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Abstract 

 

We present a probabilistic model  to monitor a user’s emotions and engagement during the 

interaction with educational games.  We illustrate how our probabilistic model assesses affect by 

integrating evidence on both possible causes of  the user’s emotional arousal (i.e., the state of the 

interaction) and its effects (i.e., bodily expressions that are known to be influenced by emotional 

reactions).  The probabilistic model relies on a Dynamic Decision Network to leverage any indirect 

evidence on the user’s emotional state, in order to estimate this state and any other related variable 

in the model. This is crucial in a modeling task in which the available evidence usually varies with 

the user  and with each particular interaction.  The probabilistic model we present is to be used by 

decision theoretic pedagogical agents to generate interventions aimed at achieving the best tradeoff 

between a user’s learning and engagement during the interaction with educational games. 
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1. Introduction 

In recent years, there has been an increasing interest in studying how to make computers 

more “sociable” by enabling them to both display their own emotions and react to the 

user’s emotions. Building computers that display emotions in a natural and meaningful 

way  is  already a challenging endeavor, since it requires formalizing concepts and 

mechanisms that are often still under investigation in emotional psychology.  But building 

computers that recognize a user’s emotions is even more challenging, as is proven by the 

fact that even human beings are not always proficient in this task. The challenge is due to 

the high level of ambiguity that exists in the mapping between emotional states and the 

factors that can be used to detect them. For instance, different people can have different 

emotional reactions to the same stimulus, and the variability depends upon  traits that are 

not always easily observable, such as a person’s goals, preferences, expectations and  

personality. Emotions can be recognized because they often have observable effects on a 

user’s behavior and bodily expressions. But the mapping between emotions and their 

observable effects also depends on often hidden  traits of a person,  as well as on the 

context of the interaction. Furthermore, observable effects of emotions are not always 

easily recognizable by a computer (i.e., subtle changes in facial expression and intonation). 

Existing approaches have tackled the challenge of recognizing user’s affect by trying to 

reduce the ambiguity in the modeling task. This has been achieved either by focusing on 

recognizing a specific emotion in a fairly constraining interaction (Healy and Picard, 2000; 

Hudlicka and McNeese, 2002) or by assessing only lower level dimensions of emotional 

reaction, such as its  intensity and valence
1
 (Ball and Breeze, 2000).   

In this paper, we present an approach to modeling user affect designed to assess a variety 

of emotional states during interactions in which knowing the details of a user’s emotional 

reaction can enhance a system capability to interact  with the user effectively. Instead of 

reducing the uncertainty in emotion recognition by constraining the task and the 

granularity of the model, our approach  explicitly encodes and processes this uncertainty 

by relying on  probabilistic reasoning. In particular, we use Dynamic Decision Networks 

(Dean and Kanazawa, 1989; Russell and Norvig, 1995) to represent in a unifying 

framework the probabilistic dependencies between possible causes and emotional states 

(including the  temporal evolution of these states), and between emotional states and the 

user’s bodily expressions they can affect. Our goal is to create a model of user affect that 

can generate as accurate an assessment as possible, by  leveraging any existing information 

on the user’s emotional state, but that can also explicitly express the uncertainty of its 

predictions when  little or ambiguous information is available.  

We discuss our model in the context of the interaction with pedagogical agents designed to 

improve the effectiveness of computer-based educational games (which we will simply call  

educational games throughout  the paper). In the rest of the paper, we first describe why 

detecting emotions is important for educational games. We then introduce Dynamic 

Decision Networks (DDN) and illustrate how they can be used to enable pedagogical 

agents for educational games to generate interactions tailored to both the user’s learning 

and emotional state. Next, we describe in detail the DDN underlying our model of user 

                                                 
1 Valence measures whether  the emotion generated a positive or negative feeling 
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affect and how it  integrates in a principled way different sources of ambiguous 

information on the user’s emotional state.  We end  with an overview of related work, 

discussion and conclusions.  

2. Emotionally Intelligent Agents for Educational Games 

Several authors have suggested the potential of video and computer games as educational 

tools (e.g., Silvern, 1986; Malone and Lepper, 1987). However, empirical studies have 

shown that, while educational games  are usually highly engaging, they often do not trigger 

the constructive reasoning necessary for learning (Conati and Fain Lehman, 1993; Klawe, 

1998). 

An explanation of these findings is that it is often possible to learn how to play an 

educational game effectively without necessarily reasoning about the target domain 

knowledge (Conati and Fain Lehman, 1993). Possibly, for many students the high level of 

engagement triggered by the game activities acts as a distraction from reflective cognition. 

This seems to happen especially when  the game is  not integrated with external activities 

that help ground the game experience into the learning one. Also, educational games are 

usually highly exploratory in nature, and empirical studies on exploratory learning 

environments have shown that these environments tend to be effective only for those 

students that already possess the learning skills necessary to benefit from autonomous 

exploration (e.g., Shute, 1993).  

To overcome the limitations of educational games, we are working on designing intelligent 

pedagogical agents that, as part of game playing, can generate tailored interventions aimed 

at stimulating a student’s reasoning if they detect that the student is failing to learn from 

the game. “As part of game playing” is the key point in the design of these agents. The 

main advantage of educational games versus more traditional computer-based tutors is that 

the former tend to generate a much higher level of students’ positive emotional 

engagement, thus making the learning experience more motivating and appealing. In order 

not to lose this advantage, it is crucial that the interventions of  pedagogical agents be 

consistent with the spirit of the game and consider the players’ emotional state, in addition 

to their learning. On the one hand, these pedagogical agents need to make sure that a 

student learns as much as possible from the game. On the other hand, they also need to 

avoid interventions that make the student start seeing the interaction with the game more as 

an educational chore than as a fun activity. Thus, at any point during the player interaction 

with the game, a pedagogical agent may need  to  consider the tradeoff between the 

player’s learning and entertainment when deciding how to act. The more information the 

agent has on the student’s learning and emotional state, the more focused and effective its 

actions can be. We formalize this behavior by designing our pedagogical agents as decision 

theoretic agents (Howard and Matheson, 1977; Russell and Norvig, 1995) that select 

actions so as to maximize the outcome in terms of a student’s learning and emotional 

engagement, as we describe in the next section. 

3. Decision-theoretic Pedagogical Agents 

In a decision-theoretic model (Howard and Matheson, 1977), an agent’s preferences over 

world states S are expressed by a utility function U(S),  which assigns a single number to 
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express the desirability of a state.  Furthermore, for each action a available to the agent, 

and for each possible outcome state S’ of that action, P(S’|E, a) represents the agent’s 

belief that action a will result in state S’, when the action is performed in a state identified 

by evidence E. The expected utility of an action a is then computed as 
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Figure 1: DDN to model the decision of a pedagogical agent 

 

 

EU(A) =  ΣS’ P(S’|E, a)U(S’)  

A decision-theoretic agent selects the action that maximizes this value when deciding how 

to act. 

Decision Networks (DNs), or influence diagrams (Henrion, Breeze and Horvitz, 1991), are 

an extension of  Bayesian  Networks (Pearl, 1988) that allow modeling decision-theoretic 

behavior. In addition to nodes representing probabilistic events in the world, a DN includes 

nodes representing an agent’s decision points and utilities. By relying on propagation 

algorithms for Bayesian  networks, DNs allow computing the agent’s action (or sequence 

of actions) with maximum expected utility given the available evidence on the current state 

of the world. 

Dynamic Decision Networks (DDNs) add to DNs the capability of modeling environments 

that change over time. Figure 1 shows how a  DDN can be used to define the behavior of  

pedagogical agents that take into account both the student’s learning and emotional 

reactions when deciding how to act. This DDN models behavior over two time slices, to 

answer the question: given the student’s state Sti at time ti, what is the agent’s action that 

will maximize the agent’s expected utility at time ti+1, defined in terms of the student’s 

learning and emotional state at that time?   

In a DDN, the links between variables in different time slices indicate that the values of 

these variables evolve over time and that the value at  time ti influences the value at time  
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ti+1. In Figure 1, this is the case for the random variables Learning and Emotional State 

representing a student’s learning and emotional state, respectively.  The links between 

Learning nodes, for example, model the fact that a student is likely to know a given 

concept at time ti+1 if she knew it at time ti. The links between Emotional State nodes 

encode  that a student is more likely to feel a given emotion at time ti+1 if something that 

can trigger that emotion happens and the student was already feeling that emotion at time 

ti. The shaded nodes in Figure 1  represent random variables for which evidence is 

available to update the student model at a given time slice. In Figure 1, this evidence 

includes  the student’s game action at time ti, as well as the output of sensors for 

monitoring the student’s affective response at time ti and  ti+1 (we will say more about these 

sensors in a later section). The rectangular node in time slice ti+1  represents  the agent’s 

available actions at that time, while the hexagonal node represents the agent’s utility. To 

compute the agent’s action with highest expected utility in this time slice, the DDN 

computes the expected value of each action given the evidence currently available at time 

slice ti. The agent’s decision node is then set to the action with the highest expected utility,  

and  new evidence on the student’s emotional reactions in collected to assess what 

emotional state the agent’s action actually generated.  

The links from the Learning and Emotional State nodes to the utility node in Figure 1 

indicate that an agent’s utility function is defined over the student’s learning and emotional 

states. By varying this utility function, we can define agents that play different roles in the 

game. So, for instance, the utility function of a tutoring-oriented agent will assign higher 

values to states characterized by high levels of student learning, giving less importance to 

the student’s emotional engagement. In contrast, the utility function of  a game-oriented 

agent will value more those states in which the student is positively engaged. 

In the rest of the paper, we will concentrate on illustrating the part of the DDN that 

assesses the user’s emotional state, to show how a probabilistic model can deal with the 

high level of uncertainty involved in this still largely unexplored user modeling task. For 

simplicity, we will ignore any relation between emotional state and learning,  as well as 

details on how assessment of learning is performed. 

4. A Dynamic Decision Network for Modeling Affect 

Figure 2 shows two time slices of the DDN that forms our model of student affect. The 

nodes in Figure 2 represent classes of variables in the actual DDN. As the figure shows, the 

network includes variables that represent both causes and effects of emotional reactions. 

Being able to combine evidence on both causes and effects aims to compensate for the fact 

that often evidence on causes or effects alone  is insufficient to accurately assess the user’s 

emotional state, as we illustrate in the next subsection. 

4.1 Uncertainty in Modeling Affect 

Although emotions often visibly affect a person’s behaviour and expressions, the effects of 

emotions are not always discriminating enough to allow a precise diagnosis of the 

emotional states that generated them. For example, some accentuated  facial expressions 

and prosody features can be  quite indicative of specific emotional states such as  fear, joy 

or anger (Ekman, 1993; Murray and Arnott, 1993). However, whether these intense 

emotion expressions arise usually depends on the intensity of the emotion, on the user’s 

personality and on the interaction context. For instance, an introvert person might have a 
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tendency to control her display of emotions, especially in the presence of people she is not 

well acquainted with. Thus, in many situations, changes in facial expressions and prosody 

might be too subtle to be easily detected, especially if the detection is done by a computer.  

Emotional states can also affect biometric measures  such as heart rate, blood pressure, 

skin conductance, color and temperature (Picard, 1997). A person usually has little control 

over these covert biometric measures, and therefore they could provide a more reliable 

source of information on a person’s affect. However, information on a single  biometric 

measure  is usually not sufficient to recognize a specific emotion. For instance, skin 

conductivity is a very good indicator of general level of arousal, but cannot identify the 

valence of the emotion that caused the arousal (Picard, 1997). Emotions with negative 

valence tend to increase heart rate more than emotions with positive valence (Cacioppo, 

Berntson, Poehlmann and Ito, 2000), but heart rate provides little information about 

specific emotions (Ekman, Levenson and Friesen, 1983). 

Predicting emotions from possible causes is also not always easy. Although there are 

psychological theories that define the mapping between causes and emotional states, in 

practice information on possible causes does not always provide unequivocal indication on 

the actual affective reaction. Consider, for instance, the cognitive theory of emotion 

developed by Ortony Clore and Collins and known as the OCC model (Ortony, Clore and 

Collins, 1988). This theory  defines emotions as  valenced (positive or negative) reactions 

to situations consisting of events, actors and objects. The valence of one’s emotional 

reaction depends upon the desirability of the situation for oneself, which in turn is defined 

by one’s goals and preferences. The OCC theory clearly defines twenty two emotions as 

the result of situation appraisal, thus making it quite straightforward to predict a person’s 

emotions if the person’s goals and  perception of relevant events are known. The problem 

is that this information is not always easily available when assessing a user’s emotion.  

The above factors make emotion recognition a task permeated with uncertainty.  Most of 

the existing research on modeling users’ affect has tried to reduce this uncertainty either by 

considering tasks in which  it is relevant to only monitor the presence or absence of a 

specific emotion  (Healy and Picard, 2000; Hudlicka and McNeese, 2002) or by focusing  

on monitoring  lower level measures of emotional reaction, such as  the intensity and 

valence of emotional arousal (Ball and Breeze, 2000). In educational games, neither of 

these approaches is appropriate, for two main reasons. First, educational games do tend to 

arouse different emotions in different players. For instance, the exploratory nature of a 

game can be very exciting for students that mainly want to have fun,  while it may cause 

frustration or anxiety in students that want to learn from the game but tend to prefer more 

structured pedagogical activities. Second, detecting the student’s specific emotions is 

important for an agent to decide how to correct possibly negative emotional states or 

leverage the positive ones. For example, if the agent realises that the student is ashamed 

because she keeps making mistakes during the game, it can try to take actions that make 

the student feel better about her performance. Or, if the agent realizes that the student 

enjoys its character but is distressed with the game at a particular point in time,  it can 

initiate an interaction with the student with the sole purpose of entertaining her.   

In the next subsection we describe how we use a DDN to explicitly represent the 

uncertainty underlying the relationships between a student’s emotional states, their causes 

and effects during the interaction with educational games.  
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Figure 2: Two time slices of the DDN model of user affect 

 

4.2 Probabilistic Dependencies Between Emotions, Their Causes and Their Effects  

 

In our DDN, the causes of emotional arousal are modeled following the OCC cognitive 

theory of emotions described in the previous section. To apply this theory to the 

assessment of emotions during the interaction with educational games, our DDN includes 

variables for goals that students may have when playing one of these games, summarized 

in Figure 2 by the nodes Goals
2
. The subject of the student’s appraisal is any event caused 

by either a student’s game action (node Student Action in Figure 2, time slice ti ) or an 

agent’s action (node Agent Action in Figure 2, time slice ti+1). The probabilistic 

dependencies  between student’s goals, game states and emotional reactions are summarize 

in the DDN of Figure 2 by the links connecting the nodes Goals and Student Action (or 

Agent Action) to the node Emotional States.  

User’s goals are a key element of the OCC model, but it is often unfeasible to identify 

these goals with certainty, for example by asking the user. Thus, our DDN also includes 

nodes that can help the model infer the student’s goals from indirect evidence. What goals 

a student has depends on the student’s traits such as Personality (Matthews, Derryberry 

and Siegle, 2000) and Domain Knowledge, as represented by the links connecting the 

nodes Student Traits with the Goals nodes in Figure 2. Also, the student’s goals can 

directly influence how a student plays the game, as modeled by the links between the 

                                                 
2 We currently do not explicitly represent the player’s preferences in our model . 



8 

nodes Goals and Interaction Patterns in Figure 2. In turn, interaction patterns can be 

inferred from specific features of the student’s individual actions at each time slice. Thus, 

observations of both the relevant student’s traits and game actions can provide the DDN 

with indirect evidence for assessing the student’s goals.  

The part of the network below the nodes Emotional States represents the interaction 

between emotional states and their observable effects. The node Emotional States directly 

influences the node representing the class of bodily expressions that are affected by 

emotional arousal. In turn, this node directly influences the node Sensors, representing 

devices  that can detect the bodily expressions of interest. In recent years,  there have been 

encouraging advances in the development of such devices, which include, among others, 

software for face and prosody recognition (Mozziconacci, 2001; Bianchi-Berthouze and 

Lisetti, 2002), as well as sensors to capture biometric signals (Picard, 1997). However, 

none of these devices,  by itself, will always reliably identify a specific emotional state. By 

explicitly representing the probabilistic relationships between emotional states, bodily 

expressions and techniques available to detect them, our DDN can combine and leverage 

any available sensor information, and gracefully degrade when such information becomes 

less reliable.  

In the rest of the paper, we describe an example application of the above model in the 

context of Prime Climb, the game we are using as a test-bed for our research. 

 

5. The Prime Climb Educational Game 

 

 

Figure 3: The Prime Climb Interface 
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Prime Climb is an educational game designed by the EGEMS (Electronic Games for 

Education in Math and Science) group at the University of British Columbia to help 

students learn number factorization. In Prime Climb, teams of two players must climb ice-

faces divided into numbered sections (see Figure 3). Each player can only move to sections 

with numbers that do not share any factors with that occupied by the other team member.  

When a player moves to a section that does not satisfy the above constraint, the player falls 

and the team looses points. For instance, the player at the bottom in Figure 1 fell because 

she tried to move to section 42, which shares the factor 3 with section 9, where the other 

player is. To help the students understand factorization, Prime Climb includes tools to 

inspect the factorizations of the numbers on the mountain. These tools are accessible by 

clicking on the icons representing a magnifying lens and a flag on the PDA shown at the 

top-right corner of Figure 3. 

An informal study of this version of Prime Climb showed that, while some students used 

and benefited from these additional tools, other ignored them even when they kept falling. 

Furthermore, many of the students who had very weak math knowledge and accessed the 

tools did not seem to gain much from their use. In light of these findings, we are designing 

pedagogical agents that, as part of Prime Climb, aim at stimulating a student’s reasoning 

when they realize that the student is not learning from the game.  One of the agents is a 

climbing instructor that can provide tailored help, both unsolicited and on demand, to help 

the student better understand number factorization as she is climbing, and that can do so 

without compromising  the player’s level of engagement. The actions that this agent can 

perform  include stimulating the student to think about the reasons that caused a fall, giving 

more specific advice on how to recover from a fall (see Figure 3), suggesting and helping 

with the usage of the available tools, and deciding the level of difficulty of the climbing 

task.  

We now show an illustrative example of how the general model in Figure 2 can be 

instantiated and used to allow the Prime Climb climbing instructor to monitor a player’s 

emotional state and react adequately to it.   

6. Sample Affective Model for the Interaction with Prime Climb 

6.1 Model Variables and Structure 

For the sake of simplicity, the model described in this example (shown in Figure 4) covers 

in detail only slice ti+1 of the general model shown in Figure 2, and includes only a subset 

of the variables that are necessary to completely specify this time slice. We chose this 

subset to give the reader a sense of how the model is built and of its workings, but several 

additional variables should be included to accurately model a real interaction. 

All the variables and links in the model have been derived from findings described in 

relevant literature, from observations of students playing Prime Climb, and in a few 

occasions from our intuition. The conditional probabilities are currently based mainly on 

our estimates of relevant qualitative findings described in the literature, but we are working 

on revising them empirically.  

Student’s goals. By observing and interviewing students playing Prime Climb, we have 

derived a set of common high level goals that students may have when interacting with the 

game. We use three of these goals to exemplify the role of these variables in our model: 
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having fun (node Have_Fun in Figure 4), succeeding without the agent’s help (node 

Succeed_by_Myself) and not falling (node Avoid_Falling).  

Variables describing the student’s personality traits. We consider three personality 

traits in this example, taken from the Five Factor Model of Personality (Costa and McCrae, 

1992): extraversion, agreeableness, and conscientiousness (the two other personality types 

that are part of the Five Factor Model are openness and neuroticism). Each of these traits is 

represented by a node that has as values the two extremes of the personality type (e.g. 

extrovert and introvert for the node extraversion) Personality traits can directly influence 

what goals  a student has (Matthews et al., 2000). The links between personality nodes and 

goals can be derived from the definition of the different personality types. For instance, the 

definition of an agreeable person includes the following statements “…. eager to help…and 

believes that others will be equally helpful in return”.  By contrast, the disagreeable person 

is “egocentric, skeptical of others’ intentions, and competitive rather than cooperative.”  

This definition indicates that agreeableness can directly influence a player’s goal to 

succeed in the game without any external help, and this influence is modeled  in the 

network by a  link between the node representing the agreeableness personality type and 

the goal Succeed-by-Myself. In addition, the conditional probability table (CPT) for 

Succeed-by-Myself  is defined so that the probability of this goal is high for a  disagreeable 

person, and low for an agreeable one. Similarly, the CPT for the node Have_Fun indicates 

 
Personality t i 

Goals 
Personality t i 

Goals 

Bodily  
Expressions 

Reproach 

Joy 

Heart Rate  Skin  
Conductance 

Eyebrow  
Position 

Agent 
Actions 

Neg Valence Pos Valence 

Arousal 

Vision Based 
Recognizer 

EMG Heart Monitor 

Sensors 

GSR 

Reproach 

Joy 

Emotional  
State 

Emotional  
State 

Have - Fun 

Shame 

Shame 

Succeed_By_Myself 

Engagement 

Bodily  
Expressions 

Joy 

Extravertion 

Heart Rate  Skin  
Conductance Position 

Agent 
Actions 

Neg Valence Pos Valence 

Arousal 

Vision Based 
Recognizer 

EMG 

Sensors 

GSR 

Reproach 

Joy 

Have - Fun 

Conscientiousness 

Shame 

Agreeableness Succeed_By_Myself 

Engagement 

t i+1 
Avoid_Falling 

t i+1 
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that this goal is likely for an extravert player, while the CPT of the goal Avoid_Falling 

indicates that this goal is more likely for a person that is conscientious. Although in  this 

example we have a one-to-one mapping between personality traits and goals, in reality, 

l studies have shown that introverts tend to reach a higher level of emotional 

s in our 

t’s actions.  When an 

emotion node is not directly involved in the appraisal process at a given time slice, its 

probability depends only upon the probability of the corresponding emotion node in the 

                                                

when additional goals and personality traits are considered,  the mapping can be many-to-

many. For instance, it is plausible for a conscientious person to have both the goal to avoid 

falling and  the goal to learn math from the game.  The goal to avoid falling is also 

compatible with a person belonging to the neuroticism personality type. 

Personality traits can also directly influence emotional reactions. For instance, 

psychologica

arousal than extroverts, given the same stimulus (Kahneman, 1973). This is encoded in our 

network by linking the node for the extraversion personality type with the node 

representing the level of emotional arousal (see Figure 4), which we will describe later in 

the section.  

Agent’s actions. For this example, we will consider only two of the possible actions that 

the Prime Climb agent can generate: (1) provide help when the student makes a mistake, 

and (2)  do nothing. These actions are represented as two different values of the decision 

node Agent Actions in Figure 4.  

Variables describing the user’s emotional state. Following the OCC cognitive model of 

emotions, we model the user’s emotional state as the result of the user’s appraisal of the 

current interaction event in relation to her goals. In our model, a new  interaction event 

corresponds to  either a student’s or an agent’s action and generates the addition of a  new 

time slice in the DDN. To keep things simple, in this example we only consider a time slice 

corresponding to an agent’s action (see Figure 4). The appraisal mechanism is explicitly 

modeled in the network by conditioning the nodes representing emotional states to both 

nodes representing user’s goals and nodes representing interaction events (the node Agent 

Actions in this case).  The nodes representing emotional states are also defined following 

the OCC theory of emotions.  Out of the twenty two emotions that the OCC theory 

describes, we currently represent six  that related to the appraisal of the direct 

consequences of an event for oneself
3
.  These emotions include:  joy and distress toward 

the event that is appraised by the user; reproach and admiration toward the entity that 

caused the event; pride and shame toward the entity that caused the event when the entity 

is oneself .  For illustrative purposes, we’ll consider only three of these emotion

example (see Emotional State cluster in  Figure 4): (i)  Reproach, which arises when the 

behavior of the Prime Climb agent interferes with a player’s goals; (ii) Shame, which is felt 

when the player is disappointed with the outcome of her actions in the game; (iii) Joy 

which arises in response to any interaction event that satisfies the student’s goals.  

Notice that in Figure 4 the node Agent Actions is linked only to the emotion nodes 

Reproach and Joy, not to the  node Shame. This is because shame is an emotional reaction 

to the student’s actions, not to the agent’s actions, and therefore can be directly involved in 

the appraisal process only in the DDN time slices representing studen

 
3 Other emotions relate for, instance, to  the consequences of an event for others or  to the evaluation of 

objects rather than events. 
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previous time slice and its CPT represents the fact that an emotional state persists over 

brief periods of time, but it slowly decays if no new event revives it.  

Because we are interested in assessing the student’s level of engagement in the game, a 

corresponding variable is inserted into the model, along with links representing how  this 

variable is  influenced by the valence of a user’s emotions (represented in Figure 4 by the 

nodes Pos_Valence and Neg_Valence). The corresponding conditional probabilities are 

defined to express the rather simplifying assumption that emotions with positive valence 

increase the level of engagement, while emotions with negative valence decrease it. In a 

more complete model, we may want to explicitly represent how specific emotions affect 

engagement.  A node representing the level of arousal is also included in the model, 

because information on the level of arousal can be relevant to judge how much a given 

emotional state influences the user’s behavior. As shown in Figure 4, the node Arousal has 

as parents the two nodes representing the valence of the emotional state and the node 

representing the personality type Extraversion. Conditioning arousal to valence is slightly 

misleading, since these are two orthogonal dimensions of emotional states. However, in 

our network the valence nodes are linked to the Arousal node for the practical purpose of 

summarizing that an emotional reaction does exist, without having to link every single 

emotion node to arousal. Combined with the input coming from the node for Extraversion, 

the links from the valence nodes allow us to compactly define a CPT representing the 

finding that an introvert reaches higher levels of arousal than an extravert given the same 

stimulus (Kahneman, 1973). Directly linking the emotion nodes to the arousal node may 

s measure can be independently specified for each sensor and for 

d to detect the corresponding emotions. The conditional 

probabilities linking emotions and bodily expressions in our sample model represent the 

following findings (Picard, 1997): 

become necessary if the model needs to  represent the influence that specific emotions 

have on the intensity of the arousal. 

Variables describing bodily expressions and sensors. Let’s suppose that we have sensors 

to detect three types of bodily expressions: (i) eyebrow position, by using, for instance, 

software to detect facial expression and an electromyogram sensor (EMG) to detect muscle 

contraction; (ii) skin conductance,  through a sensor that detects galvanic skin response 

(GSR); (iii) heart rate, through  a heart rate monitor. All these sensors can already be 

donned in a fairly non-intrusive manner (Picard, 1997), and considerable research is being 

devoted to make these kinds of devices increasingly wearable. Each bodily expression B is 

linked to each sensor S that can detect it, as shown in Figure 4, and if multiple sensors are 

available, the DDN propagation algorithms can automatically integrate evidence data 

coming from all of them. By encoding the probability of a sensor’s value S given each 

value of bodily expression B, the conditional probability P(S|B) specifies the reliability of 

each sensor. Because thi

the bodily expression that it detects, the model allows one to easily include new sensors as 

they become available.  

Likewise, each conditional probability P(B|E1,..,En), indicates how a set of emotional states 

E1,..,En affects  a given bodily expression B. As information on a bodily expression not yet 

considered in the model becomes available, a new variable for this expression can be added 

to the model and linked to the emotion variables that influence it, thus increasing the 

amount of evidence that can be use
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1. Frowning eyebrows are a very good indicator of negative emotions in the anger range, 

including reproach
4
. 

2. Skin conductivity is a very good indicator of the level of arousal. 

3. Heartbeat increases more in the presence of emotions with negative valence. 

6.2 Sample Assessment 

As we mentioned earlier, DDNs provide a flexible framework for reasoning under 

uncertainty. Given evidence on any subset of the random variables in our affective model, 

propagation algorithms  compute the conditional probability of any other random variable 

in the model. Furthermore, if the agent needs to decide how to act at time ti+1, the DDN 

computes the expected utility of every available action at that time and allows the agent to 

choose and execute the action with maximum expected utility.  

We now give an example of how the propagation of available evidence allows our model 

in Figure 4 to incrementally refine the assessment on the user’s emotional state as more 

relevant user data become available, thus providing the Prime Climb agent with 

increasingly accurate information to decide how to act in order to improve the user’s 

interaction with the  game. 

Let’s suppose that, at some point during the interaction with Prime Climb, the player falls 

and the agent decides to provide help. Let’s also suppose that the only sensor signal 

available at this time comes from the heart rate monitor and indicates high heart rate. When 

this evidence is inserted in the model in Figure 4 and propagated, it increases the 

probability that the player’s heart rate is high. High heart rate in turn increases the 

probability that the player is in an emotional state with negative rather than positive 

valence, because the conditional probabilities for the Heart_Rate  node represent the 

finding that heart rate increases more in the presence of emotion with negative valence. 

Although the available evidence cannot discriminate between the player feeling reproach 

or shame, high probability of negative valence is sufficient to raise the probability that the 

player’s engagement is low. At the next decision cycle, this probability may influence the 

model so that the agent’s action with the highest expected utility is one designed to bring 

the  level of engagement back up.  

Let’s now suppose that, in addition to high heart rate, we also detect high GSR. When 

propagated in the model, this evidence increases  the probability of a high level of arousal 

and consequently the probability that our player is an introvert. This is because the CPT for 

arousal is set up to encode the finding that introverts reach a higher level of arousal than 

extraverts given the same stimuli.  Although the resulting assessment does not add any 

information on the player’s specific emotional state, it does give more information on the 

player’s personality. At the next decision cycle, this information might result in having the 

action with maximum expected utility  be one that deals specifically with overcoming a 

user’s negative affective state when the user is an introvert (provided, of course, that such 

action is available to the agent).  

                                                 
4 Other kinds of facial expressions are generally good indicators of valence, if not of individual emotions. In our sample 

model, eyebrow position contributes indirect information on valence through the reproach variable. 
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Lastly, if our sensors also detect that the user is frowning, the probability of the player 

feeling reproach rather than shame increases (because of the conditional probability 

representing the finding that frowning is a good indicator of emotions in the anger range). 

Indication that the player feels reproach also increases the probability that the player has 

the goal of succeeding by herself. This is because the conditional probabilities for 

Reproach  give a high probability for this emotion if the player has the goal to succeed by 

herself and the agent provides unsolicited help (as it was the case in this example). Thus, in 

addition to giving an assessment of the user’s emotional state, the DDN also  assesses why 

the player is in that state. This information can further improve the capability of the 

decision model to select an adequate action. For instance, if the DDN assesses that the 

student feels reproach toward the agent because its interventions interfere with her goal to 

succeed by herself, the appropriate  agent’s behavior to revive the player’s positive 

engagement in the game  may be to  refrain from giving further advice even if the student 

falls. A completely different cause of reproach toward the agent might be that the agent 

does not provide any help to a student that has the goal Avoid Falling but actually falls. A 

high probability for this particular configuration of the user’s goal and emotion may 

influence the decision cycle  so that providing help, not withdrawing it, is  the action with 

the maximum expected utility. 

Notice that the model would have generated a high probability of the user feeling reproach 

even if, instead of having evidence about the user frowning, it had evidence about the user 

having a  disagreeable personality type (see top of Figure 2). This is because evidence of 

this personality type would increase the probability of having the goal Succeed_by_Myself, 

which is impaired by the agent’s provision of help and therefore causes the user’s reproach.  
If contradictory evidence arises, such as evidence  that the player has the goal to avoid 

falling but frowns when the agent provides help on how to recover from a fall, the model 

assessment of the user’s affect will depend on the relative strength assigned to the different 

kinds of evidence by the model CPTs. However, in general the model probabilities will 

reflect a higher level of uncertainty on the user’s emotional state.  This also represents 

valuable information that the agent can use to decide how to act. The agent might decide, 

for instance, to explicitly ask the player how she is feeling or how she wants the agent to 

behave. Without a model of affect, explicit inquiries would be the only way the agent has 

to assess engagement, and might  easily become annoying if they were too frequent. The 

model of affect allows the agent to explicitly interrogate the user only when the available 

evidence is insufficient to generate a reliable assessment. 

6.3 Model Specification 

One of the major difficulties in using probabilistic frameworks based on Bayesian 

networks is defining the required prior and conditional probabilities. In the model in Figure 

4, the only prior probabilities to be specified are those for variables representing user traits, 

which can be defined through existing statistics,  specialized tests, or  set to indicate lack of 

specific information. The conditional probabilities for the model have been defined by the 

author to encode the general qualitative information available in the literature, and can be 

refined for our particular application and user population (students in grade 6 and 7) 

through empirical evaluations.   

An alternative approach for building a model of affect that combines multiple sources of 

ambiguous evidence would be to specify heuristic rules to define how the available 
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evidence should be integrated.  But defining these rules still requires quantifying at some 

point complex probabilistic dependencies, because not explicitly using probabilities does 

not magically get rid of the uncertainty inherent to the modeling task. The advantage of a 

formal probabilistic approach is that the model designer only needs to quantify local 

dependencies among variables. The sound foundations of probability theory define how 

these dependencies are processed and affect the other variables in the model. In contrast, 

heuristic approaches require defining both the dependencies and ways to process them. 

This task is not necessarily simpler that defining conditional probabilities and entails a 

higher risk  of building a model that generates unsound inferences.  Furthermore, the DDN 

graphical representation provides a compact and clear description of  all the dependencies 

that exist in the domain, given the direct conditional dependencies that the model designer 

has explicitly encoded. This helps to verify that the postulated conditional dependencies 

define a coherent model and to debug the model when it generates inaccurate assessments.  

7. Related Work 

Although affective user modeling is a field still in its infancy, an increasing number of 

researchers have started investigating the problem of how to make a software agent aware 

of a user’s emotional state and able to react appropriately to it.  

The work that is more closely related to what we propose in this paper is the probabilistic 

model  described in  (Ball and Breeze, 2000). This model relies on a Bayesian network to 

assess valence and arousal of user’s affect, along with the dominance and friendliness 

aspects of a user’s personality, during the interaction with an embodied conversational 

agent. The assessment relies on evidence from the user’s linguistic behavior, vocal 

expression, posture and facial expressions, thus combining information from multiple 

bodily expressions to more accurately detect valence, arousal, dominance and friendliness. 

The main differences between the Ball and Breese’s model and the model we propose in 

this paper are the following: (i) our model leverages evidence on the causes of emotional 

reactions in addition to  evidence on bodily expressions; (ii) it explicitly represents the 

temporal evolution of emotional states; and, (ii) it allows assessing specific emotions in 

addition to valence and arousal, when sufficient evidence is available.   

A substantial amount of research on how to use bodily expressions to assess  a user’s affect 

has been done at the MIT Medialab. Healy and Picard (2000) have used input from 

electromyogram, electrocardiogram, respiration and skin conductance sensors to detect 

stress in a car driver.  Kaapor, Mota and Picard (2001) discuss how to monitor eyebrow 

movements and posture to provide evidence on  students’ engagement while they interact 

with a computer  based tutor. Vyzas and Picard (1999) have shown how physiological data 

on jaw clenching, blood volume pressure, skin conductance and respiration  can quite 

accurately recognize eight different emotional states, when a single subject intentionally 

expresses them.  

 Hudlicka and McNeese (2002) propose a framework that, like our model, combines 

information on relevant bodily expressions with other factors that can help assess a user’s 

affect. They focus on identifying and combining factors to detect anxiety in combat pilots 

during a mission. These factors include general properties of the mission at hand (such as 

difficulty and risk level), events that happen during the mission (e.g., the detection of an 

enemy plane), pilot’s traits (such as personality, experience and expertise) and real-time 
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information on the pilot’s heart rate. The framework includes heuristic fuzzy rules 

specifying the weight that each of the above factors has in predicting anxiety, as well as a 

mechanism to integrate the different factors. The framework also includes rules that 

specify how the pilot’s level of anxiety  affects his beliefs and performance, as well as 

strategies to counteract the possible negative effects of anxiety on performance.  

Elliott, Lester and Rickel (1999) discuss how the Affective Reasoner, a rule-based 

framework to build agents that respond emotionally, could also be used to model user’s 

affect. Like part of our DDN, the Affective Reasoner is based on the OCC cognitive theory 

of emotions, but relies on deterministic rules to model the appraisal process. Elliot et al., 

describe these rules in the context of assessing a student’s affect during the interaction with 

the pedagogical agent for Design_a_Plant, a learning environment for botany.  In their 

discussion, the authors assume that the user’s goals and preferences necessary to define the 

outcome of the appraisal are known.    

Although we are not aware of other user models designed specifically to assess emotional 

states in addition to cognitive states, both Del Soldato (1995) and de Vicente (2000) have 

developed tutoring systems that assess and try to enhance  student motivation, a variable 

closely related to affective states. In both works, student motivation is assessed by 

comparing how the tutorial interaction relates to student  traits that are known to influence 

motivation. These variables include degree of control that the student likes to have on the 

learning situation, degree of challenge that the student likes to experience, degree of 

independence during the interaction and degree of fantasy based situations that the student 

likes the instructional interaction to include. Murray and VanLehn (2000)  developed a 

decision theoretic tutor that takes into account both student learning and morale in deciding 

how to act. However the authors do not discuss how student morale is assessed in their 

system.   

Other researchers have been investigating the decision theoretic approach to guide the 

behavior of adaptive interactive systems. Mayo and Mitrovic (2001) apply decision theory 

to guide the actions of a computer-based tutor, solely based on student’s learning. Horvitz  

(1999a; 1999b), presents intelligent desktop assistants that use a decision theoretic 

approach to decide when and how to provide unsolicited help to the user. Finally, Jameson 

et al. discuss how to apply decision theoretic methods to automatically provide the user 

with a sequence of tailored recommendations  and instructions (Bohnenberger and 

Jameson, 2001; Jameson, Großmann-Hutter, March, Rummer, Bohnenberger and Wittig, 

2001). 

8. Conclusions and Future Work 

We have presented a probabilistic model of a user’s affect that integrates information on 

the possible causes of the user’s emotional state (e.g., stimuli from the environment and 

personality traits) as well as the behavioral effects of this state (e.g., the user’s bodily 

expressions). The model relies on a Dynamic Decision Network (DDN) to explicitly 

represent the probabilistic dependencies between causes, effects and emotional states, as 

well as their temporal evolution. By taking into account different kinds of possibly 

ambiguous evidence on the user’s emotional state, our probabilistic model aims at reducing 

the uncertainty that pervades the assessment of user’s affect in situations in which a variety 

of emotions can arise in relation to a variety of user’s features.  
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We have shown how our model of user’s affect  can be used by decision-theoretic 

pedagogical agents designed to  improve the effectiveness of educational games. In 

particular, we have described an instantiation of the model for the interaction with the 

pedagogical agent of Prime Climb, an educational game to help students learn number 

factorization.  

The current version of our model DDN has been defined by relying on various theories and 

findings on the psychology and physiology of emotions. The part of the model that defines 

the dependencies between emotional states and possible causes is based on the OCC 

cognitive theory of emotions, which links emotional reactions to a person’s goals, 

preferences and how they are matched by the current situation. We have integrated the 

basic structure suggested by the OCC theory with variables that provide indirect evidence 

on a person’s goals, such as a player’s personality and interaction patters. The part of the 

model that encodes the dependencies between emotional states and their observable effects 

has been defined by relying on existing findings on how emotions generate changes in 

one’s bodily expressions and how these changes can be captured by specialized software 

and sensors.    

We are currently working on refining the structure and conditional probabilities in the 

model with data derived from observations of players interacting with Prime Climb. We 

are especially interested in gathering more accurate statistics on the relations between 

players’ goals, task knowledge and interaction behavior, as well as in understanding what 

bodily expressions  are more easily detectable in this kind of interaction.   

We also plan to investigate the issue of if and how emotional reactions influence the 

players’ goals and situation appraisal. There is increasing evidence that affective states can 

impact performance by altering the perceptual and cognitive processes that define how a 

given situation is perceived, as well as the cognitive and motor skills that influence 

behavior selection and actuation. However, it appears that what these influences are is very 

much task dependent, and we currently have no clear sense of what role they play during  

the interaction with educational games. Our current intuition is that in educational games 

the influences of emotional states on situation appraisal  may not be strong enough to 

warrant being explicitly represented in the affective model, but this intuition needs to be 

verified empirically. 
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