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In large-scale industrial processes, a fault can easily propagate between process units due to the interconnections of material
and information flows. Thus the problem of fault detection and isolation for these processes is more concerned about the root
cause and fault propagation before applying quantitative methods in local models. Process topology and causality, as the key
features of the process description, need to be captured from process knowledge and process data. The modelling methods from
these two aspects are overviewed in this paper. From process knowledge, structural equation modelling, various causal graphs,
rule-based models, and ontological models are summarized. From process data, cross-correlation analysis, Granger causality and
its extensions, frequency domain methods, information-theoretical methods, and Bayesian nets are introduced. Based on these
models, inference methods are discussed to find root causes and fault propagation paths under abnormal situations. Some future
work is proposed in the end.

1. Introduction

In a large-scale industrial process, process units are con-
nected; thus a fault can easily propagate from one unit to
another along material or information flow paths. Therefore,
the problem of fault detection and isolation cannot be
limited in a local unit, but should be laid in a large scale,
which leads to a set of new problems that have attracted many
researchers.

First of all, the large-scale problem is featured by causal-
ity. Causality is a physical phenomenon based on cause-
effect relationship between different variables [1]. When one
focuses on the interconnections of the process units, the first
step is to recognize the causality between variables and that is
what an engineer is interested in because one should find the
root cause and the fault propagation paths in a faulty mode
[2, 3] before analyzing the accurate dynamics based on first-
principle or mathematical models.

The main research topics are modelling methods from
process knowledge and process data and inference methods
based on the model. Initially, the signed directed graph
(SDG) is established by representing the process variables as

graph nodes and representing causal relationships as directed
arcs [4, 5]. An arc from node A to node B implies that
the deviation in A may cause a deviation in B. Positive
or negative influence between nodes is assigned to the
arc. This is a qualitative description of process knowledge.
When a fault occurs, the fault propagates along consistent
paths forming a set of nodes whose values are beyond the
normal range. This set of variables with signs is called a
symptom. Different symptoms reveal different fault types.
In real-time supervision, symptoms are obtained by sensor
readings. As soon as a symptom is triggered, operators
should identify the possible cause(s) and take appropriate
actions immediately for remedial action. The SDG model
has its obvious disadvantages due to its qualitative features;
thus we should explore other established methods, including
quantitative models and take into account latest and effective
formal techniques. In Section 2, the model description
methods are summarized; process knowledge is also the main
resource for modeling.

Another resource for modelling is process data because
process knowledge is not always available. Even if it is
available, a lot of insignificant information may easily
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Figure 1: Path diagram of a structural model.

disturb the modelling procedure and make it too complex.
Process data can effectively complement the information
requirement and simplify the procedure; moreover, it can
screen the nuisance information and improve the accuracy
of the models. Here, the pairwise causality capture methods
are developed to identify cause and effect. In a real process
that is usually multivariate, a topology should be constructed
based on pairwise analysis results. Several sets of method are
introduced in Section 3.

Based on the models, diagnosis applications consist in
finding the root cause whose abnormity accounts for all the
abnormities detected in other parts [6]. Thus the purpose
of the model-based inference is to interpret the symptom
detected by finding the root cause and fault propagation
paths. The most common algorithm for searching for root
cause(s) is “depth-first traversal on the graph” [4, 7]. How-
ever, since there are various models, corresponding inference
methods are needed. They are overviewed in Section 4.

2. Model Description Based on
Process Knowledge

Based on a priori process knowledge, including first-
principle and mathematical models, models can be built to
describe process topology. Here, the term model has a broad
meaning, not limited to equations.

2.1. Structural Equation Models. Structural equation model-
ing (SEM) is a statistical technique for testing and estimating
causal relations [1, 8]. A structural model shows potential
causal dependencies between endogenous/output and exoge-
nous/input variables, and the measurement model shows
relations between latent variables and their indicators. For
example, if endogenous variable y is influenced by exogenous
variables x1 and x2 (assume that all variables are normalized
to be zero mean and unit variance), a regression model can
be built as

y = py1x1 + py2x2 + pyεε (1)

and thus be depicted as a path diagram in Figure 1, where
each parameter p is called a path coefficient, and ε represents
the residual, that is, collective effect of all unmeasured vari-
ables that could influence y. The directed arrows represent
the influence of the exogenous variables and the residual on
the output variable, and the bidirectional arrow represents
the correlation between exogenous variables.

Since the exogenous variables are not independent, there
is some ambiguity about the real or dominant path. Based

on the statistical analysis, components of direct and indirect
relations can be evaluated via variance decomposition [2];
this gives some indication of the model structure. Typically,
factor analysis, path analysis, and regression, as special cases
of SEM, are widely used in exploratory factor analysis,
such as psychometric design. IBM SPSS Amos (Analysis of
Moment Structures) provides an easy-to-use program for
visual SEM.

The limitations of this modeling approach are as follows
(1) exogenous and endogenous variables should be selected
in advance as a hypothesis and the result highly depends
on this partition; (2) the causal relations are static relations;
(3) only linear regression is considered. To overcome the
last two limitations, dynamic causal modeling embraces
nonlinear and dynamic nature [9]. In total, this approach is
more suitable for confirmatory modeling than exploratory
modeling to construct a network topology and suffers from
large number of variables.

In recent years, some novel models have been developed
such as undirected or directed graphs or networks [10], data
models in databases [11], and production rules in expert
systems [12]. Following is introduction to some typical cases
and applications of these models.

2.2. Causal Graphs. We have seen that a graphical model
provides an intuitive way to show causality. There are quite
a few causal graphs that are dedicated to this description.

2.2.1. Signed Directed Graphs. Signed directed graphs
(SDGs) are established by representing the process variables
as graph nodes and representing causal relations as directed
arcs. An arc from node A to node B implies that the deviation
of A may cause the deviation of B. For convenience, “+”,
“−”, or “0” is assigned to the nodes in comparison with
normal operating value thresholds to denote higher than,
lower than, or within the normal region, respectively. Positive
or negative influence between nodes is distinguished by the
sign “+” (promotion) or “−” (suppression), assigned to the
arc [4, 5, 13, 14].

Take a bitank system as an example, as shown in Figure 2.
Two tanks are connected by a pipe; both tanks have outlet
pipes, and Tank 1 has a feed flow. This system can be
described by the following set of differential and algebraic
equations:

C1
de2

dt
= f1 − f3 − f5,

C2
de7

dt
= f5 − f8,

f3 =
1

Rb1

√

l2,

f5 =
1

R12

(

√

l2 −
√

l7

)

,

f8 =
1

Rb2

√

l7,

(2)

where l2 and l7 are the levels in Tanks 1 and 2, f1, f3, f5, and
f8 are flowrates, and R12, Rb1, and Rb2 are the resistances of
the pipes between Tanks 1 and 2 and the two outlet pipes,
respectively. Since li (i = 2 or 7) appears as the square root
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Figure 2: Schematic of a bitank system. C1 and C2 are cross-
sectional areas of the two tanks, respectively.
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Figure 3: SDG of the bitank system. e2 and e7 are the square roots
of levels in the two tanks respectively.

form, we use ei to denote it. One can convert these equations
to nodes and arcs to form an SDG, as shown in Figure 3,
where solid lines denote positive influences and broken lines
denote negative influences. Although no control is taken,
there are still some recycles based on the principles.

An SDG can be built manually from first principles
and mathematical models and more practically from process
knowledge including flowsheets [15, 16].

2.2.2. Other Causal Graphs. Graphical models are commonly
used to describe large systems, and yet they have different
forms with different meanings. Bond graphs [17] and their
extension, temporal causal graphs [18], use different symbols
to further describe dynamic characteristics. More precisely,
qualitative transfer functions [19], differential equations
[20], and trend analysis [21, 22] have been integrated
into causal graphs, and complex algorithms are introduced
to improve their correctness [23]. Similar or improved
approaches were investigated by many researchers [24–27].

The bond graph of the bitank system is shown as
Figure 4, and the temporal causal graph is shown as Figure 5.
In the bond graph, there are two types of junctions—
common effort (0−) junction and common flow (1−)
junction. It is obvious that the bond graph describes the
exchange of physical energy by bonds. A bond graph can
be used to derive the steady-state model automatically; this
property is similar with signal flow graphs, which, as another
graphical model, can be used for derivation of transfer
functions. The temporal causal graph converts the junctions
and bonds in the bond graph into nodes and arcs and
imposes labels on arcs to describe detailed temporal effects
such as integration and rate of change.

Compared to the SDG in Figure 3, the temporal graph
provides more detailed information and forms a quantitative
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Figure 4: Bond graph of a bitank system.

model, while the SDG is only concerned with the qualitative
trends. Since the exact model is often difficult to obtain for
industrial processes, the SDG model is more widely used for
its simplicity because it can be validated by process data [28].

2.3. Rule-Based Models. Kramer and Palowitch [29] used
rules to describe SDG arcs and thus expert systems can be
employed as a tool in this problem. Each arc can be described
by a rule using logical functions p, m, and z

(

pAB
)

⇐⇒ A −→ B
(

positive relation
)

(mAB) ⇐⇒ A ��� B
(

negative relation
)

(zAB) ⇐⇒ A B (zero relation).

(3)

Therefore, an SDG can be converted into a set of rules. These
rules can be expressed as IF-THEN forms to make reasoning
by rule reduction. Since only qualitative information is
included, there may exist a lot of illusive results. To prevent
this disadvantage, some quantitative information, such as
steady-state gain, is taken into account to find dominant
propagation paths [30].

2.4. Ontological Models. In order to standardize the con-
version procedure from process knowledge to ontology,
the semantic web has been developed, the architecture of
which includes a series of languages produced by World
Wide Web Consortium (W3C, http://www.w3.org/), for
example, XML, RDF, RDFS, and OWL. Extensive markup
language (XML) is the basic and widely accepted open
standard for the representation of arbitrary data structure
in a text document, especially web services. XML gives
the user sufficient freedom to further define and apply
in their respective areas, but for the purpose of semantic
description, we need a more uniform way to define the
process units (considered as resources). Resource Descrip-
tion Framework (RDF) provides a general method for
conceptual description or modeling of information that is
implemented in web resources, using a variety of syntax
formats (http://www.w3.org/RDF/). To structure these RDF
resources, RDFS (RDF Schema) is used. It provides an XML
vocabulary to express classes with relationships (taxonomies)
and define properties associated with classes, which facilitates
the inferencing on the data [31]. RDFS is an ontological

http://www.w3.org
http://www.w3.org/RDF


4 Journal of Control Science and Engineering

f1 f2

f3

f4

f5 f6 f7e2

e3

e4 e5

e6

11

1

11 1

1

1

−1

−1

−1

−1

=

=

=

=

=

=

f8 e8

e7

dt dt

Rb1

R12

Rb2

C1 C2

Figure 5: Temporal causal graph of a bitank system.

primitive, upon which Web Ontology Language (OWL)
released in 2004 adds extensive features and becomes a
more expressive language. An ontology is stored and referred
to a unique name space to be retrieved easily. As an
improvement over XML, RDF/OWL describes the semantics
that is interchangeable between different programs and is
convenient for inference. It is the trend of representation of
process knowledge in the future. Matrikon’s new software
platform, Intuition, is built on RDF/OWL standards and
incorporates the semantics to enable all people, processes,
and applications to work in concert. Several software tools
are available for editing RDF/OWL files, such as TopBraid
Composer and Protégé-OWL.

In RDF/OWL standards, a data model is described by
a collection of triples of subject, predicate, and object
expressed as XML syntax, where the subject denotes the
resource, the predicate denotes a property of this resource
(can be multiple), and the object denotes the value of this
property (should be unique, and can be literal or another
resource). By this way, not only the inclusive relationship
between resources is defined by the taxonomy of classes and
subclasses, but also the directed logic relationship or linkage
between instances is described by properties.

Apart from datatype and annotation properties, we
define the following object properties to describe the physical
and information linkage;

(i) UncontrolledElement.measuringElement:
linkage from an uncontrolled element to a measuring
element, for example, the level of a tank measured by
a sensor.

(ii) UncontrolledElementOutlet.uncontrolledElementIn-
let: linkage from an uncontrolled element to another
uncontrolled element, for example, a tank connected
to a pipe as an outlet.

(iii) UncontrolledElementOutlet.controllingElementIn-
let: linkage from an uncontrolled element to a
controlling element, for example, a pipe connected
to a control valve.

(iv) ControllingElementOutlet.uncontrolledElementIn-
let: linkage from a controlling element to an uncon-
trolled element, for example, a valve connected to a
pipe.

(v) Computer.computer: linkage from a computer to an-
other computer, for example, a controller connected
to a signal line (information connecting element).

The domain and range of the properties should be defined as
appropriate resources.

3. Topology Capturing from Process Data

The cause-effect relationship can be explained from several
different viewpoints. First, the propagation needs time, so
the cause precedes the effect; this property can be tested
by cross-correlation with an assumed lag or fitting the
input-output data into dynamic models. Second, cause-
effect relationship means information transfer; thus the
measure of transfer entropy in information theory can also
be employed. Third, causal relationship shows probabilistic
properties; thus Bayesian nets are introduced to describe
these relationships.

3.1. Cross-Correlation Analysis. Assume that x and y are
normalized time series of n observations, then the cross-
correlation function (CCF) with an assumed lag k is [32]

φxy(k) = E
[

xiyi+k
]

, k = −n + 1, . . . ,n− 1. (4)

A value of the CCF is obtained by assuming a certain
time delay for one of the time series. Thus the absolute
maximum value can be regarded as the real cross-correlation
and the corresponding lag as the estimated time delay
between these two variables. For mathematical description,
one can compute the maximum and minimum values φmax =

maxk{φxy(k), 0} ≥ 0 and φmin = mink{φxy(k), 0} ≤ 0, and
the corresponding arguments kmax and kmin. Then the time
delay from x to y is

λ =

{

kmax, φmax ≥ −φmin

kmin, φmax < −φmin
(5)

(corresponding to the maximum absolute value) and the
actual time delayed cross-correlation is ρ = φxy(λ) (between
−1 and 1). If λ is less than zero, then it means that the
actual delay is from y to x. Thus the sign of λ provides the
directionality information between x and y. The sign of ρ
corresponds to the sign of the arc in the signed directed graph
meaning whether the correlation is positive or negative; this
sign provides more information than the causality.
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Although this method is practical and easy for compu-
tation, it has many shortages, some of which are explained
below.

(i) Nonlinear causal relationship does not necessarily
show up in correlation analysis. For example, if y
equals the square of x with the time delay of one
sampling time, then based on the time-delayed cross-
correlation, this obvious causality cannot be found
because all the values are small relative to a threshold.
This can be explained because the true correlation
should be zero.

(ii) Correlation simply gives us an estimate of the time
delay. And the sign of the delay is an estimate of the
directionality of the signal flow path. The time delay
obtained, however, is only an estimate. In addition,
the trend in a time series is ignored, and values at
different time instances are regarded as samples of
the same random event. Thus the causality obtained
by this measure is purely the time delay based on the
estimate of the covariance.

3.2. Granger Causality and Its Extensions. Regression is a
natural way to test the relationship between variables. By
taking into account dynamics, the lags in the models reflect
the causality. A regression of a variable on lagged values of
itself is compared with the regression augmented with lagged
values of the other variable. If the augmentation is helpful for
better regression, then one can conclude that this variable is
Granger-caused by the other variable. Some tests are used,
such as the t-test and the F-test.

Aiming at time series y and x, to test if there is a Granger
causality from x to y, a univariate autoregression of y is
obtained first:

yt = a0 + a1yt−1 + a2yt−2 + · · · + amyt−m + residualt . (6)

Next, lagged values of x are included to obtain another
regression:

yt = a0 + a1yt−1 + a2yt−2 + · · · amyt−m

+ bpxt−p + · · · + bqxt−q + residualt .
(7)

If the result is significantly better than the previous one, then
a Granger causality is detected.

The multivariate version is available for this method
based on the vector regression model and thus the condition-
ing is performed to exclude the influence of the intermediate
variables.

This method needs a regression model; thus the fol-
lowing disadvantages are obvious. First, a linear relation
between x and y is assumed, which is very strict. Second, the
model accuracy affects the result, especially the predefined
model order. There are some extensions of the basic Granger
causality concept, such as variants of the Wiener-Granger
causality [33], to describe more general forms.

3.3. Frequency Domain Methods. A process can also be
described in the frequency domain where the energy transfer

at every frequency can be shown. Based on this idea, several
methods have been developed, such as the directed transfer
function (DTF) [34] and the partial directed coherence
(PDC) [35]. These quantities DTF and PDC are normalized
measures of the total and direct influence, respectively,
between two variables in a multivariate process. Condition-
ing is conducted to exclude the influence of the confounding
variables [36]; this is very important under the multivariate
framework [37].

Gigi and Tangirala [36] did quantitative analysis on
the strength and proved that the total effect, in fact,
consists of three components, namely, direct, indirect, and
an interference term. The total effect can be quantified by the
DTF, whilst the direct effect is hard to quantify. Anyway, the
analysis can be performed with the visualization of a curve
matrix.

The frequency domain methods have the similar advan-
tages as the corresponding time domain methods (Granger
causality methods). However, they provide a better vision for
the energy transfer description at different frequencies.

3.4. Information-Theoretical Methods: Transfer Entropy.
According to information theory, the transfer entropy from
x to y is defined as [38]

t
(

y | x
)

=
∑

yi+h ,yi ,x j

p
(

yi+h, yi, x j

)

· log
p
(

yi+h | yi, x j

)

p
(

yi+h | yi
) , (8)

where p means the complete or conditional probability
density function (PDF), x j = [x j , x j−τ , . . . , x j−(k−1)τ], yi =

[yi, yi−τ , . . . , yi−(l−1)τ], τ is the sampling period, and h is the
prediction horizon. The transfer entropy is a measure of
information transfer from x to y by measuring the reduction
of uncertainty while assuming predictability. It is defined as
the difference between the information about a future obser-
vation of x obtained from the simultaneous observation of
past values of both x and y, and the information about the
future of x obtained from the past values of x alone. It gives
a good sense of the causality information without having to
require the delay information. Several parameters, especially
τ and h, should be tried. If the transfer entropies in two
directions are considered, then t(x → y) = t(y | x)−t(x | y)
is used as a measure to decide the quantity and direction of
information transfer, that is, causality. In (2), the PDF can be
estimated by the kernel method [28, 39], to fit any shape of
the distributions.

Transfer entropy is a model-free method. However, it
has the following main shortcomings. First, it is highly
dependent on the estimation of PDFs (although it can have
any non-Gaussian forms); thus the computational burden
is very high. Second, the time delay cannot be estimated,
and the arc signs in SDGs cannot be obtained. Third, the
assumption that the time series is stationary does not hold
and thus the noise (may be nonstationary) is often greater
than expected; these problems affect the computational
results.

3.5. Bayesian Nets. Random phenomenon is everywhere in
the real world, including industrial processes. Due to the
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existence of random noises, there are stochastic factors that
can be described. The Bayesian net [40] provides a graph
with probabilities, where nodes denote fault modes as well as
process variables, and arcs denote conditional probabilities.
Although the structure remains the same as an ordinary
causal graph, both nodes and arcs mean probabilities. The
causality from x to y is described by a conditional probability
p(y | x) [41].

This model is also a general model, although the meaning
is different from the previous one. It is to be noted that, in
industrial processes, dynamics, or time factors, should be
included, which is a key feature to capture causality. The
traditional Bayesian net has a fatal limitation that it should
be a directed acyclic graph. In a logical system with no
time factor, this assumption makes sense, but in a dynamic
process, cycles are very common. A cyclic causal discovery
algorithm has been developed [42] to allow the existence of
cycles.

The major limitations of the application of Bayesian nets
are as follows the physical explanation of probabilities is
not straightforward, which is sometimes unacceptable by
engineers; and the data requirement is hard to meet because
one needs the data in all modes to build the model.

3.6. Other Methods and Comments. In addition to the above
methods, there are more alternative methods to capture
causality between time series. For example, predictability
improvement [43, 44] is another general method but without
the shortcoming of requiring a large data set. It computes
the reduction of uncertainty of one variable with the help
of the other variable. Smith et al. and Lungarella et al.
have summarized and compared many methods to capture
causality for bivariate series [45] and in a network [46],
respectively. Each of all these methods has its own advantages
and limitations; they complement each other and no one
method is powerful enough to replace the others. Hence we
should try different methods to obtain reasonable results. In
real applications, one may mainly choose one method but
sometimes use other methods to gain additional insights or
make validations.

Most of the above data-based methods (except model-
based methods in Sections 3.2 and 3.3) cannot capture the
true causality because they are pairwise methods. If both x
and y are driven by a common third variable, sometimes
with different lags, one might still find some causality. In
fact, there is no causality between these two variables and
neither of them can have influence on the other if the third
variable does not change. Thus one needs to test all the
pairs of variables to obtain their causality measures and then
construct the structure. The structure should be a mixture
of the typical serial structure and parallel structure. Indeed,
the topology determination needs additional information
beyond pairwise tests.

4. Model-Based Inference

Based on the models, inference should be made to find the
fault propagation paths and thus the root cause. Following
are some typical approaches.

4.1. Graph Traversal. The most common algorithm for
searching the fault origin is depth-first traversal on the graph
[4, 5], which is a kind of efficient fault inference for both
the single and multiple fault origin cases [47]. Its theoretical
basis is nodal balance [48]. A depth-first traversal algorithm
constructs a path by moving each time to an adjacent
node until no further arcs can be found that have not yet
been visited, the implementation of which is a recursive
procedure.

For the purpose of fault propagation analysis, forward
traversal is applied from the assumed origin to predict
all the variables based on consistency, which is deductive
reasoning [49, 50]. For the fault detection purpose, backward
traversal is applied within the causal-effect graph to find
the maximal strongly connected component [4], which is
abductive reasoning. Actually, the whole procedure includes
two steps.

Step 1. Trace the possible fault origins back along the arcs.

Step 2. Make forward inference from these nodes to screen
the candidates to choose which one is the real or most
probable fault origin.

Loops should be treated specially, which is very common
in control systems because of control loops [51].

The time complexity of a traversal search is O(n2) in
which n denotes the node number in the graph. When the
system scale increases, the time for a traversal is too long
to meet the demands of fault detection. Thus the model
structure should be transformed from a single-level one to
a hierarchical one [52–54]. By this way, the search is first
performed in the higher level to restrict the fault origin in
a subsystem. Then the search is performed in the subgraph
of this subsystem.

For the hierarchical model, hierarchical inference from
top to bottom is obtained naturally. The graph traversal is
performed firstly in the higher level finding the possible
super-node that includes the fault origin. Next perform the
graph traversal in the lower level to restrict the possible
location of the root cause. Assume the subsystem contains
m control systems, and each control system contains k
variables, then the time complexity of a traversal in a single-
level model is O(m2k2), and the time complexity in a 2-level
model is O(m2+ k2)≪ O(m2k2). Thus the fault analysis in a
hierarchical model has much higher efficiency.

Take the case of a boiler system in a power plant [55] for
example. There are about 40 key variables that are measured
or manipulated, and several control loops are maintaining
the steady operation. Of course, this process can be simulated
by a large set of equations according to sufficient process
knowledge. For fault analysis in an abnormal situation,
however, we are more concerned about localizing the root
cause before estimating the accurate value. For instance,
if the coal quality is changed suddenly, many variables in
different subsystems and control systems appear abnormal. If
we look at the single-level model, it is not easy to focus on the
faulty part. However, if we have a 2-level model, in which the
high level describes the relationship between process units
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and the low level describes the detailed relationship between
process variables, the traversal at the high level can help us
find that the root cause is located within the overheated
steam pressure control system. Then by digging into this
system, we can more easily find the real problem is the change
of the coal quality. In this case, the search efficiency is highly
improved.

Here the number of fault origins is assumed to be only
one, that is, the reason that leads to the fault is only one [4].
This is reasonable because multiple faults seldom appear at
the same time [56]. For multiple fault origin cases, minimal
cut sets diagnosis algorithm was presented [57], where all
possible combinations of overall bottom events should be
input into the computer to explore and those which make
the top events appear are the cut sets. This algorithm has the
distinct disadvantage of low efficiency because of exponential
explosion.

In order to utilize the system information more suf-
ficiently, Han et al. [58] used fuzzy set to improve the
existing models and methods, but their method is not
so convenient for online inference and is not applicable
for dynamical systems. Some scholars introduced temporal
evolution information such as transfer delay [59, 60] and
other kind of information into SDG for dynamic description.

4.2. Inference Based on Expert Systems. Rule-based inference
[29] is applicable when an expert system is available. This
method can be used to improve the inference accuracy with
the appropriate rule description and operation. Rough set
theory provides an idea of handling vague information and
can be used to data reduction; thus it can be introduced to
the fault isolation problem (a kind of decision problems)
to optimize the decision rules. The decision algorithm is
proposed by Yang and Xiao [61], in which the generation and
reduction methods of the rules are related to the structure of
the SDG model.

The main steps are listed as follow.

(1) List all the possible rules as Table A (as shown in
Table 1), with each row denoting a rule ϕ → ψ, where
ϕ denotes the values of the condition attributes are
assumed and ψ denotes the decision to be obtained.
For convenience, we can give each attribute value a
notion.

(2) Try to delete each condition attribute in turn and test
the consistency of the formula and obtain the reducts
and the core. Delete all the elements except the cores
and get Table B. There are several methods to test the
consistency. For example;

(a) Each condition class E∈X|IND(C) has the same
decision value.

(b) For each object x, the condition class covering x
is contained in the decision class covering x.

(c) For every two decision rules ϕ → ψ and ϕ′ →
ψ′, we have ϕ = ϕ′ → ψ = ψ′.

(3) Calculate the reducts of each rule by use of Table B
and obtain Table C.

Table 1: Framework of a decision table.

Attribute Q

Objects X Condition attributes C Decision attributes D

(4) Delete redundant rules and thus obtain Table D.

(5) Deduce the rules and the decision algorithm accord-
ing to Table D.

The authors combine the algebraic and logical expression
ways to achieve the purpose. Moreover, due to the conve-
nience of expressing granularity, the decision algorithm is
still applicable when the types of the faults of concern are
changed or reformed.

4.3. Inference Based on Bayesian Nets. In Bayesian nets,
probability and conditional probability of fault events is used
to describe causes and effects among variables. Hence the
inference is in respect to the fault probability.

We can use Bayesian inference on the graph to calculate
the probabilities; it is a direct method. Suppose that the node
set of the probabilistic SDG is V = E ∪ F ∪H , in which E is
the subset of evidence nodes whose value or probabilities are
known, F is the subset of query nodes whose probabilities are
to be computed, and H is the subset of hidden nodes which is
not cared about in the inference. The inference process is to
compute the conditional probability of xF given the known
xE

p(xF | xE) =
p(xE, xF)

p(xE)
, (9)

where

p(xE, xF) =
∑

xH

p(xE, xF , xH),

p(xE) =
∑

xF
p(xE, xF) .

(10)

To solve this problem, Bayesian formula and its chain
rule should be used adequately, and also the junction tree
algorithm can be used for multiple-fault origin cases. This
method could be used where there is distinct random
phenomenon, yet the cycles in SDGs should be handled.
The algorithm is the combination of depth-first search and
junction tree algorithm.

4.4. Query on Ontological Models. Similar to the query
language SQL used in relational databases, query languages,
SPARQL, RDQL, Versa, and so forth are used in ontology-
based RDF/OWL files to capture useful information and
conduct inference. Among them, SPARQL (SPARQL Pro-
tocol and RDF Query Language) is the predominant
one and has been recommended by the W3C in 2008
(http://www.w3.org/TR/rdf-sparql-query/).

SPARQL uses query triples as expressions with logic
operations such as conjunctions and disjunctions. It can
perform inferences based on semantics.

http://www.w3.org/TR/rdf-sparql-query
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The functions of SPARQL query can be summarized as
follows.

(i) To perform query based on specific property con-
straints. For example, we can search all the outlet
pipes of a tank by defining the subject and the
predicate and constraining class of the resulting
objects.

(ii) To test connectivity based on object properties.
If we define a general object property and place
all the other object properties meaning physical
and information linkages under it, then the con-
nectivity with specified steps can be obtained. In
the matrix form, reachability matrix is defined as

R = (X + X2 + · · · + XN )
#

where X is the adjacency
(connectivity) matrix [62], N is the number of
elements, and # is the Boolean operator [10]. But
if we want to know the k-step propagation results
from one element, then we should truncate the
summation to the first k terms, from which each
element can be obtained by a query. This truncated
reachability reflects the precedence and strength of
the propagation.

(iii) By defining the object property as transitive, reacha-
bility can be obtained directly to show the domain of
influence triggered by a change in one object.

5. Conclusion and Future Directions

In this paper, various methods for the purpose of root cause
and fault propagation analysis are introduced briefly, and the
features and limitations are analyzed. For the fault detection
and isolation of a large-scale industrial process, it is the
first step to limit the scale of the problem by capturing the
backbone and find the real problem before diagnosing the
problem precisely.

We notice that there is no single method that can
perfectly achieve our purpose. Therefore, a fusion of different
methods is necessary. In real applications, one method,
simple ones in most cases, can be used first; and then another
method can be used as a validation or a comparison. To
facilitate this procedure, a tool is under development by
integrating various methods. The suggestions will also be
given to the user when choosing appropriate methods.

There are also some theoretical problems that need
attention. Instantaneous causality and bidirectional causality
are possible in real cases; we need particular methods to deal
with them. Most of the methods need some user-defined
parameters; the choices of them should be studied to com-
promise between accuracy and computational complexity.
Topology construction is still an open question; we should
go beyond the pairwise analysis to study the multivariate
analysis methods. Single-layer model is ineffective for large-
scale systems; thus hierarchical models should be developed
and the established various models should be extended.
Under different abnormal situations, the model structure
may be changed and thus the anomaly detection and model
switch mechanism should be studied [63]. For the simulation

study, the Tennessee Eastman process can be used as a
benchmark [64].
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