indeed, after the inflaton crosses the
sharp feature, the oscillatory behavior in the power
spectrum is precisely due to the superposition of
the second non-Bunch-Davies component for some
finite k-range. For an infinitely sharp change, such
a disturbance with a small amplitude extends to
all k that have not exited the horizon at the time
of sharp feature. An analytical illustration can be
found in Section 5.3 of [107]. The location of the
sharp feature can become superhorizon at the present
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time, but its influence has extended to much smaller
scales and becomes observable. The resonance case in
Section 6.3 is another type of example. An analytical
illustration can be found in Section 3.3 of [112].
For non-Gaussianities studied in Sections 6.2 and
6.3, we only concentrated on the effects caused by
the features in slow-roll parameters. In analytical
analyses, we approximated the mode function by the
Bunch-Davies component and ignored the distur-
bance. The study of this subsection can be regarded
as the complementary analyses on the effect of a
different mode component.

(ii) In inflationary background, modes can be quantized
in terms of time-dependent creation and annihila-

tion operators, ak(t) and a†−k(t). The Bunch-Davies
vacuum is defined as the vacuum annihilated by
ak(t) as t → −∞. If a different adiabatic vacuum is
defined which is annihilated by ak(t0) at a finite t0,
we introduce a non-Bunch-Davies component. For
example, see [117, 118]. The origin and magnitude
of such a component have been debated and studied
by many papers, often under the name of the “trans-
Planckian effect”; see [119, 120] for summary and
references.

(iii) There are inflation models where the scale of new
physics can be very low. In particular, in warped
space it is proportional to the exponentially small
warp factor. In some DBI inflation models [86, 92],
the speed limit of the inflaton and the scale of new
physics are both related to the warp factor in such a
way that the local warped new scale can drop near or
even below the Hubble energy scale in certain epoch
of inflation. Clearly the simple scalar field Bunch-
Davies vacuum is no longer sufficient. Such models
further open up the possibilities of vacuum choices.

After these discussions, let us now focus on a specific
simple problem [50]. We modify the wave function of
the Bunch-Davies vacuum by a small second component
and examine its consequence for the three-point function
calculated in Section 6.1. We consider the general single field
inflation with a small sound speed cs or a large λ/Σ [50, 121].

So the mode function is

uk(τ) = iH√
4ǫcsk3

[
(1 + ikcsτ)e−ikcsτ + C−(1− ikcsτ)eikcsτ

]
,

(153)

where |C−| ≪ 1 and can be k-dependent. In the first example
above, the extra component starts at a specific time in the
past. In the second class of examples, it may start either at
a specific time or specific energy scale. To see a common
feature without addressing these model-dependent issues, we
look at the simple limit where the τ in (153) can go all the
way to −∞. The computation of the correlation function
is essentially the same as in Section 6.1. The leading order
correction to the bispectra is obtained by replacing one of
the three uk(τ) in the integrand by its C− component. So
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Figure 10: Shape of S̃λ (truncated).

it simply replaces one of the kis in the shapes with −ki. For
example, the correction to Sλ is

S̃λ =
(

1

c2
s
− 1− 2λ

Σ

)
3k1k2k3

2

×
(

Re(C−(k3))

(k1 + k2 − k3)3

+
Re(C−(k2))

(k1 − k2 + k3)3 +
Re(C−(k1))

(−k1 + k2 + k3)3

)
.

(154)

The shape of S̃λ is shown in Figure 10. The most
important feature of this shape is the enhancement at the
folded triangle limit, for example, k1 + k2 − k3 = 0. The
detailed form of enhancement is model dependent. For
example, it is different for another shape Sc. The divergence
in this folded limit occurs due to our simple limit of taking
τ to −∞. Imposing some kind of cutoff at the lower limit
of τ will eliminate this divergence, although as mentioned
the detailed modification will be highly model dependent.
For example, a simple constant cutoff τc will introduce a
factor of 1 + ((1/2)x2

c − 1) cos xc − xc sin xc for each of
the three terms in (154), where xc ≡ (k1 + k2 − k3)csτc
or its cyclic. Very close to the folded limit, K̃cs|τc| ≪ 1

(K̃ = k1 + k2 − k3 or its cyclic), this regulates away the

divergence; away from the folded limit, K̃cs|τc| ≫ 1, these
extra factors are unity on average but with oscillations. These
oscillation can be either physical, or regarded to be zero if
xc is within a regulation scale which exists since the non-
Bunch-Davies component is present for a finite time in the
past.

The case for slow-roll inflation is qualitatively similar,
and more examples of the bispectra shapes and the obser-
vational prospects are discussed in [122, 123]. In this case,
the proportional parameter for the bispectra amplitude is no
longer enhanced by 1/c2

s or λ/Σ, but < O(1).
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In order to facilitate the data analyses, a simple ansatz has
been proposed in [123],

Sfold
ansatz,1 = 6

(
k2

1

k2k3
+ 2 perm.

)
− 6

(
k1

k2
+ 5 perm.

)
+ 18,

(155)

which represents certain important features of this kind of
bispectra. It has a smooth rising behavior in the folded limit.
This ansatz is plotted in Figure 11(a). Since the real shape
has a model dependent cutoff, it remains open questions
how sensitive this is to data analyses and how well the ansatz
(155) represents it. We can also write down an ansatz which
is more directly motivated from the example (154) and the
comments after that equation,

Sfold
ansatz,2 = k1k2k3

k1 + k2 − k3

(kc + k1 + k2 − k3)4 + 2 perm., (156)

where the cutoff scale kc = 1/(csτc) is a parameter. For k1 +
k2−k3 ≫ kc and cyclic, we have neglected the oscillatory part
and only taken the average. In this ansatz, we can change the
powers in the numerator and denominator to model model-
dependent variations. The relation (kc + k1 + k2 − k3)−n =
(Γ(n))−1 ∫∞

0 dt tn−1e−(kc+k1+k2−k3)t may be used to factorize the
ansatz. This ansatz is plotted in Figure 11(b).

Another type of non-Bunch-Davies vacuum, namely, an
n-particle state built on the normal Bunch-Davies vacuum,
was studied in [124, 125] and the non-Gaussianities were
found to be unobservable.

7. Quasisingle Field Inflation

Having considered single field inflation, we now relax the
condition on the number of fields. At least during inflation,
we only need to consider quantum fluctuations of light
fields, since if the mass of fields are very heavy, (here the
relevant scale is m ≫ H), they contribute only classically
and determine the classical inflaton trajectory. Multiple light
fields can arise naturally if we consider the inflation models
as the consequence of a UV completed framework. However,
as discussed in Section 5.1, due to the back-reaction from the
inflationary background, the mass of light fields are naturally
of order H . The potential with such a shape is too steep for
slow-roll inflation.

Therefore, as a natural step beyond the single field, let
us consider slow-roll models with one inflationary direction,
and one or more other directions that have mass neither
much heavier nor much lighter than H . We will call the
quanta in the inflationary direction as the inflaton and its
mode the curvature mode, and the others isocurvaton and
isocurvature modes. We call these models the quasisingle field
inflation models [46, 126].

Note that the thematic order in this paper is not
chronological. The non-Gaussianities in this type of models
were not computed until very recently for a couple of
reasons. If the mass of particles is of order O(H) or
larger, the amplitude of these fields decay exponentially
in time after horizon-exit. So they would not seem to
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Figure 11: Two ansatz for the folded shape. (a) Equation (155) and
(b) Equation (156) with kc/k1 = 0.1.

be important for superhorizon perturbations even if they
couple to the curvature mode. As we will see, however,
their amplitudes at or near the horizon-exit are enough
to make them interesting. What really suppresses their
contribution is the fast oscillation behavior present for m≫
H . Methodologically, isocurvature-to-curvature transition
for non-Gaussianities was studied restrictively in the regime
of superhorizon classical evolution in multi-field space [127–
134], which we will explain in more details in the next
section. However, for quasisingle field inflation models, a full
quantum computation in the in-in formalism is necessary
to properly include the contributions from both the horizon
exit and the superhorizon evolution.

7.1. Intermediate Shapes: Massive Isocurvatons. There are
potentially different ways massive isocurvatons can be cou-
pled to the inflaton. We currently do not have a general
approach in terms of model building. So what we will do is
to first study this problem through a simple example, and
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Veff

φ2

φ1

θ

σ

Figure 12: Quasi-single field inflation with turning trajectory. The
field θ and σ are in the polar coordinates. The θ is the inflationary
direction with a slow-roll potential. The σ is the isocurvature
direction, which typically has mass of order H .

then discuss the features of the results that can be regarded
as generic signatures of this class of models [46, 126].

We consider the case where the inflaton is turning
constantly by going around (a fraction of) a circle with
radius R in the angular θ direction. See Figure 12. All the
parameters, such as R and couplings, are assumed to be
constant during the turning. We call this assumption the
constant turn case. In the θ direction the potential is the usual
slow-roll potential Vsr(θ). The field in the radial direction
is denoted as σ and has mass of order H , and lifted by the
potential V(σ). For such a turning trajectory, it is convenient
to write the action in terms of fields in the polar coordinates,
θ and σ , instead of in the Cartesian coordinates,

Sm =
∫

d4x
√−g

[
−1

2
(R + σ)2gµν∂µθ∂νθ

−1

2
gµν∂µσ∂νσ −Vsr(θ)−V(σ)

]
.

(157)

The potential V(σ) balances off the centrifugal force neces-
sary for the turning and traps the field at the bottom of the

effective potential, Veff(σ) = −(1/2)θ̇2
0(R + σ)2 + V(σ). We

define the minimum of this effective potential to be σ = 0.
We expand the effective potential as

Veff = const. +
1

2

(
V ′′ − θ̇2

0

)
σ2 +

1

6
V ′′′σ3 + · · · , (158)

where θ̇0 is the turning angular velocity and the primes on V
denote derivatives with respective to σ .

To study the perturbation theory, we perturb the fields in
the spatially flat gauge,

θ(x, t) = θ0(t) + δθ(x, t), σ(x, t) = δσ(x, t), (159)

and obtain the following Hamiltonian,

H0 = a3

[
1

2
R2δθ̇2

I +
R2

2a2
(∂iδθI)

2

+
1

2
δσ̇2

I +
1

2a2
(∂iδσI)

2 +
1

2
m2δσ2

I

]
,

(160)

H
I
2 = −c2a

3δσIδθ̇I , (161)

H
I
3 = c3a

3δσ3
I , (162)

where

c2 = 2Rθ̇0, c3 =
1

6
V ′′′, m2 = V ′′ + 7θ̇2

0 (163)

are all constants. Terms suppressed by O(ǫ) have been
ignored in this gauge. The curvature perturbation ζ is most
transparent in another gauge, the uniform inflaton gauge,
where

θ(x, t) = θ0(t), σ(x, t) = σ0(t) + δσ(x, t), (164)

and the spatial metric is

hi j(x, t) = a2(t)e2ζ(x,t)δi j . (165)

In this gauge, ζ appears in the metric as the space-
dependent rescale factor and the fluctuations in the inflaton
is shifted away. The relation between ζ and δθ is the gauge
transformation. At the leading order this is

ζ ≈ −H

θ̇0

δθ. (166)

We will calculate the correlation functions in terms of δθ and
then use this relation to convert them to those of ζ . The full-
perturbation theory that one obtains in the uniform inflaton
gauge justifies the above omission of several O(ǫ) terms in
the spatially flat gauge [46].

There are several important points for this Hamiltonian.
First, the kinematic Hamiltonian (160) describes two free

fields in the inflationary background. One is massless and has
the familiar mode function,

uk =
H

R
√

2k3
(1 + ikτ)e−ikτ . (167)

Another is massive and the mode function is

vk = −iei(ν+(1/2))(π/2)

√
π

2
H(−τ)3/2H(1)

ν
(−kτ), (168)

where

ν =
√

9

4
− m2

H2
. (169)

For 0 ≤ m/H ≤ 3/2, the amplitude of the mode vk decays

as (−τ)−ν+3/2 after horizon-exit kτ → 0. The lighter the
isocurvaton is, the slower it decays. At the ν → 3/2 (i.e.,
m/H → 0) limit, the amplitude is frozen. For m/H >
3/2, ν becomes imaginary, the mode vk not only contains a
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decay factor (−τ)3/2 but also an oscillation factor τν. This
oscillation is marginal for m ∼ H , but if m ≫ H , it causes
cancellation in the integrals of the correlation function and is
equivalent to factors of Boltzmann-like suppression∼ e−m/H .
We will consider the case 0 ≤ ν ≤ 3/2.

Second, there is a sharp contrast between the V ′′′
sr for

the slow-roll inflaton field and the V ′′′ for the massive
field σ in the noninflationary direction. The former has
to be very small, ∼ O(ǫ2)P1/2

ζ H , in order to maintain the
smallness of the slow-roll parameters. (Here we use ǫ to
denote collectively all slow-roll parameters, ǫ ≡ −Ḣ/H2, η ≡
ǫ̇/ǫH , and ξ ≡ η̇/ηH .) Consequently it contributes O(ǫ2)
to the fNL of bispectrum in slow-roll inflation, generally
smaller than the O(ǫ) contributions from the other terms in
the same model. However, for quasisingle field inflation, the
direction orthogonal to slow-roll does not have to satisfy the
slow-roll conditions, and V ′′′ is almost unconstrained. For
example, in the inflationary background, it can be of order
H ; and similarly, V ′′′′ can be of order one, and so forth.
This isocurvaton self-interaction (162) becomes the source
of large non-Gaussianities.

Third, the coupling between the isocurvaton and inflaton
appears as a form of a two-point vertex operator in (161).
We treat this term as part of the interaction Hamiltonian,
and it is represented by the transfer vertex in Figure 13(a).
The strength of the coupling is determined by the turning
angular velocity θ̇0 in this model. This coupling is responsible
for the transformation of the isocurvature perturbations,
in particular their large non-Gaussianities, to the curvature
perturbation.

We calculate correlation functions corresponding to the
Feynman diagrams Figure 13 in terms of the in-in formalism,
which we reviewed in Section 3.1. As an illuminating exam-
ple to illustrate the different advantages of the three forms
of the in-in formalism, we recall from Section 3.1 that the
three-point function can be written in the following forms.
The original definitions (72) and (68), which we refer to as
the factorized form, lead to

〈δθ3〉 = −12c3
2c3u

∗
p1

(0)up2 (0)up3 (0)

× Re

[∫ 0

−∞
dτ̃1a

3(τ̃1)v∗p1
(τ̃1)u′p1

(τ̃1)

×
∫ τ̃1

−∞
dτ̃2a

4(τ̃2)vp1 (τ̃2)vp2 (τ̃2)vp3 (τ̃2)

×
∫ 0

−∞
dτ1a

3(τ1)v∗p2
(τ1)u′∗p2

(τ1)

×
∫ τ1

−∞
dτ2a

3(τ2)v∗p3
(τ2)u′∗p3

(τ2)

]

× (2π)3δ3

⎛
⎝∑

i

pi

⎞
⎠ + 9 other similar terms

+ 5 permutations of pi.
(170)

The perturbation theory here starts from the fourth order.
The reorganized commutator form (69) leads to

〈
δθ3

〉
= 12c3

2c3up1 (0)up2 (0)up3 (0)

× Re

[∫ 0

−∞
dτ1

∫ τ1

−∞
dτ2

∫ τ2

−∞
dτ3

×
∫ τ3

−∞
dτ4

4∏

i=1

(
a3(τi)

)

× a(τ2)
(
u′p1

(τ1)− c.c.
)

×
(
vp1 (τ1)v∗p1

(τ2)− c.c.
)

×
(
vp3 (τ2)v∗p3

(τ4)u′∗p3
(τ4)− c.c.

)

×vp2 (τ2)v∗p2
(τ3)u′∗p2

(τ3)

]

× (2π)3δ3

⎛
⎝∑

i

pi

⎞
⎠ + 2 other similar terms

+ 5 permutations of pi.
(171)

In the IR (τ → 0), each of the ten terms in the factorized
form diverge as τ3−6ν for 3/2 > ν > 1/2 (0 < m <

√
2H);

while in the commutator form, various subtractions off the
complex conjugates and the requirement that the final result
has to be real makes such divergence explicitly disappear.

In the UV (τ → −∞), each factor of the multiple integral
that integrates from −∞ to 0 has a definite convergent
direction if we choose one of the two contour tilts, τi →
−∞(1 ± iǫ), accordingly. Or more efficiently, by a Wick
rotation τi → ±izi. This would have been the case for
the commutator form if we can break up the integrand
into individual terms. However in order to achieve the
explicit IR convergence, as we saw above, these terms have
to be grouped; but then they have contradicting convergence
directions.

To take advantage of both forms, we introduce a cutoff

τc, and write the IR part (τc < τ ≤ 0) of the integrals in terms
of the commutator form, and the UV part (τ < τc) in terms
of the factorized form, in the following mixed form:

∑

i

∫ 0

τc
dτ1 · · ·

∫ τi−1

τc
dτi {commutator form}

×
∫ τc

−∞
dτi+1 · · ·

∫ τn−1

−∞
dτn {factorized form}.

(172)

This shows explicitly both convergence behavior of the
correlation function. Combining with Wick-rotations of the
integration contours in the UV, this form provides an effi-
cient way to evaluate the correlation functions numerically.
The shapes of bispectra are presented in Figure 14 for ν =
0, 0.3, 0.5, 1.
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Figure 13: Feynman diagrams for the transfer vertex (a), corrections to the power spectrum from isocurvature modes (b), and the leading
bispectrum (c).

To better understand the shapes analytically, we can work
out the squeezed limit (p3 ≪ p1 = p2) of the three-point
function,

〈δθ3〉 −→ c3
2c3

HR6

1

p(7/2)−ν

1 p2p
(3/2)+ν

3

s(ν)(2π)3δ3

⎛
⎝∑

i

pi

⎞
⎠,

(173)

where s(ν) is a ν-dependent numerical number.
Recall that the squeezed limit of S for the equilateral

shape goes as p3/p1, while for the local shape (p3/p1)−1. Both
the numerical results in Figure 14 and the analytical results
in (173) show that here we have a one-parameter family of

shapes, ∼ (p3/p1)1/2−ν, lie between the two. We call them the
intermediate shapes.

The physical origin of such shapes can be understood as
follows, and should be a generic signature for the quasisingle
field inflation models. As we have seen, the large equilateral
non-Gaussianity arises because the interacting modes cross
the horizon around the same time. The shape of bispectrum
peaks at the equilateral limit where the modes all have
comparable wavelengths. As we will see in Section 8, the large
local non-Gaussianity arises due to the classical nonlinear
evolution of superhorizon modes in the multifield space; so
the interactions are causally disconnected and behave local
in position space. This is nonlocal from the momentum
space point of view. So the shape of bispectrum peaks at
the squeezed limit. Now for quasisingle field inflation, the
large non-Gaussianities come from the massive isocurvaton.
Depending on the mass, these modes either decay right away
after they exit the horizon (for m >

√
2H), or survive for a

long time at the superhorizon scales (for m <
√

2H). In the
former case, the generation and transfer of non-Gaussianities
maximize for modes that are exiting the horizon around
the same time, resulting in quasiequilateral shapes; in the

latter case, the generation and transfer of non-Gaussianities
happen in a superhorizon fashion, resulting in quasilocal
shapes. In this regard, let us look more closely at the special
limit m/H → 0 (ν → 3/2).

In this massless limit, an infrared cutoff to the integrals
are necessary. Otherwise the transfer will last forever for the
constant turn case. The cutoff corresponds to the ending of
the turning. Let us discuss the following two cases. First,
we still keep V ′′′ large. Our analyses still apply in this case.
Interestingly, the shape of the bispectrum goes to that of the
local form in this limit. As we will explain in Section 8.1,
this is a generic signature of a massless isocurvaton. The
infrared e-fold cutoff will introduce some running in the f int

NL

because different modes experience different turning e-folds.
Second, we would like to make the isocurvature directions
flat so this becomes a two-field slow-roll inflation models.
Such models were intensively studied and it is known that the
isocurvature modes can be transferred to the curvature mode
by turning. However, since V ′′′ ∼ O(ǫ3/2)H2/MP is required
to maintain the small slow-roll parameters, the contribution
we computed here generates too small non-Gaussianity. We
expect contributions from other terms are small as well. So
it is much more difficult to generate large non-Gaussianities
in such models, essentially because imposing the slow-roll
conditions in all directions are too restrictive.

To connect with data analyses, guided by the numerical
results and analytical squeezed limit, we can use the following
ansatz to describe the full family of shapes:

Sint
ansatz =

3(9/2)−3ν

10

f int
NL

(
p2

1 + p2
2 + p2

3

)(
p1p2p3

)(1/2)−ν

(
p1 + p2 + p3

)(7/2)−3ν
.

(174)

These shapes are shown in Figure 15. Comparing with
Figure 14, we can see that they match quite well except near



Advances in Astronomy 27

0
0

0.5

1

0.5

1 0

v = 0

0.5

p 3
/p

1

1

p2 /p1

(a)

0
0

0.5

1

0.5

1 0

v = 0.3

0.5

p 3
/p

1

1

p2 /p1

(b)

0
0

0.5

1

0.5

1 0

v = 0.5

0.5

p 3
/p

1

1

p2 /p1

(c)

0
0

1

3

2

0.5

1 0

v = 1

0.5

p 3
/p

1

1

p2 /p1

(d)

Figure 14: Numerical results for the shapes of bispectra with intermediate forms. We plot S with ν = 0, 0.3, 0.5, 1. The plot is normalized
such that S = 1 for p1 = p2 = p3.

ν = 0, around which it is better represented by another ansatz
in [46]. The size of this bispectrum is

f int
NL = α(ν)P−1/2

ζ

(
θ̇0

H

)3(
−V ′′′

H

)
, (175)

where Pζ ≈ 6.1× 10−9 and θ̇0 is the turning angular velocity.
The α(ν) is a positive numerical number which, depending
on ν, can give an additional enhancement factor of order N f

(N f is the turning e-folds). Since (θ̇0/H)2 and V ′′′/H are the
expansion parameters in the perturbation theory, they have
to be small to trust our calculation. Nonetheless this is not
the model-building requirement.

The fluctuations of more massive (m > O(H)) fields may
become important if they play a role later in the reheating
[135, 136]. Such cases typically require some tunings for
special conditions, so that the highly suppressed fluctuation
amplitude can become important.

8. Multifield Inflation

As we have seen in Section 7.1, if we take the isocurvaton
mass to zero in quasisingle field inflation while keep
the nonlinear self-couplings of the isocurvaton V ′′′ large,
the shape of the large bispectrum in the squeezed limit
approaches the local form. The local form is in fact the
earliest and most well-studied example of non-Gaussianities
[66, 127, 137, 138], although it was first found to be small as
we have seen in Section 4. As we will explain in this section,
a large local form is a signature of massless isocurvatons
that have large nonlinear evolution in multifield space. We
have arrived this shape from the in-in formalism by taking
the massless limit. But if we stay in this limit, there is an
easier formalism, the δN formalism [139–141], in which the
underlying physics of the local shape becomes transparent.

8.1. Local Shape: Massless Isocurvatons. We recall that, in
single field inflation, if we use the uniform inflaton gauge
where there are no fluctuations in the inflaton field,
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Figure 15: Shape ansatz (174) for the intermediate forms.

the scalar perturbation ζ enters in the scale factor as a2e2ζ .
For superhorizon modes, ζ is frozen. If we look at the
different comoving superhorizon patches, they are causally
disconnected from each other. So they evolve independently
and locally in space. In such a gauge, the only difference is a
space-dependent scale factor. This is also called the separate
universe picture. The primordial curvature perturbations
manifest themselves as the different number of expansion e-
fold, δN , at different positions.

We would like to generalize this picture to the multifield
case in the following δN formalism. We will resort to a
simple version of δN formalism stated below, which is of
course a consequence of the in-in formalism, but formulated
from a simple perspective which clearly illustrates the points
in this section. Otherwise, as we will explain, in the most
general sense the δN formalism should be defined as the in-
in formalism written in terms of specified gauges.

(i) We consider a set of scalars φi during inflation.
Inflaton is one of them but can be different linear
combinations of φis as a function of time, and the
other orthogonal fields are called the isocurvatons.

All the modes that we are eventually interested
in should all have become superhorizon when the
initial slice (specified below) is chosen. We look at
different horizon-size patches and label them with
the coarse-grained comoving coordinate x. In the
in-in formalism, the superhorizon modes behave
as the c-number time-dependent background for
each comoving patch. So we evolve these patches
independently and classically.

(ii) We pick an initial spatially flat slice, on which there
is no scalar fluctuations in the metric and all the
fluctuations are in the scalar fields φ0i + δφi(x).
We assume that we know the statistics of such
fluctuations.

(iii) We pick the final uniform density slices. Relative to
the unperturbed and perturbed initial spatially flat
slices, we have, respectively, the unperturbed and
perturbed final uniform density slices. For single field
inflation, these two final surfaces are the same. For
multifield models, they are generally different. Such
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final slices have the properties that the universe has
the same energy densities and field configurations
everywhere on them. They can be chosen during
either the inflation or the reheating. After that, every
separated universe will have the same evolution. The
only difference is the scale factor. This is the analogy
of the uniform inflaton gauge in single field inflation.
We study the cases where such slices exist.

(iv) We evolve the unperturbed φ0i in the initial slice clas-
sically to the unperturbed final slice, and denote the
number of e-folds as N0(φ0i). This is the unperturbed
e-fold number. We evolve the perturbed φ0i + δφi(x)
in the initial slice classically to the perturbed final
slice, and denote the number of e-folds as N(φ0i +
δφi(x)). The difference between them

δN = N
(
φ0i + δφi(x)

)
−N0

(
φ0i
)
, (176)

is the curvature perturbation ζ . Here, N0 is a constant
that can be shifted to make 〈δN〉 zero.

(v) We expand

δN = Niδφi +
1

2
Ni jδφiδφ j + · · · , (177)

where the subscripts on N denote the partial
derivatives with respect to φi. For example, Ni j =
(∂N/∂φi)(∂N/∂φ j). Repeated indices are summed
over. The correlation functions of ζ can then be
computed as the classical averages of the products,
such as

〈
ζ(x1)ζ(x2)

〉
= NiN j

〈
δφi(x1)δφ j(x2)

〉
,

〈
ζ(x1)ζ(x2)ζ(x3)

〉
= 1

2
Ni jNkNl

×
〈
δφi(x1)δφ j(x1)δφk(x2)δφl(x3)

〉

+ 2 perm.
(178)

(vi) We have assumed that the statistics of the δφi(x)
are known on the initial slice. But this is not always
easy to get. So we will consider the simple cases
where this statistics can be approximated as Gaussian.
Otherwise, calculating such initial statistics requires
using the full quantum mechanical in-in formalism.

Most generally, one identifies δN with the scalar
curvature ζ in the uniform inflaton gauge; and
the relation between δN and δφ(x) in the δN
formalism is the gauge transformation between the
uniform inflaton gauge and the spatially flat gauge.
Calculating the correlation functions for ζ becomes
calculating those for δφ(x) using the in-in formalism.
An example is the one we have seen inSection 7.1.

(vii) So far we have not used the condition that the
isocurvatons are massless (m ≪ H). If they are
massive, after horizon exit, the modes decay. So
in the superhorizon classical regime, where the δN
formalism is supposed to be useful, we are back
in the single field inflation. Sub- and near-horizon
perturbations should be computed by the full in-in
formalism. Therefore, having massless isocurvatons
opens up classical multifield space in which we can
have sizable δN defined in (176).

Now let us consider the Gaussian fluctuations δφi. From
Section 2, we know that for massless scalars,

〈
δφi(k1)δφ j(k2)

〉
= H2

∗
2k3

1

(2π)3δ3(k1 + k2)δi j , (179)

where H∗ is the Hubble parameter when the corresponding
mode exits the horizon. If the scalars are not exactly massless,
H will have a running dependence on k1 caused by the decay
of the amplitude. Using

δN(k) = Niδφi(k) +
1

2
Ni j

∫
d3k′

(2π)3 δφi(k− k′)δφ j(k′),

(180)

we get the power spectrum

〈
ζ(k1)ζ(k2)

〉
= (2π)5 Pζ

2k3
1

δ3(k1 + k2), (181)

where

Pζ =
(
H∗
2π

)2

N2
i , (182)

and the bispectrum
〈
ζ(k1)ζ(k2)ζ(k3)

〉

= Ni jNiN j
H4
∗

4

(
1

k3
1k

3
2

+ 2 perm.

)
(2π)3δ3

(∑
ki

)
.

(183)

According to the definition (103), the shape function is

Sloc = 3

10
f loc
NL

(
k2

1

k2k3
+ 2 perm.

)
, (184)

where

f loc
NL =

5

6

Ni jNiN j(
N2

l

)2 . (185)

As usual, we have ignored a mild running from the power
spectrum Pζ . The shape (184) is called the local shape, which
we plot in Figure 16. This form is already factorizable.

The physics of this shape can be understood from the
derivation above. As explicitly demonstrated in (176)–(178),
this non-Gaussianity is generated locally in position space
for superhorizon modes. After Fourier transform, it becomes
nonlocal in momentum space. That is the reason that the
shape peaks at the squeezed limit.

If the perturbation δφ(x, t) on the initial spatially flat
slice cannot be approximated as Gaussian, the shapes of final
bispectra can be more complicated.
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(i) An Example: The Curvaton Model. We use the curvaton
model [142–151] as an example to illustrate the generation
of large local non-Gaussianity. We also use it to demonstrate
the δN formalism.

In this model, we assume that during inflation there is
another light field σ with the potential

V(σ) = 1

2
m2

σσ
2, (186)

and mσ ≪ H . This field is called the curvaton field for
reasons that will become clear shortly. The energy density
of the curvaton field is negligible initially. During inflation,
it fluctuates and obtains the primordial amplitude σ∗ =
σ0 + δσ(x), where ∗ denotes its value at the horizon-exit
and after that the amplitude is approximately frozen. These
perturbations are Gaussian for the potential (186) with
the canonical kinetic term, but can be more complicated
otherwise. Here, we study the simple Gaussian case. After
inflation, these σ-modes remain frozen until the Hubble
parameter drops below mσ . Then the σ-field starts to oscillate
around the bottom of the potential and behavior as matter.
The Universe is still radiation dominated. The fraction of
the matter energy density quickly grows, because the matter
dilutes as a−3 while radiation a−4. The σ-field decays to
radiation when it reaches its lifetime.

Another assumption of the curvaton model is that the
primordial fluctuations in the inflaton field is much smaller
than what is needed to achieve ζ ∼ O(10−5), although
their total energy density may still be the dominant one. So
the primordial curvature perturbation is contributed by the
fluctuations in the σ field, hence the name curvaton field.

At the initial spatially flat slice t0, we denote the radiation
and curvaton density as ρr0 and ρm0, respectively, and the
scale factor as a0. Both components initially redshift as
radiation. This lasts until the Hubble parameter reaches mσ

at t1. We denote the scale factor at t1 as a1. The Friedman
equation at t1 is

3M2
Pm

2
σ =

(
a0

a1

)4(
ρr0 + ρm0

)
≈
(
a0

a1

)4

ρr0. (187)

After this the curvaton starts to oscillate and behave as
matter. Denote the decay rate of the curvaton as Γ. We use
the sudden decay approximation and assume that they decay
instantaneously at the epoch H = Γ, because a process that
has the time scale T falls into the Hubble expansion epoch
with H = 1/T . We denote this instant as t2. The Friedman
equation at t2 is

3M2
PΓ

2 =
(
a0

a2

)4

ρr0 +

(
a0

a1

)4(a1

a2

)3

ρm0. (188)

Because at t2 the universe has the same Hubble parameter
(hence the same energy density) everywhere, this is the final
uniform density slice. After that, both components become
radiation and the evolution everywhere is the same. So we
want to work out the expansion e-folds N from t0 to t2 as a
function of the initial field value σ . From (188), we get

e−4N + e−3Nα = const., (189)

where α ≡ (a0/a1)(ρm0/ρr0). From (187) we can solve
for a0/a1 which is independent of σ at the leading order,
and from (186) we know that ρm0 is proportional to σ2.
Therefore, α is proportional to σ2. Also note that rρ ≡
(a2/a0)α = eNα = ρm/ρr|t2 is the ratio of the energy density
between the curvaton and the rest of the radiation at t2. Using
these simple facts, we can differentiate (189) with respect to
σ once and twice, and get

f loc
NL =

5

6

Nσσ

N2
σ
= 5

3rρ
−

5
(

4 + 9rρ
)

12
(

4 + 3rρ
) . (190)

In terms of the definition r ≡ 3ρm/(4ρr + 3ρm)|t2 = 3rρ/(4 +
3rρ) often used in the literature,

f loc
NL =

5

4r
− 5

3
− 5r

6
. (191)

So Large local non-Gaussianity arises if r ≪ 1. Note that
although (189) only depends on σ , this is a multifield model
because the curvaton takes effects during the reheating. In
some simple models in which the curvaton leads to nonadi-
abatic perturbations between dark matter and photons, r is
tightly constrained by observations [152].

The large local form has been studied most extensively
in the past. Variety of possibilities exist. They all share
the common feature that non-Gaussianities are generated
by some massless isocurvaton fields which acquire the
superhorizon evolution during the inflation. For example,
in multifield slow-roll inflation a turning trajectory [153]
can transfer non-Gaussianities from other directions to the
inflaton direction [127–134]. But it is found to be very
difficult to make non-Gaussianities large essentially because
the very restrictive slow-roll conditions in all directions. In
modulated reheating [154, 155] or preheating [156–161]
scenarios, the role of isocurvatons are played by the massless
fields which control the couplings during the reheating or
preheating. Thus they create a large local non-Gaussianity in
a similar fashion as the curvaton model.
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Local form is also found in different contexts, such as
models with special types of massive gauge fields that acquire
superhorizon evolution [162–164], some nonlocal theories
of inflation [165, 166], and certain cyclic universe scenario as
alternatives to inflation [167–171].

The current CMB constraint on the local bispectrum is
−10 < f local

NL < 74 [1]. Current constraint from large scale
structure gives −29 < f local

NL < 70 [172]. Variety of methods
have been invented to measure the local and other different
forms of non-Gaussianities [173–186].

9. Summary and Discussions

9.1. Summary. In this subsection, we summarize the main
results of Sections 6–8. Non-Gaussianities, conceptually
being the expectation values of perturbations in a time-
dependent background, are defined by the first-principle
in-in formalism. Physically, having large primordial non-
Gaussianities means that there are large nonlinear interac-
tions of some sort determined by certain dynamics during
inflation. Measuring them tells us the nature of the dynamics.

(i) Equilateral Shape and Higher Derivative Kinetic Terms.
In single field inflation, the long wavelength modes that
already exited the horizon are frozen. They cannot have large
interactions with short wavelength modes that are still within
the horizon. When modes are well within the horizon, they
oscillate and the contributions to non-Gaussianities average
out. Therefore the only chance to have large interaction
is when all modes have similar wavelengths and exit the
horizon at about the same time. Theories with higher
derivative kinetic terms provide such interaction terms. This
is why the resulting bispectrum shape peaks at the equilateral
limit in the momentum space. It drops to zero at the
squeezed limit k3 ≪ k1 = k2 as k3/k1. It happens that, when
these higher derivative terms become important enough so
that the inflationary mechanism is no longer slow-roll, these
large non-Gaussianities become observable. The forms of the
bispectra are given in (121) and (122), and the shapes are
plotted in Figures 3 and 4. The factorizable ansatz that is
used to represent them in data analyses is given in (127) and
plotted in Figure 5.

(ii) Sinusoidal Running and Sharp Feature. A sharp feature,
in a potential or internal field space, introduces a sharp
change in the slow-roll parameters, or the generalized slow-
variation parameters. This can boost the magnitudes of
time-derivatives of some parameters by several orders of
magnitude while still keep the power spectrum viable. These
time-derivatives act as couplings in the interaction terms. So
they enhance the non-Gaussianities among the modes which
are near the horizon-exit. How deep they affect the modes
inside the horizon depends on how sharp the changes are.

The changes in these parameters can be roughly approx-
imated as delta-functions in time. Correlation functions
involve integrations of products of the slow-variation param-
eters and the mode functions. The latter contain oscillatory
behavior ∼e−iKτ , where the comoving momentum K is k1 +

k2 + k3 for bispectra and τ is the conformal time. The delta-
function specifies a scale τ∗. This is why after integration
the bispectrum contains a sinusoidal factor ∼ sin(K/k∗),
where k∗ = −1/τ∗ is the momentum of the mode that is
near the horizon-exit at the time of the feature. So the most
important property of this type of non-Gaussianity is this
characteristic running. A numerical result of the running
behavior is plotted in Figure 7. An ansatz is given in (137)
and (139).

(iii) Resonant Running and Periodic Features. The periodic
features do not have to be sharp. They introduce a small
background oscillatory component in the slow-variation
parameters. On the other hand, the mode functions are also
oscillatory before they exit the horizon. Their frequencies
are high when they lie deep inside the horizon and become
lower as their wavelengths get stretched by the inflation.
They are frozen after the wavelengths become comparable
with the horizon size H−1. This means that their frequencies
continuously scan through the range from MP (or some
other large fundamental scale) to H . Therefore as long as
the background oscillatory frequency ω satisfies H < ω <
MP, at some point during the evolution the small oscillatory
component in the slow-variation parameters will resonant
with the oscillatory behavior of the mode functions, and
cause a large constructive contribution to the integration.

The periodicity of the features leads to a periodic-
scale-invariance in density perturbations. Namely, they are
scale invariant if we rescale all momenta by a discrete e-
fold 2πnH/ω, where n is an integer. This is why the most
important feature of this non-Gaussianity is a running
behavior ∼sin(C lnK + phase), where C = ω/H . This leads
to the ansatz (148). The full expression is given in (150)
and plotted in Figure 8. A numerical result is plotted in
Figure 9.

(iv) Folded Shape and Non-Bunch-Davies Vacuum. The usual
mode function of the Bunch-Davies vacuum has the positive
energy mode ∼e−ikτ . Now we consider a non-Bunch-Davies
vacuum by adding a small component of negative energy
mode∼eikτ . The three-point function involves an integration
of the product of three mode functions with momentum k1,
k2 and k3. So the leading correction to the Bunch-Davies
results is to replace one of the kis with −ki. The usual K =
k1 + k2 + k3 in e−iKτ becomes K̃ = k1 + k2 − k3, and its
cyclic. This effect is most important if factors of K̃ appear
in the denominators after the τ-integration. Hence, the most
important feature of this type of modification is to enhance
the non-Gaussianity in the folded triangle limit. An example
of these bispectra is given in (154) and plotted in Figure 10.
Ansatz that partially capture this feature are given in (155)
and (156), and plotted in Figure 11.

(v) Intermediate Shapes and Massive Isocurvatons. All mech-
anisms discussed so for single field inflation apply to
multifield inflation. We now consider new effects caused
by introducing more fields to inflation models. These extra
fields are called isocurvatons.
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Since light fields typically acquire a mass of order H ,
the Hubble parameter, we first consider the quasisingle field
inflation models where there is one massless inflaton while
the isocurvatons have mass of order H instead of massless.

Unlike multifield slow-roll inflation, where each flat
direction only has small nonlinear terms in order to satisfy
the slow-roll conditions, massive directions are not infla-
tionary direction and are free to have large nonlinear self-
interactions. These nonlinear interactions can be transferred
to the curvature mode through couplings and source the
large non-Gaussianity.

The massive isocurvaton eventually decays after horizon
exit simply because they are diluted by the expansion. How
fast it decays depends on its mass. If the mass is heavier, m >√

2H , it decays faster. So the interactions can only happen
when all modes are all closer to the horizon exit. This is
closer to the case of the equilateral shape that we encountered
above, and results in bispectra with quasiequilateral shapes.
If the mass is lighter, m <

√
2H , it decays slower. More

non-Gaussianity is generated in the superhorizon scales. This
is closer to the case of the local shape that we will come
to below, and results in bispectra with quasilocal shapes.
Overall, at the squeezed limit k3 ≪ k1 = k2, the bispectrum

shapes behave as (k3/k1)1/2−ν, where ν goes from 0 to 3/2
(corresponding to m from 3H/2 to 0) in the example we
studied. In particular, if we take the massless limit while
keeping the cubic self-interactions of isocurvaton large, we
get a large bispectrum that has the same squeezed limit
shape as the local one. Therefore, we have a one-parameter
family of shapes that lie between the local and equilateral
shape.

The numerical results of these shapes are presented in
Figure 14. A simple ansatz is given in (174) that represents
this family of shapes quite well, and is plotted in Figure 15.

(vi) Local Shape and Massless Isocurvatons. The fluctuation
amplitudes of massless scalars do not decay after the horizon
exit, and therefore this opens up a multifield space for the
superhorizon evolution. For superhorizon modes, we can use
the separate universe picture and study the classical behavior
of different patches of universe. These patches are separated
by horizons and evolve independently of each other. So the
evolution is local in space.

Non-Gaussianities are generated when this multifield
evolution is nonlinear, and any nonlinearity arising in the
separate universe picture should also be local in space.
A locality in position space translates to a nonlocality in
momentum space. This is why the resulted local shape
bispectrum peaks at the squeezed limit. The behavior is
(k3/k1)−1 for k3 ≪ k1 = k2. This bispectrum is given in (184)
and the shape is plotted in Figure 16.

In all cases, the power spectra are either approximately
scale-invariant so indistinguishable from the simplest slow-
roll models, or modified with features that can be made small
enough to satisfy the current observational constraints.

Large bispectra generically implies large trispectra, that
is, the four-point correlation functions. But trispectra con-
tain more information and can be large even if bispectra are
small. Experimentally, trispectra are more difficult to detect,
but contain much more shape configurations. Each category
above should have interesting extensions to trispectra. See
[187–193] for the equilateral case and [194–199] for the local
case.

It is certain that this list will grow in future works,
providing more refined and diverse connections between
theories and experiments.

9.2. A Consistency Condition. As we have seen, in single field
inflation, the mode that has exited the horizon is frozen. This
is characterized by a constant ζ over a horizon size patch.
The physical meaning of the constant ζ is a small rescaling of
the scale factor. This is the only effect that the superhorizon
mode has on modes with much shorter wavelength. This
fact is used by Maldacena to derive a consistency condition
[47] for the three-point correlation functions in the squeezed
limit for single field inflation.

(i) Consistency Condition. In the squeezed limit k3 ≪ k1 =
k2, k3 is the superhorizon mode that exited the horizon and
acts as a zero-mode modulation to the two remaining modes.
The correlation 〈ζk1ζk2ζk3〉 is an average of the following
quantity

〈
ζk1ζk2

〉
ζk3
ζk3 (192)

over different ζk3 . We will shift the average 〈ζk3〉 to zero by
definition. Here the two-point average 〈ζk1ζk2〉ζk3

is evaluated
with different local scalings determined by the shift ζk3 . If
the two-point function is exactly scale-invariant, 〈ζk1ζk2〉ζk3

is just a constant. So the 3 pt vanishes because 〈ζk3〉 = 0. The
nonzero contribution comes from the breaking of the scale
invariance. To see this, we expand the two-point average in
terms of a long wavelength mode ζk4 near the scale 〈ζk4〉 = 0,

〈
ζk1ζk2

〉
ζk4
=
〈
ζk1ζk2

〉
0 +

d
〈
ζk1ζk2

〉

dζk4

∣∣∣∣∣
0

ζk4

+
1

2

d2
〈
ζk1ζk2

〉

dζ2
k4

∣∣∣∣∣
0

ζ2
k4

+ · · · .
(193)

Multiply this with ζk3 and average over ζk3 . The first term
contributes zero since this is the scale-invariant component.
The second term gives

d
〈
ζk1ζk2

〉

dζk4

∣∣∣∣∣
0

〈ζk3ζk4〉. (194)

To get nonzero average, k3 + k4 = 0 is needed. Using the
relation dζk4 = −d ln k, we get

〈
ζk1ζk2ζk3

〉
−→ −d

〈
ζk1ζk2

〉

d ln k

∣∣∣∣∣
0

〈
ζk3ζk3

〉
. (195)
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The higher-order terms in (193) give

1

2

d2
〈
ζk1ζk2

〉

(d ln k)2

∣∣∣∣∣
0

〈
ζk3ζ

2
k4

〉
− 1

6

d3
〈
ζk1ζk2

〉

(d ln k)3

∣∣∣∣∣
0

〈
ζk3ζ

3
k4

〉
+ · · · ,

(196)

where k3 + 2k4 = 0, k3 + 3k4 = 0, and so on have to be
satisfied, respectively, for each term to get nonzero average.
If we only consider the tree-level three-point function, these
higher-order terms can be truncated since they involve more
factors of Pζ and should be related to the loop diagram
contributions to 〈ζk1ζk2ζk3〉. The tree diagram is O(P2

ζ ).

To connect the averages we used here with the correlation
functions that we defined in previous sections, we need
to restore the phase factors. Here the two-point average
〈ζk1ζk2〉here is performed with the special point k1 = k2 in
the phase space. To connect this with the previous definition
of 〈ζk1ζk2〉, we need to include the phase space in the
neighborhood. Namely, 〈ζk1ζk2〉 = 〈ζk1ζk2〉here(2π)3δ3(k1 +
k2), so from the definition (26) we have 〈ζk1ζk2〉here =
(2π)2Pζ(k1)/2k3

1 . Similarly, 〈ζ3〉 = 〈ζ3〉here(2π)3δ3(
∑

ki).
With the usual definition of the spectrum index ns − 1 ≡
d lnPζ /d ln k, from (195), we get the following consistency
condition [47]:

〈
ζk1ζk2ζk3

〉
−→ −(ns − 1)

1

4k3
1k

3
3

Pζ(k1)Pζ(k3)(2π)7δ3

⎛
⎝∑

i

ki

⎞
⎠.

(197)

Although originally derived for slow-roll inflation, the
only assumption is the single field. So this applies to any
single field inflation models and has important physical
implications that we discuss shortly [200]. Note that the
derivation of this relation (197) does not rely on the
smallness of the slow-variation parameters either. For the
general single field inflation models that we studied in
Section 6.1, at tree level this has been checked with explicit
results to three different orders [50, 201] including the slow-
roll limit [47]. For resonance models, this is checked to the
leading order [111].

There are three types of interesting corrections to the
condition (197).

Firstly, as mentioned, the right-hand side of (197)
should receive corrections from loop contributions. These
loop contributions are associated with higher derivatives
of the two-point function. The terms (196), together with
(195), provide the corresponding consistency conditions
at different orders of Pζ . Note that for such orders, the
correlation functions such as 〈ζk1ζk2〉 on the right-hand side
should also include loop corrections.

Secondly, when we assume that the only effect of the
frozen superhorizon mode on the much shorter scale is a
constant background rescaling, we assume that there is no
interaction when these modes are all within the horizon (I
would like to thank Yi Wang for helpful discussions on this
point). However, large subhorizon interaction is possible in
some cases, such as in Sections 6.3 and 6.4. Such interactions
disappear below a new length scale at subhorizon, only then

the above assumption becomes valid. For example in the
resonance model, for H/ω < k3/k1 ≪ 1, the modes k1,
k2 and k3 are guaranteed to resonant with the oscillatory
background at some point when all of them are within the
horizon. Only if k3/k1 ≪ H/ω, such resonance will not
happen. This is why the consistency condition is satisfied
only in the very squeezed limit (k3 ≪ k1/C with C = ω/H ≫
1). For the squeezed region k1/C < k3 ≪ k1, the left-hand
side of the condition is larger than the right-hand side by a
factor of Ck3/2k1. For the non-Bunch-Davies vacuum case, a
similar scale is determined by the UV cutoff τc, from which
the non-Bunch-Davies vacuum starts to take effect.

Thirdly, even after the long wavelength mode exits the
horizon, as long as k3/k1 is not infinitely small, there is
still dependence of the two-point function on the derivative
of this long wavelength mode, in addition to the overall
constant shift. This introduces a different type of finite
k3/k1 corrections. They start from the second-order in
k3/k1, because the first-order corresponds to the first spatial
derivative of the long wavelength mode and should vanish
due to isotropy [200]. These corrections will be amplified
by the associated amplitude f non-loc

NL , and give an additive

correction f non-loc
NL (k3/k1)2 to the ns−1 on the right-hand side

of the condition. For a large f non-loc
NL , therefore, the condition

needs to be satisfied in a very squeezed limit. The equilateral
bispectra (121) and (122) are this type of examples.

The consistency condition (197) can be straightforwardly
generalized to higher-order correlation functions [189, 194].
We emphasize that this condition only applies to single
field inflation models. For inflation models involving more
than one field, as we have seen, non-Gaussianities can be
transferred from the isocurvature directions which do not
respect this relation.

(ii) Physical Implication. Besides providing consistency
checks for analytical computations, the condition also has
interesting physical implications. In the following, we discuss
the scale invariant cases [200], as well as the feature cases and
loop corrections, ending with some cautionary remarks.

This consistency relation implies that the tree-level
bispectrum in the squeezed limit is determined by the power
spectrum and spectral index. We distinguish the following
two cases. For the scale-invariant case, ns−1 is of order O(ǫ)
and the right-hand side of (197) takes the local form. Indeed,
as we have seen, for the single field inflation models where
the non-Gaussianities are large, they take the equilateral
forms which vanish in the infinitely squeezed limit. For the
non-scale-invariant case, especially the highly oscillatory case
such as the resonance model, the power spectrum can be
highly oscillatory and ns − 1 becomes large. This can still
be consistent with observations since the large ns − 1 is also
highly oscillatory and therefore may escape a detection so
far. But such a running non-Gaussianity is orthogonal to the
scale-invariant forms.

For the loop diagrams, in the scale-invariant case, these
terms are suppressed by higher-orders of slow-variation

parameters from, for example, d2〈ζk1ζk2〉/(d ln k)2, and
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Figure 17: A mixing of the equilateral (Figure 4) and local shape (Figure 16).

higher-orders of ζ from, for example, 〈ζ3
k3
〉; in the non-

scale-invariant example, the extra terms are still highly
oscillatory.

In summary, a detection of an approximately scale-
invariant local non-Gaussianity in the infinitely squeezed
triangle limit with f loc

NL > O(ǫ) can rule out all single field
inflation models.

In experiments, however, the triangle cannot be perfectly
squeezed. So it is an important question how squeezed
it should be to achieve the above goal. For example, in
the third type of corrections we discussed previously in

this subsection, we need f non-loc
NL (k3/k1)2 to be smaller than

ns − 1 for the consistency condition to hold, so that
the contaminations from whatever nonlocal fNL is small.
Assuming the primordial local form is practically detectable

only if f loc
NL > O(1), we at least need f non-loc

NL (k3/k1)2 < O(1).
For the class of the general single field models we studied in
Section 6, if the other forms of non-Gaussianities, such as the
equilateral one, can be constrained below f non-loc

NL ∼ O(10),
a squeezed configuration with k3/k1 < 0.1 will be enough
for our purpose. However, a completely model-independent
statement is much trickier, because there may be bispectra

with very large amplitude but orthogonal to any known
bispectra that have been constrained experimentally. Besides
that, in the second type of corrections, large finite-k3/k1

corrections can also arise due to subhorizon interactions.
Therefore, as a cautionary remark, if we would like to rule
out all single field inflation models in a rigorous model-
independent fashion with a detection of scale-invariant local
non-Gaussianity, we have to keep in mind the caveat that
there may be single field models which only respect the
consistency condition in a very squeezed region beyond the
experimental reach.

9.3. Superpositions. Different shapes and runnings of non-
Gaussianities can be superimposed in inflation models. For
example, consider the following.

(i) Mixing Shapes. It is possible that different non-
Gaussianity generation mechanisms are from different com-
ponents in a model, or at different stages during inflation.
So two or more different shapes can get mixed, and the final
shape can be rather different. For example, in Figure 17, we
plot a mixed shape between the local and equilateral shape.
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Figure 18: A mixing of an intermediate shape [ν = 7/6 in (174)] and a resonant running (148).

Notice that this is different from the intermediate shapes,
since obviously the squeezed limit is always dominated by
the local form. Examples of such models are discussed
in [202].

(ii) Mixing Shape and Running. The shapes can also be
mixed with runnings. Same as the power spectrum, the non-
Gaussianities generically have some mild scale dependence.
But a more dramatic case is the superposition with a strong
running, such as the sinusoidal or resonant running. For
example, an inflaton passing through features frequently and
turning constantly at the same time on a potential landscape
can generate a bispectrum which is a superposition of the
resonant running and intermediate shape, as we illustrate in
Figure 18. Clearly, these two signals are orthogonal to each
other very well, and have to be picked up separately through
different methods in data analyses.

(iii) Orthogonalization. If a non-Gaussianity is the linear
superposition of several base components, one can generally
perform a change of bases to make the new bases orthog-
onalized. For example, as we have seen in Section 6.1, the
leading large bispectrum has two components, Sλ and Sc.
The two shapes are very similar, and represented by the
equilateral ansatz in data analyses. However since they do
have small difference, one can subtract their similarities

and get a new orthogonalized base component [175]. The
orthogonalization is defined by the shape correlator such as
(106). Using this definition, the new bases can be chosen as

S1 ≈ Sλ + 0.22Sc (198)

and S2 = Sc. [Note that the Sλ and Sc used here do not include
the prefactors (1/c2

s − 1 − 2λ/Σ) and (1/c2
s − 1) in (121) and

(122)]. Their shapes are shown in Figure 19. Notice that S1

is half positive and half negative. Because S1 is not of the
simplest factorizable type, the following simple ansatz has
been proposed to represent S1 in data analyses [175],

Sorth
ansatz = −18

(
k2

1

k2k3
+ 2 perm.

)
+ 18

(
k1

k2
+ 5 perm.

)
− 48.

(199)

We plot the shape of this ansatz in Figure 20. The current
CMB constraint on this orthogonal ansatz is −410 < f orth

NL <
6 [1].

For known examples of general single field inflation, such
as the DBI and k-inflation, we generically get equilateral
shapes. This is also clear from their physical origin that we
have emphasized. The orthogonal shape relies on a delicate
cancellation between the two generic shapes. In principle,
one can do this since the required parameter space is allowed
in our effective field theory of general single field inflation in
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Section 6.1, and this may provide guidance to future model
building. For example, one may fine-tune the parameters

in the k-inflation models [93, 94]. Therefore, unlike the
previous cases, the direct motivation here is more oriented
to data analyses. The advantage of this operation is that it
makes full use of data, which impose constraints on both
components. In addition, as a bonus, the ansatz for the
equilateral (127), folded (155) and orthogonal (199) shapes
are not linearly independent. As we can see, they all happen
to be the equilateral ansatz shifted by a constant shape
ansatz (S = const.) [65]. Constraining two orthogonal bases
provide efficient constraints on all three of them.

Let us do a more data-analysis-oriented exercise. We
would like to construct an ansatz that is orthogonal to both
local and equilateral ansatz, since both were well constrained
by data. (Note that Sorth

ansatz in (199) is not quite orthogonal to
the local ansatz, with a correlation ∼−0.48.) To do this we
start with a trial shape Strial, and demand the new orthogonal
shape

Sorth,2
ansatz = Strial + c1S

loc + c2S
eq
ansatz (200)

be orthogonal to both the local and equilateral ansatz,

Sorth,2
ansatz · Sloc = 0, Sorth,2

ansatz · S
eq
ansatz = 0. (201)
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The simplest factorizable trial shapes can be either the
constant shape or the local-like shape k1/k2 + 5 perm., and
both give the same result. Let us use the constant shape
Strial = 1 as an example. Solving the conditions (201) gives
c1 = −0.0953 and c2 = −0.204. So the new orthogonal ansatz
is

Sorth,2
ansatz=1.19

(
k2

1

k2k3
+ 2 perm.

)
− 1.22

(
k1

k2
+ 5 perm.

)
+ 3.44.

(202)

The numerical details may change slightly depending on the
detailed definition and computation of the inner product
(105). The shape is plotted in Figure 21. It is somewhat
exotic but the ansatz is simple. By construction, this ansatz
is much more orthogonal to the local form (with correlation
∼ 0) than the Sorth

ansatz currently used in [1, 175]. It also
happens to have reasonably large correlation (∼ 0.86) with
the orthogonal shape in single field inflation (the S1 shown
in Figure 19), similar to that (∼−0.91) between S1 and Sorth

ansatz.
Obviously, other choices of trial shapes can result in more
exotic orthogonal shapes.

One can perform a similar orthogonalization for the two
shapes in (94), now they are both local to start with. More
generally, if a non-Gaussianity has more base components,
we can orthonormalize all of them one by one, in the sense
of the Gram-Schmidt process.

9.4. Conclusion. The field of primordial non-Gaussianity is
growing rapidly in recent years, with simultaneous progress
from the experimental results, data analyses methods,
nonlinear cosmology theories, physical model buildings,
computational techniques, and theoretical formalisms. The
progress that we have seen so far is no doubt just
a beginning.

In this paper, we have studied the primordial non-
Gaussianities coming from the inflation models, especially
various mechanisms that can produce observable large non-
Gaussianities with viable power spectra. We emphasized the

fingerprints that different underlying physics leave on non-
Gaussian profiles, which break the degeneracy of model
building. We described the physical pictures and presented
their effective Lagrangians to the extent that they can
be recognized when encountered in the inflation model
building in a more fundamental theory. We also derived the
resulting bispectra and represented them in terms of simple
ansatz to the extent that they can be useful to data analyses.
With the current rapid progress, we anticipate much more
future developments along these lines through refinements
and discoveries in both theories and experiments.

The standard model of cosmology—the Big Bang theory
with ΛCDM—is now established better than ever, with the
precision data coming from the cosmic microwave back-
ground and large scale structures. New data will continue
to flow from many ongoing and forthcoming experiments.
Although Nature does not seem to be obligated to provide us
any more information beyond the standard model, exciting
possibilities exist that would help us to understand the origin
of the Big Bang. These include the more detailed deviations
from the scale-invariance of the power spectrum, the primor-
dial gravitational waves that we may detect from the CMB
polarization, the isocurvature perturbations between matter
and radiation, and the primordial non-Gaussianities. With-
out these types of data, the number of theoretical models
with degenerate observational consequences proliferate with
time and it will be hard to understand the microscopic nature
of the inflation beyond our current knowledge, as well as
to distinguish inflation from other possible alternatives. As
we have reviewed, primordial non-Gaussianity—the collider
in the very early universe—is one of the few hopes. It is
becoming a target of many modern experiments. We do
not know which cards Nature is hiding from us, but we are
hoping and preparing for the best.
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