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Abstract

Online restaurant aggregators with integrated meal delivery networks have become more common
and more popular in the past few years. Meal delivery is arguably the ultimate challenge in last mile
logistics: a typical order is expected to be delivered within an hour (much less if possible), and within
minutes of the food becoming ready. We introduce a novel formulation for a meal delivery routing
problem (in which we assume perfect information about order arrivals), and develop a simultaneous
column and row generation method for its solution. The analysis of the results of an extensive com-
putational study, using instances derived from real-life data, demonstrates the efficacy of the solution
approach, and provides valuable insights into, among others, the (potential) benefits of order bundling,
courier shift scheduling, and demand management.

1 Introduction

The transportation sector has been going through a revolutionary transformation that has been necessi-
tated and facilitated by the recent advances in communication and mobile device technologies. Because of
the explosive growth of e-commerce and the ever-increasing desire for faster service, current logistics ca-
pabilities are stretched to (or beyond) the limit, and the players in the sector are seeking new and creative
solutions to address the unprecedented challenges and are exploiting new and emerging business models to
drive change. On-demand meal ordering platforms are an example of a daunting transportation problem
that has spawned an attractive business opportunity. Instead of restaurant-operated delivery services that
fail to scale up to elevated customer expectations of service time, cost, and availability, online restaurant
aggregators with integrated delivery networks are being set up to achieve higher efficiency levels that can
meet the challenge. Such platforms do not only aim to provide a higher service quality at lower cost, but
also to provide more restaurants with the opportunity to offer meal delivery service to their customers.
The fast increasing volume of the meal delivery operations on the global scale attests to the strength of
the business in a massive and under-penetrated market (Bakker, 2016). According to Morgan Stanley
Research, about $210 billion worth of food is ordered for delivery or takeout on an annual basis solely in
the US, and online food delivery is expected to grow by 16% annual compound rate in the next 5 years
(Morgan Stanley Research 2017)).

Not all news is good, however, for the meal delivery network providers. Consumer resistance to delivery
fees and shrinking margins are a fact of the e-business era (Geoffrion and Krishnan| 2001; Bakker, [2016)).
As a result, there is an urgent need for efficient and effective dispatching technology to support meal
delivery operations. However, meal delivery routing problems are quite challenging, not in the least



because of the dynamism and urgency of arriving orders (van Lon et al., 2016). Meal delivery is arguably
the ultimate challenge in last mile logistics: a typical order is expected to be delivered within an hour
(much less if possible), and within minutes of the food becoming ready (Reyes et al., 2018). Meeting such
stringent service quality targets without incurring a prohibitively high cost is only achievable through
the adoption of crowd-sourced delivery capacity (Mladenow et al., 2016)). Rather than owning a fleet of
vehicles and employing drivers to make deliveries, the delivery of meals is crowd-sourced, i.e., handled by
contracting individuals to deliver meals. In a market with high order rate fluctuations throughout the
day (soaring during the meal times and dropping to very low levels in between) the advantage of having a
flexible number of couriers, as in the successful ride-hailing business models for personal transportation,
is obvious. However, such a fleet of couriers brings many new operational challenges. Couriers do not
necessarily accept all delivery orders offered to them, and do not necessarily complete their planned shifts.
Incentives have to be used to induce the desired courier behavior and , e.g., a minimum guaranteed
hourly payment if few offered orders are rejected and a planned shift is completed (Reuters, 2016). As
a consequence, the study of meal delivery routing problems is not only of value because it satisfies an
urgent practical need, but it is also of academic value as meal delivery routing problems exhibit the critical
characteristics of the emerging challenges in dynamic routing and scheduling and last mile logistics.

In this paper, we develop an exact solution approach for the Meal Delivery Routing Problem (MDRP)
introduced and defined by |[Reyes et al.| (2017)), in which we assume perfect information about the order
arrival stream, i.e., we assume a clairvoyant decision maker. Of course, perfect information about the
order arrival stream is far from realistic, but the solutions obtained can (1) provide valuable insights into
the characteristics of high-quality solutions, which may inform online dispatching algorithm design and
(2) provide a benchmark to assess the quality of online dispatching algorithms.

In summary, the main contributions of this study are as follows.

e We present a novel approach for handling (continuous) time in formulations of transportation prob-
lems. It is based on the concept of work-packages and allows a formulation that can be solved
effectively by a combination of row and column generation.

e We conduct an extensive numerical study using instances from the Grubhub MDRP instance set,
which contains MDRP instances derived from real-life historic data. The results provide important
insights related to online algorithm design and effective dynamic delivery dispatching. In particular,
the results show that:

— Cost and service objectives are well-aligned, so optimizing one objective tends to optimize the
other objective as well. Furthermore, Pareto optimal solutions can be obtained efficiently using
a hierarchical optimization approach.

— With properly chosen compensation schemes and courier schedules, minimum pay guarantees
can be offered (to increase courier compliance) without a significant increase in cost.

— Off-line planning of courier schedules aimed at ensuring the right number of couriers are avail-
able at the right time can significantly reduce cost and improve service.

— Order bundling, i.e., having a courier deliver multiple orders in a single trip, does not offer
significant cost reduction and service improvement (for this set of MDRP instances).

— Demand management strategies that seek to influence diners’ restaurant choices have consid-
erable potential to improve system performance (in terms of both cost and service).

The remainder of the paper is organized as follows. In Section [2, we briefly discuss related literature.
In Section [3] we formally introduce the MDRP and define the notation used throughout the paper. In
Section [4, we present a novel mathematical formulation, and in Section [5, we describe an algorithm for



solving it. In Section [6] we discuss the results of an extensive computational study. We conclude, in
Section [7] with some final remarks.

Before continuing, we want to emphasize that the meal delivery routing problem defined in |[Reyes
et al.| (2017)) is motivated by a collaboration with Grubhub, but that it is not an exact representation
of the routing problem encountered at Grubhub as certain aspects and constraints have been altered or
have not been captured.

2 Literature review

The MDRP falls in the broad class of dynamic vehicle routing problems (dVRP). For a comprehensive
coverage of the vast dVRP literature, we refer the reader to [Thomas| (2010)); Pillac et al.| (2013), and
Psaraftis et al. (2016). Here, we focus on recent studies involving a problem setting similar to the MDRP
or a methodology similar to the one we propose for solving instances of the MDRP.

The MDRP is closely related to dynamic delivery problems (dDP), which have emerged recently and
represent an important class of dynamic pickup and delivery problems (dDPD); see (Berbeglia et al.,
2010) for a detailed survey of the dDPD literature. Motivated by the rising interest of online retailers
to offer same-day delivery, researchers have started to investigate various aspects of same-day delivery
operations, both from a theoretical (Archetti et al., 2015 Klapp et al.l [2016; [Ulmer et al., [2016; Reyes
et al., 2017)) and practical (Azi et al., [2012; Klapp), [2016; |Archetti et al., 2016} |Dayarian and Savelsbergh),
2017; Voccia et al., [2017) perspective. The defining characteristic of dDPs is that once a vehicle has been
dispatched, modifying the vehicle’s route is undesirable or impractical, and in the dDP literature typically
inadmissible. In the MDRP, couriers have to complete the delivery of the most recently picked up meals,
before picking up any new meals at a restaurant. Our formulation and solution approach, however, can
easily be extended to relax this requirement when it is unnecessarily restrictive.

Many solution approaches have been proposed for solving dynamic routing problems. The differences
in solution approaches are, in part, a result of the assumptions regarding the information available about
future orders. While dynamic and deterministic approaches assume that no information is available
about future orders, and base decisions only on the current state of the system, dynamic and stochastic
approaches use probabilistic information about future orders when making decisions. Rolling horizon
approaches, using dynamic programming techniques or metaheuristics, have been widely used in deter-
ministic settings, e.g., (Psaraftis, 1980; Gendreau et al., [1999; [Ichoua et al., 2000, 2003; Yang et al.l |2004;
Montemanni et al., 2005; (Chen and Xu, [2006). Markov Decision Processes (MDPs), Approximate Dy-
namic Programming (ADP), and scenario sampling techniques have been used to incorporate stochastic
information (Godfrey and Powell, 2002; |Bent and Van Hentenryck, [2004; [Hvattum et al., 2006; [Simao
et al., |2009; Novoa and Storer, 2009; |Azi et al.l 2012; |Voccia et al., [2017)). In our research on the MDRP,
we assume that the decision maker is clairvoyant and has perfect information about future orders. There-
fore, we can formulate the MDRP as a single deterministic optimization problem, which we solve using
combined column and row generation method.

Column generation and its generalization to integer programs, i.e., branch-and-price, have been suc-
cessfully used to solve various large-scale optimization problems arising in transportation and telecom-
munication applications, e.g., (Parker and Ryan| 1993; Barnhart et al., 1994 Park et al., |1996; [Barnhart
et al., (1998, [2000; |Cohn and Barnhart, 2003; Degraeve and Jans|, 2007; [Desaulniers, 2010). Composite
variables (Barnhart et al., |1994)) have been used to produce formulations that overcome some of the com-
putational challenges associated with column generation formulations. Careful definition of variables is
also critical to our approach for solving the MDRP. Yildiz and Karasan (2017)) recently introduced an
innovation to path-based formulations that has inspired many of our formulation ideas. They propose a
formulation in which partial columns (path segments) are used instead of whole columns (paths). Con-



sidering path-segments as variables and concatenating path-segments to construct complete paths makes
it easy to consider non-simple path solutions and to include certain types of constraints on paths, which
are difficult to incorporate in a standard path-based formulations. [Yildiz et al. (2016)) and Yildiz et al.
(2017) propose new applications of path-segment formulations and a branch-and-price algorithm to solve
large-scale network design problems arising in different transportation and telecommunications applica-
tions. Similar to path segments, we introduce work-packages. However, concatenating work-packages to
construct courier itineraries requires not only spatial consistency, but also temporal consistency. That is,
work-package variables embed spatial as well as temporal information, and both space and time consis-
tency constraints are incorporated in our formulation. Because time is continuous, our formulation has
infinitely many variables and infinitely many constraints. We show that a special property of optimal
solutions can be exploited to develop a simultaneous column and row generation algorithm to solve in-
stances of the MDRP without explicitly considering each point in time. As such, the approach is similar
in spirit to the recently proposed dynamic discretization discovery algorithm for solving a continuous-time
network design problem (Boland et all 2017)), which relies on refining partially time-expanded networks.

3 Problem definition

As mentioned above, we consider the problem definition and modeling assumptions introduced in [Reyes
et al.|(2018) and restate them here for the sake of completeness.

We consider a set of meal orders that arrive during a given day. Each order has a placement time,
an associated restaurant, an order ready time, and a drop-off location. A set of couriers is available to
deliver meals to diners. Each courier has an associated shift and a location where the shift starts. The
goal is to determine itineraries for couriers so as to optimize a system performance metric, e.g., average
click-to-door time or total courier compensation, while ensuring that all orders are delivered without
exceeding a given click-to-door time limit.

Multiple orders can be picked up by a courier at a restaurant and delivered in a single trip. The
bundle ready time is the latest ready time of the constituent orders. The time a courier spends traveling
between any two locations is assumed to be known and invariant over time. There is a fixed service time
for each pick-up and drop-off to account for the time spent by the courier to park his vehicle, walk to
the restaurant /delivery location, pick up/drop off one or more orders, and walk back to his vehicle. The
service time is independent of the number of orders being picked up. So the earliest pick up time for
an order is not smaller than the maximum of the order ready time and the courier arrival time at the
restaurant plus half of the service time at a restaurant. The departure time from a restaurant is the
pickup time plus half of the service time. Similarly the drop-off time of an order is the arrival time of the
courier at the drop-off location plus half of the service time at a drop-off location. The earliest departure
time after delivering an order is the drop-off time plus half of the service time.

Couriers only work during their planned shifts, defined by an on-time and an off-time, and cannot be
assigned a new delivery after their off-time. However, if a courier has picked an order before his off-time,
he is allowed to drop off that order after its off-time. More importantly, it is assumed that couriers make
no autonomous decisions while on duty. That is, they always accept any order offered to them, and they
wait for (new) orders at their on-location and at the last location of their active assignment.

There are two classes of couriers: minimum-pay (mp) couriers and delivery-only (do) couriers. All
couriers get paid a fixed amount for each delivery they complete during their shift. A minimum-pay
courier is guaranteed a minimum pay for their shift, i.e., if the earnings from their deliveries fall below
this guaranteed amount, their compensation is increased to the minimum guaranteed.

Because there are multiple stakeholders (service provider, restaurants, diners, couriers) in meal delivery
routing problems, each with their own goals and concerns, there are several performance metrics to



consider for a MDRP solution:
e Total courier compensation.
e Fraction of couriers receiving guaranteed minimum compensation.

e Click-to-door time (CtD): the difference between the drop-off time of an order and its placement
time.

o Click-to-door time overage (CtDO): the difference between the drop-off time of an order and its
placement time plus the target click-to-door time.

e Ready-to-door time (RtD): the difference between the drop-off time of an order and its ready time.
e Ready-to-pickup time (RtP): the difference between the pickup time of an order and its ready time.

e Courier utilization (CU): the fraction of the courier duty time that is devoted to driving, picking
up orders, and dropping off orders (as opposed to time spent waiting).

There is a maximum allowed click-to-door time and all orders have to be delivered before or at the order
placement time plus the maximum allowed click-to-door time.

Next, we provide a formal definition and introduce the notation used throughout the paper.

Let the set of restaurants be denoted by R. The location of a restaurant r € R is denoted by ¢,.. Let
the set of couriers be denoted by C'. Each courier ¢ € C' is characterized by a 3-tuple (e, ¢, [.), where e,
is the courier’s on-time (when the courier goes on duty), £. is the on-location (where the courier will be
at time e;) and [, > e, is the off-time (when the courier goes off duty). Let the set of orders be denoted
by O. Each order o € O is characterized by a 4-tuple (r,, a,, €0, £,), where r, € R is the restaurant from
which the meal is requested, a, is the order placement time, e, is the order ready time, and ¢, is the
drop-off location. Orders from the same restaurant may be combined into bundles with multiple drop-off
locations. A bundle b = (01,...,0x),0; € O,i =1,...,k is an ordered set where the sequence defines the
delivery route. The placement time of a bundle, ap, is the earliest placement time of any of the orders in
the bundle and the ready time of a bundle, e, is the latest ready time of any of the orders O(b) in the
bundle. Note that the placement time of a bundle is the earliest placement time of any of the orders in
the bundle. This implies that we assume that the operating environment allows “assignment updates”
(see Reyes et al.| (2017)). That is, it is allowed to update the set of orders a courier will deliver upon
the courier’s arrival at the restaurant. This reflects the real-life practice of adding orders to a courier’s
assignment if additional orders happen to by ready at the restaurant at the time of pickup and those
orders fit nicely into the courier’s planned trip. By letting the placement time of a bundle be the earliest
placement time of any of the orders in the bundle, we mimic this operating practice. The restaurant of
a bundle b, 7y, is the restaurant that prepares the meals of the orders the bundle contains. We define s
and fj as the first and last order in bundle b. For convenience, the drop-off location of a bundle b is the
drop-off location of its last order f, and denoted as £,. We define B to be the set of all possible bundles
(where we include bundles of cardinality one, i.e., consisting of a single order). The target click-to-door
time is denoted by o and the maximum allowable click-to-door time is denoted by ™.

Let t;; be the travel time between any two locations ¢ and j, e.g., restaurant locations, courier on-
locations, and order drop-off locations, let v" be the service time associated with the pickup of an order
at a restaurant, i.e., the time a courier needs to park his vehicle, walk to the restaurant, pick up an order,
and walk back to his vehicle, and let v° be the service time associated with the delivery of an order at
a customer location, i.e., the time a courier needs to park his vehicle, walk to the customer, drop off an
order, and walk back to his vehicle.



Couriers are compensated as follows. A courier ¢ € C receives p; per delivered order, but is guaranteed
a minimum compensation of p§ per hour, i.e., the courier’s compensation is max{pin, p5(l. —e.)}, where
n is the number of orders delivered during his shift. A courier ¢ € C' is a minimum-pay courier when
pS > 0 and a delivery-only courier when p§ = 0.

4 Mathematical formulation

Our formulation relies upon the concept of a work-package, which represent a possible way to serve a
bundle. A work-package w is characterized by a 5-tuple (by, Sw, fuw, Ow, dw), Where by, denotes the bundle
served, s,, denotes the start location, which is either the on-location of a courier or a drop-off location of
an order, f,, denotes the end location, which is either the drop-off location of the last order in the bundle
or the artificial off-location of a courier (which we will denote by ?C), 0w denotes the start time and ¢,
denotes the end time of the work-package. For an order o in work-package w, i.e., 0 € O(by,), the pick-up
and drop-off times are denoted by 82 and 62, respectively.

The set of work-packages that can be performed by a courier ¢ € C, respecting the courier’s on- and
off-time and on-time location, is denoted by W (c). Similarly, the set of bundles that can be served by
a courier ¢ € C' is denoted by B(c), and the set of work-packages whose bundle contains order o € O is
denoted by W (o). Let N = {{, : 0 € O} be the set of drop-off locations (without loss of generality, we
assume that orders have unique drop-off locations). For each courier ¢ € C, we define N¢ = N U {£., (. }.

For each order o € O, we can define a time interval T, during which it is possible to start a work-
package at location ¢,, because there is an earliest possible time the order can be dropped off at ¢, (due
to its order ready time) and a latest possible time the order can be dropped of at ¢, (due to its order
placement time and the maximum allowable click-to-door time).

We define the following decision variables:

{1 if the work-package w € W(c) is performed by the courier ¢ € C,
LIS —

0 otherwise,
e u, > 0: drop-off time for an order o € O,
e 2¢ > 0: total payment made to courier ¢ € C.

In the remainder, we will refer to these three groups of variables as: work-package variables, time
variables, and cost variables, respectively. With these decision variables, we define our formulation Pcosr



as follows:

ceC
s.t. 2¢ > Z p1Ty, Ve e C, (2)
wew (c)
Jw#le
2 2 p3(le — ec) VeeC, (3)
YooY =1 Yo € O, (4)
ceC weW (c)NW (o)
1,  ifi=4,,
Sooab— Y et ={-1, ifi=4, Vee C,i e N¢ (5)
wseu‘)’zz <) “’iu”i(l c) 0, otherwise,
Z Z x5, +Z Z xo, <1 Yoe O,t e, (6)
ceC weW (c) ceC weW(c
sw=lo fw—fa
ow<t G >t—0°/2
Uy > Z Z 50 x¢ Yo e O (7)
c€C weW (&)W (o)
up < ap+ 0" Vee C,Vo e O (8)
zy, € {0,1} Vee C,w e Wie), 9)
U > 0 Ve e C,Yo € O (10)
2°>0 Vee C,w e Wie), (11)

The objective is to minimize total courier compensation. Constraints and together make sure
that a courier is paid the maximum of his guaranteed payment amount and the total of his earnings
for completed deliveries. Constraint ensure that each order is served. Constraints ensure spatial
consistency for work-packages performed consecutively by a courier. Similarly, Constraints @ ensure time
consistency for work-packages performed consecutively by a courier by enforcing that a work-package can
start at a location £, € N at some time t € T° = [t°,#°] only if there is another work-package which
ends at ¢, before t minus half of the service time needed to drop-off the order (to reach the vehicle after
delivery). That is, a work-package has to finish in the interval [t°, ¢ — %] in order for another work-package
to start in [£,2°]. Note that we do not limit work-package starting times to a set of discrete time points,
ie., T,,0 € O, represent (continuous) time intervals. This implies that the formulation has an infinite
number of variables and constraints. However, in the Section we show that it suffices to consider
only a finite subset of work-package variables and a finite subset of time consistency constraints to solve
Poosr. Finally, Constraints and make sure that click-to-door times do not exceed @mq, for any
order.

Note that, inequalities — constitute the polytope of feasible MDRP solutions. Consequently,
by replacing the objective function and, possibly, adding inequalities, the formulation can be modified to
consider other performance metrics. Below, we will present a few examples to illustrate the flexibility of
the formulation.



Minimizing average CtD: An important service related metric is average CtD. By replacing the
objective with the following expression, we obtain formulation Po:p that minimizes the average CtD:

min ‘é| OEZO(UO — Qo) (12)

-
Ready-to-door time (RtD) focuses on meal freshness. By replacing the order placement time a, with

the ready time e, in ((12]), we obtain the formulation Pg,p to minimize average RtD.

Minimizing average CtDO: Click-to-door overage is a metric that focuses on service times that are
longer than the target p. We obtain formulation Poypo that minimizes the average CtDO by introducing
auxiliary non-negative continues variables (,, 0 € O:

.1
min @ ZCO

0e0
CoZuo—(ao—i-g) Yo € O
COZO Yo € O

@ - @

Minimizing average RtP: Obviously, meals ordered from restaurants far away from the delivery
location, naturally require a larger delivery time, and, thus, are more likely to have a large click-to-
door time. Likewise, when the meal preparation time at a restaurant is high, orders placed at that
restaurant are more likely to have a large click-to-door time. The ready-to-pickup metric is not affected
by these aspects and is therefore, in some sense, a better metric to assess the performance of dispatching
optimization technology. By replacing Constraints in Prip with inequalities

u =y Y o, Vo e O

ceCweW (c)NW (o)

we obtain formulation Pgr;p that minimizes the average RtP.

5 Solution method

In the formulations above, dispatch time information is embedded in the variables and time consistency
is ensured by means of constraints. As mentioned earlier, this requires infinitely many variables and
infinitely many constraints. Of course it is not possible to solve these formulations directly, but we will
show that they can be solved efficiently using a simultaneous column and row generation (CR) algorithm.
The idea is to start with a finite subset of work-package assignment variables and a finite set of associated
time consistency constraints, i.e., a restricted formulation, and iteratively add variables and constraints
as needed to reach and prove optimality. In the remainder, we will denote the linear relaxation of Poogr
as LPCOST-

5.1 Column generation

At each iteration of the CR algorithm, we solve a pricing problem to identify work-package assignment
variables that are not in the restricted formulation, but have a favorable reduced cost, or conclude that



there are no such variables and the algorithm can be terminated. Different from traditional column
generation techniques in which the restricted formulation has the complete set of constraints, here the
reduced cost of a variable has to be computed while infinitely many time consistency constraints are
not included in the formulation. Next, we introduce a no-delay property, which is critical to carefully
managing the set of variables and constraints and solving LPcogr.

Let P* be the restricted LPcogr formulation in the &k iteration of algorithm CR. The set of work-
package assignment variables included in P* is denoted by X*. For each order o € O, let T = {0, :
x5, € X% and s, = 0} U {a,}, i.e., TF is the set of start times of the work-packages starting at location I,
included in P* plus the placement time of order o.

Definition 1. A set of work-package assignment variables X has the no-delay property if for every work-
package assignment variable z$, € X, we have that

® Oy = Qg,,, OT

e there exists a work-package assignment variable ¢, € X such that fu = 4 and oy, = Gy + v°/2.

The no-delay property reflects a dispatching strategy that starts the execution of a work-package as
early as possible even if the finish time of the work-package would be the same if the execution of the
work-package was started at some later time. In such a dispatch strategy, if a courier has to wait, the
courier waits at a restaurant (rather than at a drop off location).

In the next proposition, we will establish that if the set of work-package assignment variables in P*
has the no-delay property, then it is possible to calculate the reduced cost of any work-package assignment
variable by considering only the time consistency constraints that are in P*. Later, we will show that
requiring that the set of variables in P* has the no-delay property is not a restrictive assumption.

Proposition 1. Let a,v, A\, u,n be the dual variables associated with the constraints (@, for the
restricted problem P* and assume that X* has the no-delay property. Then the reduced cost o of a
work-package assignment variable x¢, is

—praf — Z Yo — Ag,, T A, — Z Pspt — Z Mt — Z 8o 1lo- (13)

0Eby teTSkw >0 teT]’;w :t§¢w_% 0Eby,

Proof. To show that 7, is the reduced cost of the variable x{, we need to show that there exists an
optimal dual solution in which the variables j,; and py,; for t € T = |ap,, , ap,, + Omaz) \ Tt are all zero.
This is done by showing that the corresponding constraints are redundant for P*. Specifically, we show
that for any time point ¢’ € T', there exists a time point t* € wa such that the left hand side (LHS) value
of the time consistency constraint for t* is at least as large as the LHS of the time consistency constraint
for .

Let t' ¢ TF andlet T = {t € TF :t > t'}. Furthermore, let LHS(t) be the value of the left hand

side of the time consistency constraint for time point t. We consider two cases:

Case 1. If T # (0, then consider t* = min{t € wa :t > t'}. Observe that in this case there cannot be any
work-package variable in X* that starts at location I, in the time interval [t* — ¢/]. Since X*
has the no-delay property, we have LHS(t*) > LHS(t') as desired.

Case 2. If T = 0, then consider t* = max{T fw} Note that the set wa always contains the time point
as,, and t* is well defined. But then there is no work-package that starts at location [, after t*,
which implies that LHS(t*) > LHS(t'), since t* < t’. Hence, the results follows.

O



The following proposition establishes that an optimal solution to Poogr can be found by only con-
sidering a set of work-package assignment variables X that has the no-delay property. If w’ and w are
two consecutive work-packages in a solution (z,u, z) to Pcosr, i.e., 5, = x5, =1 and f,y = sy, then we
refer to w as the outbound work-package.

Proposition 2. If Poosr is feasible, then it has an optimal solution (z*,u*,z*) in which for all consec-
utive work-packages w' and w, outbound work-package w starts at time oy, = maz{py + v°/2, ap, }-

Proof. Let (z,u,Zz) be an optimal solution to Poosr which does not satisfy the condition stated in the
proposition. Then there exits some outbound work-package w with o, > max{¢, + v°/2,as, }. Note
that o, cannot be less than ¢, + v°/2 because of the time consistence constraints, and cannot be less
than ap , because couriers cannot start a work-package before the bundle placement time. Now consider
a work-package w* that is identical w except for its start time o,x = max{¢y + v°/2, ap, }. But then we
can construct an alternative optimal solution (u,x*, Z) with

1, if w = wx,
Ty =40, if w=w, Vee Cyw e W(e)

c

¢,, otherwise.

x
Observe that replacing & with z* only affects Constraints @ and . When o = wy,, inequalities @
remain satisfied since we have o, = max{¢d, + v°/2,ap,} and inequalities @ hold because s < oy
implies ¢ys« < ¢. When o # wy,, we only need to consider Constraints @, which remain satisfied,
again, because we have ¢, < ¢,. Clearly, replacing z with z* does not change the objective function
value, so the modified solution (x*,w, z) is also optimal and has one fewer work-package that violates the
condition stated in the proposition. Repeating the same steps as many times as needed, we can construct
an alternative optimal solution that satisfies the requirements of the proposition. O

Since LPcogst is a minimization problem, in the pricing problem we look for negative reduced cost
columns that are not yet in the model. Propositions and allow us to develop an enumeration
algorithm (PS) to identify such columns. Before presenting the pseudo-code for PS in Algorithm
we define additional notation and introduce concepts that are used in PS to improve its computational
efficiency.

Let drop-oft time function g° : O x N X Z>¢ X B +— Z>( return the drop-off time of order o € O, when
courier ¢ € C starts at location £ € N¢ at time ¢t € Z>g to perform a work-package serving bundle b € B,
where ¢¢(0,/,t,b) = oo when:

e the order o is not included in bundle b,
e the start time ¢ is before the bundle placement time, i.e., t < ap,
e the start time ¢ is before the courier on-time, i.e., t < e,

e the pick-up time from the restaurant is later than the courier off-time, i.e., max{t—ktggrb +v" 2 ept +
v f2 > [, or

max

e the drop-off time of any order o € O(b) is later than a, + o

Let ¢, be the earliest possible start time of a work-package with start location ¢,. We have that
€0 = €+ V24 ty, 0, + v°, since the earliest drop-off time for order o occurs when a courier reaches
restaurant r, exactly v"/2 time units before the order ready time, so that the order is picked up at the
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order ready time. Furthermore, let v°(0,b) be the latest possible start time of a work-package with
start location ¢, serving bundle b and carried out by courier ¢ € C, assuming that ¢g¢(0,l,,t*,b) # oo
for all 0 € O(b). We say there exists a plausible transition from order o € O to bundle b € B when
max{e,, e.} < v o,b) for some ¢ € C. The set of all bundles for which there exists a plausible transition
from order o € O is denoted by B(o). For a pair (0,b),0 € O,b € B(0), we define the set of plausible start
times for work-packages that can be performed by courier ¢ € C, starting at ¢, and serving bundle b as
T(c,0,b) = [max{e,, e.},v(0,b)].

Algorithm 1: PS Algorithm
Input: X*
Output: XFt+!
Xk—l—l — Xk
foreach o € O do
| TF ={dw+v/2: x5, € XF for some ¢ € C and f, = o};
4 foreach o € O do
5 foreach b € B(o) do
6 foreach c € C(b) N C(o) do
7 foreach t € T(c,0,b) N (T} U {ay}) do
8
9

W N =

Set w such that: by = b, 55 = lo,dg =y, 05 = t, 05 = §°(foy, Lo, t, b);
foreach o0 € b do

10 L 5’[% = gc(67 eo,t7 b)
11 if 75, <0 then
12 | add zg, to Xk,

13 Return Xkt!

When PS is called at the k" iteration of CR, it first generates the sets of time points T, 0 € O, which
contains the time points at which a work-package can start without violating the no-delay property. It
then considers only these time points plus the bundle placement time a; when looking for new work-
package assignment variables to include in the model to serve bundle b. Note that by Proposition 2, for
any location I,,0 € O, it suffices to consider work-packages that start at one of the time points in T
and the bundle ready time a; when looking for a work-package to serve a bundle b € B. Note too that
if at the start of PS the set of work-package assignment variables has the no-delay property, then so will
the extended set of work-package assignment variables after PS finishes. Therefore, the reduced costs of
the newly identified work-package assignment variables can be calculated as specified in Proposition
Observe that PS does not consider work-packages that start at a courier’s on-location or end at a courier’s
artificial off-location. As we discuss in Section work-package assignment variables associated with the
first and last assignment of a courier are included in the initial set of variables X©.

5.2 Row generation

If PS adds any new work-package assignment variables to the restricted model, we have to generate
additional rows as well, because the sets T, 0 € O change. To add the required rows, we analyze the
extended set of work-package assignment variables to determine the new time points that have been
introduced and add the corresponding time consistency constraints.
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Let X¥*1 be the set of work-package assignment variables after PS is executed in the k" iteration of
CR. We start by generating the sets of time points T¥+! = {0, : ¢, € X**! for some ¢ € C and f,, =
0} U {a,} for all 0 € O. Then, for each o € O and ¢t € T**!, we check whether the corresponding time
consistency constraint is missing, and, if so, add it to P**1.

5.3 Initial set of columns

Recall that PS only considers work-packages that start and end in some location ¢ € N. However, there
are work-packages that start at a courier’s on-location and finish at a courier’s artificial off-location.
Therefore, we include the following three sets of work-package assignment variables in X©:

e Buds: For each bundle b € B(c), we create the variable z¢, where b, = b, sy = ey, fu = b,
ow = max{le, ap}, and ¢, = max{oy, + tooe,, + %, e} + % +te,,0, + ”—20;

e Leaves: For each bundle b € B(c), we create the variable x¢,, where by, = 0, s = £y, fu = L¢, and

wo
Ow = Gu = €c; and
e Nulls: For each courier, we create the variable x¢, where by, = 0, sy = le, fio = ley, 0w = Do = €c.

The variables in the group Buds represent the possible first work-packages for a courier, the variables
in the group Leaves represent the potential last work-packages for a courier, and the variables in the group
Nulls represent “do nothing” itineraries for a courier, indicating that no work-packages are assigned to
a courier during his shift. Note that by including these variables from the start, PS can be restricted to
work-packages that start and end at an order drop-off location.

In addition, we use a simple greedy heuristic (GH) to try and construct a feasible solution to Pcosr
and add the associated work-package assignment variables as well. The main idea is to assign work-
packages to couriers in order of non-decreasing bundle placement time. A work-package is assigned to the
courier that can complete it the earliest. Algorithm [2]| presents the pseudo-code for GH.

Unfortunately, finding a feasible solution to Popgr is nontrivial and GH may fail to do so. If that
happens, we proceed as follows. Let F' be the set of orders that are not served in the solution produced
by GH. Consider the modification of Pcogr in which:

e we define auxiliary binary variables y, € {0,1} for o € F,
e we add the term ) _(p1 + €)Y, to the objective (for some € > 0), and
e we change Constraints (4] to

DS x;—{l‘yo’ ok Yo € 0.

c€C weW (c)NW (o) 1, otherwise

Note that the solution produced by GH can be easily converted to a feasible solution to the modified
problem Poogrt by setting y, = 1 for all o € F. It is also clear that Poogr is feasible if and only if Poost
has an optimal solution in which the auxiliary variables are all equal to zero. Therefore, if the solution
produced by GH is not feasible for Poosr, we switch to using Poogr until all auxiliary variables have
zero values or we prove that no such solution exists, in which case we conclude the problem is infeasible
and stop.

5.4 Strengthening

Two groups of valid inequalities can be added to strengthen the linear relaxation.
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Algorithm 2: GH

W N =

© N o Uk

10
11

12
13
14

15
16
17

18
19
20
21

22
23
24
25
26
27

28
29
30

31
32

33

34

Input: R,C,0
Output: X
Let O =0,X =0;
foreach c € C' do
L Build the empty list path®

while O # ) do
Let o* be the order in O with the minimum placement time;
set w = null,c* = null, bestTime = oo;
foreach c € C': l. < ey + Omaz + ?°/2 do
if path® is empty then
o = max{le, ap+};
if o + tgcg,,,o* + UT/2 > €. then
L Next ¢
¢ =maz{o +tee, , +V 2 €0} V24 e, 0 V)2
if ¢ > ey + Omar then
L Next ¢
if ¢ < bestTime then
bestTime = ¢, c* = ¢
L Set w such that: by = {0*}, s¢ = le, fo = lox, 00 = 0,05 = &;

else
Let w be the last work-package in the list path® and 6 = dp,,;
if ¢y + /2 > e, then
L Next ¢
o = max{dy + /2, ap* };
if 04140, , +7"/2> €. then
L Next ¢
¢ =max{o +tye,  +V/2 €0} + VA bl 0+
if ¢ > ep* + Omas then
L Next ¢
if ¢ < bestTime then
bestTime = ¢, c* = ¢
Set w such that: by = {0*}, s¢ = ls, fo = bor, 00 = 0, 05 = &;

if ¢* # null then
L add @ to the end of the list path®”, add xf; to the set X.

L 0=0\ {0}

return X
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Courier time limit: Preliminary computational experience has shown that the LP relaxation bound
deteriorates when there are fewer courier hours. Therefore, the following (knapsack-like) constraint can
be effective to strengthen the LP relaxation bound when there are time periods in which the total number
of courier hours is a limiting factor:

> kel < K. Ve e C, (14)
weW (c)

where Ky = min{¢y, .} — 0y is the time required to perform work-package w and K, is the time courier
¢ has available (his shift duration).

Disaggregated time consistency inequalities: Disaggregation of the time consistency constraints
by courier results in the following inequalities:

Z xs, — Z x5 >0 Vee C,oe O,teT, (15)
weW (c) weW (c)

fw:&) Sw=Vlo

ow<t Pw<t

Preliminary computational experience has shown that starting with Constraints @ and adding inequali-
ties on the fly can be an effective strategy for improving the LP relaxation bound without increasing
the solution time too much. Note that the addition of inequalities can easily be handled in the pricing
problem.

5.5 Obtaining a high-quality IP solutions

A branch and price (BP) algorithm can be developed to solve Poosr by embedding the CR algorithm
in a branch and bound scheme. The branching scheme proposed by Yildiz and Karagan| (2017) for
path-segment formulations can be adapted in a straightforward way to obtain a BP algorithm for solving
Pcosr. However, a much simpler scheme is already able to obtain integer solutions of proven high quality.

Preliminary computational experience has shown and that the well-known heuristic approach that
solves an IP with the columns generated during the solution of the LP relaxation is very effective and
produces near-optimal solutions in almost all cases (which also shows that the LP relaxation bound of
Pcosr is very tight).

This approach can be further enhanced by detecting and including additional columns that have not
been generated by the CR algorithm (which focuses on solving LPcosr), but that are helpful when
searching for high-quality IP solutions.

Since the itineraries of the couriers are composed of work-packages, the timing of the work-packages
has to be such that they can be concatenated to form a valid itinerary. However, in the LP relaxation
these strict timing requirements may be “relaxed” as certain complete itineraries may not be needed in
an optimal solution to the LP relaxation. Therefore, we propose a heuristic column generation algorithm
(HCG) that inspects the solution of LPcosr to detect potentially useful columns that are missing in the
solution.

The idea behind HCG is to create and explore concatenations of individual work-packages and add
concatenated work-packages to the formulation in the hope that it allows the creation of beneficial courier
itineraries. The steps of HCG are explained below.

Using the solution z* to LPcosr, we generate a graph G = (V, AY) for each courier ¢ € C with
Vi={veB:z{ >0, for some w € W(c), b, = v}, and A} containing arcs (vi,ve) for all vy,vy € V.
for which (fy,,v2) is a plausible transition for courier ¢. Once G is build, one can enumerate all possible
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(feasible) sequences of work-packages and add associated variables z¢ to the formulation. If the number
of possible sequences in G is prohibitively large, we can restrict A% to contain only those transitions that
have been utilized in the LP solution. That is, A% contains the arc (vy,v2) if there exists some w € W(c),
such that s = vy, fo = v2 and x5 > 0.

6 Computational experiments

In order to test the computational efficiency of our solution approach and to gain insight into the structure
of high-quality solutions to MDRP instances, we have conducted a comprehensive numerical study using
the Grubhub MDRP instance set (https://github.com/grubhub/mdrplib), which is derived from real-
world historic data. When analyzing the solutions to the instances, we seek to answer, among others,
questions like:

e What are the characteristics of the high-quality solutions when minimizing cost?

e What are the characteristics of the high quality solutions when minimizing average click-to-door
time?

e How much does order bundling help in reducing cost or average click-to-door time?
e How much does optimizing courier shifts help in reducing cost or average click-to-door time?

e What is the potential of demand management strategies to improve performance critical metrics
measures?

Before proceeding with the analysis of the results of our numerical experiments, we first present
relevant details about MDRP instances used in our study and the configuration of the CR algorithm used
to solve them.

6.1 Instances

The Grubhub MDRP instances are designed to resemble realistic daily order arrival patterns and courier
shifts in metropolitan areas. Instance names encode important information about the instance character-
istics. We restate the naming conventions for convenience and the sake of completeness.

e The first digit represents the random seed value. Instances with the different seed values represent
different metropolitan areas.

e Size reduction information:

— 0100: original data (i.e., no size reduction);

— 050: 50% reduction in the number of orders and the number of courier hours (sampling from
the order set); and

— 150: 50% reduction in the number of orders and the number of courier hours (sampling from
the restaurant set, deleting all orders placed at the restaurant).

e Courier schedules variations:

— sl: historical courier shifts; and

— s2: optimized courier shifts (having about the same — never more — courier hours).
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e Travel speed variations:

— t100: original travel times; and

— t75: short travel times (original travel times multiplied by 0.75).
e Meal preparation times variations:

— pl00: original meal preparation times; and

— pl25: long meal preparation times (original meal preparation times are multiplied by 1.25).

We have used 24 instances with seed value 0. We have used the service times (four minutes for pick-up
and four minutes for drop-off), target CtD (40 minutes), maximum CtD (90 minutes), and per-hour and
per-delivery courier compensation rates (315 and $10, respectively) provided with the instances. Table
[ lists the instance characteristics, where the columns #ord, #rest and #cor indicate the number of
orders, the number of restaurants, and the number of couriers, the column c.hours lists the total number
of courier hours available, the column Delivery Time lists the minimum, maximum, and average travel
time from the restaurant to a drop-off location, and the column Preparation Time lists the minimum,
maximum, and average meal preparation times.

Table 1: Problem Instances

Delivery Time Preperation Time
Instances #ord  #rest Fcour chours min max mean min max mean
0r50t75s1p100 242 54 61 151.48 1 14 5.83 1 55 17.93
0r50t75s1p125 242 54 61 151.48 1 14 5.83 1 68 22.03
0r50t75s2p100 242 54 73 146.50 1 14 5.81 1 55 17.93
0r50t75s2p125 242 54 73 146.50 1 14 5.81 1 68 22.03
0r50t100s1p100 242 54 61 151.48 1 19 7.60 1 55 17.93
0r50t100s1p125 242 54 61 151.48 1 19 7.60 1 68 22.03
0r50t100s2p100 242 54 73 146.50 1 19 7.57 1 55 17.93
0r50t100s2p125 242 54 73 146.50 1 19 7.57 1 68 22.03
0050t75s1p100 252 93 61 151.48 1 14 5.91 1 55 16.60
0050t75s1p125 252 93 61 151.48 1 14 5.91 1 68 20.35
0050t75s2p100 252 93 72 146.50 1 14 5.93 1 55 16.60
0050t75s2p125 252 93 72 146.50 1 14 5.93 1 68 20.35
0050t100s1p100 252 93 61 151.48 1 19 7.73 1 55 16.60
0050t100s1p125 252 93 61 151.48 1 19 7.73 1 68 20.35
0050t100s2p100 252 93 72 146.50 1 18 7.73 1 55 16.60
0050t100s2p125 252 93 72 146.50 1 18 7.73 1 68 20.35
00100t75s1p100 505 116 113 303.00 1 14 5.66 1 55 17.04
00100t75s1p125 505 116 113 303.00 1 14 5.66 1 68 20.90
00100t75s2p100 505 116 117 293.00 1 14 5.69 1 55 17.04
00100t75s2p125 505 116 117 293.00 1 14 5.69 1 68 20.90
00100t100s1pl100 505 116 113 303.00 1 19 7.38 1 55 17.04
00100t100s1pl125 505 116 113 303.00 1 19 7.38 1 68 20.90
00100t100s2p100 505 116 117 293.00 1 19 7.41 1 55 17.04
00100t100s2p125 505 116 117 293.00 1 19 7.41 1 68 20.90
Average - - - - 1 16.4  6.69 1 61.5 19.14

6.2 Implementation

The algorithm is implemented using Java. All experiments were run on 64-bit machine with an Intel
Xeon E5-2650 v3 processor at 2.30 GHz running Linux and using CPLEX 12.6 for solving LPs and IPs.
The time limit for solving the IP (after the LP relaxation has been solved and additional columns are
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included) is set to two hours for 0050 and Or50 instances and to eight hours for 00100 instances. If after
solving an instance, the optimality gap is greater than 5%, we resolve the instance now initiating CR
with the best-known IP solution. A two-phase approach is used when bundling of orders is enabled. In
Phase 1, we solve the instance considering only individual orders. In Phase 2, when bundles of orders are
considered, we provide the solution obtained in Phase 1 as an initial feasible solution.

Because the size of the instances used in the numerical experiments is non-trivial, techniques to
enhance the efficiency of the CR algorithm are critical. To this end, we introduce a Selective Column
Inclusion (SCI) scheme, which controls the number of columns added after a pricing problem is solved.
More specifically, we modify PS as follows:

e As soon as a negative reduced cost column is found for a bundle, we move on to the next bundle
(i.e., we break the loop over the time points — Line 7 in Algorithm [I|— and the loop over the couriers
— Line 6 in Algorithm .

e If the number of columns generated by the pricing problem, ¢, exceeds 1000, then we sort the
columns in order of non-increasing reduced costs and only add the top max{1000,ca} columns,
where a = 0.02 for 00100 instances and o = 0.1 for the others.

In Table [2 we show the impact of this enhancement as well as the impact of including additional
columns before solving the IP (as this also turned out to be quite important) when solving Pcosr
assuming all couriers are minimum-pay couriers. We report the number of columns generated in the LP
solution phase (#cols) within the one hour time limit (when a single column generation iteration takes
more then one hour we wait for it to finish), the number of column generation iterations completed during
the LP solution (k), the average cpu time — in seconds — required to complete a single column generation
iteration (cg-time), and the optimality gap (gap) — we put NA if the algorithm fails to solve LP relaxation
in the given time limit.

Table 2: Computational Enhancements with Selective Column Inclusion and IP Column Generation

No Enhancement SCI SCI + HCG
Instances #£cols k cg-time gap #£col k  cg-time gap #£col k  cg-time gap
0050t75s1p100 5181692 1 2827 NA 22109 7 5.42  0.046 22504 7 5.42 0.034
0050t75s1p125 4217509 1 2785 NA 27279 13 4.00 0.037 27715 13 4.00 0.025
0050t75s2p100 6711228 1 4175 NA 28375 11 3.90 0.031 28761 11 3.90 0.016
0050t75s2p125 4374564 1 2745 NA 28453 11 4.18 0.034 28836 11 4.18 0.016
Average 5121248.3 1.0 3133.0 NA 26554  10.5 3.95 0.037 26954  10.5 3.95 0.023

We see that without SCI, it is not even possible to solve the LP relaxation of Poogr; on average, a
single column generation iteration takes about 3000 seconds without SCI, and there are cases where CR
fails to complete a single column generation iteration in one hour. On the other hand, with SCI, each
column generation iteration can be completed in a few seconds and the number of column generation
iterations required to solve the LP relaxation is small, less than 11 on average. The benefit of using HCG
is also evident. Including only a small number of additional columns reduces the average optimality gap
from 3.7% to 2.3%, which is significant.

6.3 Solution analysis

Next, we turn our attention to the analysis of the solutions to the 24 instances in our tests set. We
conducted 448 experiments to analyze different settings.
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6.3.1 Cost minimization

Since couriers are compensated differently depending on whether they have minimum pay guarantee or
not, the total courier compensation amount varies as the proportion of minimum-pay couriers changes.
Obviously, from a myopic cost perspective its always better to have fewer minimum-pay couriers. However,
for strategic as well as operational reasons, such as ensuring the availability of a large enough courier pool
and increasing courier compliance rates, meal delivery companies offer a minimum pay guarantees to
some portion of their couriers. Therefore, a relevant question to answer is “How much does it cost to have
minimum-pay couriers?” In our experiments, we considered four different proportions of minimum-pay
couriers, v € {55,70,80,100}, to (partially) answer this question.

Detailed results of these experiments can be found in Table[§in Appendix [A] but critical information
is captured in Figure [l However, before discussing Figure [T we want to emphasize that the optimality
gap for the solutions, on average, is less than two percent, and, thus, any insights derived from these
solutions should be meaningful.
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Figure 1: Cost increase due to the introduction of minimum-pay couriers.

The baseline in Figure [1| represents the situation in which none of the couriers have a minimum
pay guarantee, in which case the total courier compensation is simply the number of orders times the
compensation per delivery of $10. The graphs for each of the proportions of minimum-pay couriers shows
the increase in cost relative to the baseline. More specifically, for each of the minimum-pay courier
proportions, we have listed the solutions in order of non-decreasing percentage cost increase. We see that
a cost very close to the baseline (minimum possible) cost is achieved for most of the instances when the
proportion of minimum-pay couriers is 70% or less; on average, the cost of the solutions for v = 70%
is only one percent higher than the baseline. Moreover, the cost does not increase drastically when
the proportion of minimum-pay courier grows; even if all couriers have a minimum pay guarantee, the
cost is only 4.6 % above the baseline, on average, and never more than 9%. Therefore, for these set of
instances, offering a minimum pay guaranty to a large portion of the couriers is probably worth it, given
the associated benefits.

These results can, in part, be explained by considering the relations between courier utilization levels,
expected work package execution times, and courier compensation schemes. Observe that the guaranteed
pay rate, i.e., $15 per hour, is 1.5 times the payment for a delivery, i.e., $10 per delivery. Thus, if a
courier completes more than 1.5 deliveries per hour, the minimum pay guarantee becomes inactive. This
implies that if the “right” work packages are assigned to couriers, in the sense that the work load is
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distributed “evenly” among the couriers, it may be possible to get minimum cost solutions that are quite
close to the baseline. Examining the results in Table |8 reveals that, on average, a courier is busy about 36
minutes per hour. Furthermore, the expected work package duration is 2 X 6.69 + 2 x 4 = 21.38 minutes,
as the average travel time between the restaurant and the order drop-off location is 6.69 minutes, and
the pick-up and drop-off of an order takes 4 minutes. This suggests that in the 36 minutes, a courier
completes 36/21.38 = 1.68 orders, which is slightly more than 1.5, which means that the minimum pay
guarantee becomes inactive.

Another question of interest is the effect of order bundling on cost. Since the compensation to couriers
is not affected by the bundling of orders, the effect of bundling of orders on cost may be limit. This is
confirmed by the results of our experiments, as can be seen in Table [3] where we report the effect of
allowing bundles of at most two orders. The average cost improvement is less than 0.5 percent.

Table 3: Cost benefits of order bundling.

minimum-pay proportion
Bundle Size 55% 70% 85% 100%

1 3359.1 3367.4 3388.3 3452.2
2 33499 3358.1 3373.8 3434.2

Improvement  0.003  0.003 0.004  0.005

6.3.2 Click-to-door minimization

Detailed results of the experiments in which the average click-to-door time is minimized can be found
in Table |§| in Appendix but closely related and more informative results (involving ready-to-pickup
times) can be found in Figure

Examining the solutions reveals that the observed CtD averages are close to best possible. The average
CtD is around 30.6 minutes, of which 19.14 minutes can be attributed to (average) meal preparation time,
6.69 minutes can be attributed to (average) travel time from restaurant to drop-off location, and 4 minutes
can be attributed to service time. That is, 98% of the observed average CtD time cannot be avoided.
Focusing on average RtP time takes out these unavoidable factors. In Figure[2] we show the distributions
of the RtP times in the solutions to three of the instances (the solutions to the other instances show
similar patterns). We see that the solutions have small RtP values (less than one minute for a very large
fraction of the orders). These results indicate that there is a little room for improvement in the average
CtD time, i.e., increasing the delivery capacity or using the available capacity more efficiently will have
little of no effect on the average CtD time.

The effect of delivery capacity planning on average CtD time can be analyzed by comparing the
solutions to the s1 and s2 instances. In the S2 instances, the courier shifts have been determined using an
optimization approach (see Reyes et al. (2018) for more details). In Table |4] we show the CtD time, RtD
time, and RtP time, averaged over the s1 and s2 instances. We observe that, as expected, the difference
in average CtD time is small, the difference in average RtP time is surprisingly large, optimized courier
shifts reduce the average RtP from 1.07 minutes to 0.46 minutes, a reduction of the more than 50%. This
clearly demonstrates the importance of having the right number of couriers at the right time (and having
the dispatching technology to ensure that the couriers are at the right location).

Similar to what we have seen for cost minimization, the impact of bundling of orders is small when for
CtD minimization; see Table [5] The reason for the small improvement is likely the fact that the delivery
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Figure 2: Ready-to-pickup distributions in the solutions.

Table 4: Effect of off-line courier schedule optimization

CtD RtD RtP
Courier Schedules mean min max mean min max mean min max
sl 30.89 8.50 73.00 11.75  5.00 44.92 1.07 0.00 30.08
s2 30.29 8.25 71.00 11.15 5.00 27.75 0.46 0.00 16.42
Improvement 0.02 0.03 0.03 0.05 0.00 0.38 0.57 0.00 045

Table 5: Service Time Improvement Benefits of Order Bundling

CtD RtD RtP
Bundle Size  mean max mean max mean max
1 30.59 72.00 11.45 36.33 0.76  23.25
2 30.54 71.54 11.40 34.63 0.69 21.08
Improvement 0.002 0.006 0.005 0.047 0.100 0.093
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capacity is high, reflected by the very small RtP times in the solutions. When courier availability is not
a limiting factor, order bundling offers no advantage in terms of service related objectives, e.g., CtD time
and RtD time, as bundling of orders adds wait time at the restaurant and circuity to the delivery route.

6.3.3 Cost vs click-to-door time

Even though minimizing CtD time and minimizing cost may not be fully aligned, they are not necessarily
in conflict either. Here, we analyze the interaction between these objectives. Specifically, we investigate
whether a hierarchical approach, in which we first minimize cost and then minimize CtD time subject to
the constraint that the cost must be close to the minimum possible cost (i.e., within « times the minimum
cost) offers advantages. Detailed results for « € {1,1.05} can be found in Tables (10| and [L1|in Appendix
and are summarized (for o = 1) in Figure
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Figure 3: Unconstrained vs constrained CtD solutions (o = 1)

We observe that in almost all cases, the difference between the CtD time in the solution to the
unconstrained and constrained variants is less than one percent. This suggests that minimizing cost
will, in most situations, also minimize CtD time. This (somewhat surprising) result is likely due to the
balanced courier workloads and the structure of the compensation scheme. The implication is that if
a meal delivery network employs a compensation scheme that ensures a large enough courier pool and
that is aligned with the expected courier utilization, then high service quality can be achieved without
an increase in operating costs.

6.3.4 Demand management

Even though capacity management, through well-designed courier compensation schemes and optimized
courier shift schedules, is critical in an operation that relies on crowd-sourced delivery capacity, that does
not mean that there is no place for demand management. And demand management in the context of meal
delivery operations is especially interesting as it may be possible to redirect demand. Here, we investigate
the potential benefits of such demand redirection strategies. To obtain an optimistic assessment of the
potential benefits of demand redirection, we consider the situation in which the meal delivery company
can select the restaurant from which to pick-up the order placed by a diner, i.e., we assume that the meal
delivery company can convince any diner to place an order at the restaurant that is most favorable to the
company’s delivery operation. We refer to this setting as meal delivery with perfect-demand-management
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(PDM). To assess the benefits of PDM, an instance is solved as before, i.e., with the same order placement
and order ready times, but the optimizer is allowed to choose any restaurant as the pick-up location for the
order. Note that such a change can be implemented in CR, by simply replacing the delivery time function
g¢ with ¢g*¢(o,t,b) = min,cg g°(0, ¢y, t,b). Detailed results of the PDM solutions when minimizing either
cost or average CtD time can be found in Tables [13] and respectively, in Appendix

Table [6] summarizes the results when minimizing CtD time. The results highlight the tremendous
potential of demand redirection. Considering the fact that PDM does not change meal preparation time,

Table 6: PDM CtD Improvements

Solutions Cth RtD RtP

without PDM  30.71 11.49 0.72
with PDM 25.60 6.42 0.26

Improvement 0.17 044 0.64

which accounts for more than 80% of CtD time, a 17% reduction in average CtD time is significant. A
more in-depth look at the solutions reveals that the improvements are achieved by choosing restaurants
that are closer to the drop-off location of a meal that is picked up (as opposed to choosing restaurants
that are closer to the drop-off location of a meal that has been delivered). However, it is interesting to
see that not only the average RtD time, but also the average RtP time has improved. More specifically,
we see that in about 85% of the cases, the redirection is to a restaurant that is closer to the diner, and in
about 15% of the cases, the redirection is to a restaurant that reduces the travel time for the courier to
the courier’s next pickup.

We also investigated the potential of PDM to reduce costs. As can be seen in Tabld7] the ability to
use PDM to reduce costs is rather limited. In all the cases the reduction is less than three percent. This

Table 7: PDM Cost Improvements

Solution 55% mp 70% mp %85 mp %100 mp
without PDM 2482.1 2489.0 2499.9 2543.2
with PDM 2470.7 2472.6 2474.6 2514.6
Improvement 0.005 0.007 0.010 0.011

is not unexpected, since the margin for cost improvement is small as discussed in Section [6.3.1]

7 Discussion

To study the MDRP, we have introduced a formulation based on work-packages that handles time in
a novel way and requires both column and row generation for its solution. Traditional column gener-
ation formulations have been successful because they embed more information in the definition of the
variables, thereby avoiding the need for complex constraints to model relations between “basic” variables
(e.g., nonlinear constraints to represent the relation between a departure time and a departure direction).
However, embedding too much information into the definition of variables can complicate the solution
of the pricing problem and render the formulation computationally ineffective. Our work-package for-
mulation seeks to properly balance the information embedded into the definition of the variables and
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the complexity of the constraints required to model relationships between variables. We believe these
ideas can be extended to many other problems, especially when the problem allows tasks/processes to
be decomposed into independent pieces and the coordination/concatenation of the pieces can be modeled
with relatively simple constraints. The MDRP has such a structure. The itinerary of a courier can be
decomposed into independent pieces of work representing the pickup and delivery of an order (bundle).
The temporal and spatial consistency between successive pieces of work can be modeled using relatively
simple constraints. Note that an entire courier itinerary has a much more complex structure (e.g., it may
contain cycles — when a courier picks up meals at the same restaurant several times), which makes the
pricing problem harder to solve.

For the MDRP, we have shown that by exploiting properties of optimal solutions, we are even able
to handle continuous time without producing intractable formulations. In transportation problems, the
presence of time often leads to formulations based on time-expanded network models, which can quickly
become prohibitively large. Recently, |Boland et al. (2017) have proposed an approach that dynamically
manages partially time-expanded networks to overcome this challenge. Work-package formulations may
provide a viable alternative.

The MDRP is a member of a class of dynamic routing and scheduling problems that is expanding and
attracting a lot of interest because it is closely aligned with new business models that are transforming ur-
ban logistics operations. With a retail industry that is rapidly changing and being shaped by e-commerce,
the lessons learned from studying the MDRP may be of great value in other last-mile delivery contexts
with stringent service level commitments. Our findings highlight the importance of sizing and scheduling
delivery capacity (i.e., the set of couriers) and shows that well-managed delivery capacity reduces (almost
eliminates) the need for order bundling. Another significant finding is that there appears to be great
potential for demand management strategies focused on redirection (i.e., restaurant substitution).

The emergence of business models that rely on crowd-source delivery (as is typically the case in meal
delivery) are changing the nature of the routing and scheduling problems of interest. Rather than being
concerned, primarily, with finding optimal (or high-quality) routes to use available delivery capacity as
effectively as possible, we have to be concerned with how to ensure the availability of reliable delivery
capacity at the right time and at the right cost. This change in focus gives rise to many new and fascinating
research opportunities.
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Appendix A Cost Minimization Solutions

In Table |8, the columns labeled gap indicate the optimality gaps for the best IP solution versus the
LP lover bound. The column labeled cost shows the base case optimal solution with v = 55%. The
columns labeled r.cost indicate the optimal cost as a percentage of the base case cost. The average
courier utilization levels, where the courier utilization level is defined as the number of courier busy hours
divided by the total number of courier hours, are shown in the columns labeled c.util.

Table &: Cost minimization

55% minimum-pay 70% minimum-pay 80% minimum-pay 100% minimum-pay
Instance gap cost c.util gap r.cost c.util gap r.cost  c.util gap r.cost  c.util
0r50t75s1p100 0.000 2420.0 0.56 0.004  1.004 0.57 0.006  1.006 0.57 0.028  1.032 0.58
0r50t75s1pl125 0.002  2425.0 0.57 0.002  1.000 0.57 0.008  1.006 0.60 0.031  1.033 0.59
0r50t75s2p100 0.003  2427.5 0.56 0.005  1.002 0.58 0.010  1.007 0.59 0.025  1.023 0.56
0r50t75s2p125 0.000 2420.0 0.57 0.014 1.014 0.56 0.011  1.011 0.59 0.029 1.030 0.56
0r50t100s1p100 0.005  2432.5 0.67 0.017  1.012 0.67 0.015 1.010 0.67 0.036  1.035 0.67
0r50t100s1p125 0.006  2435.0 0.66 0.006  1.000 0.68 0.012  1.006 0.68 0.039 1.037 0.69
0r50t100s2p100 0.005 2431.3 0.65 0.013  1.008 0.65 0.017  1.012 0.67 0.036  1.032 0.67
0r50t100s2p125 0.005 2432.5 0.66 0.007  1.002 0.68 0.010  1.005 0.67 0.019 1.014 0.68
0050t75s1p100 0.006  2535.0 0.58 0.008  1.002 0.57 0.014  1.008 0.58 0.026  1.021 0.59
0050t75s1p125 0.004  2530.0 0.56 0.003  0.999 0.57 0.012  1.008 0.58 0.024 1.021 0.59
0050t75s2p100 0.002  2526.3 0.55 0.000 0.998 0.55 0.007  1.004 0.56 0.017  1.015 0.56
0050t75s2p125 0.007  2537.5 0.54 0.001  0.994 0.55 0.011  1.004 0.55 0.019  1.012 0.56
0050t100s1p100 0.010 2545.5 0.68 0.010  1.000 0.69 0.018  1.008 0.69 0.031  1.022 0.69
0050t100s1p125 0.015  2558.0 0.69 0.017  1.002 0.69 0.019  1.004 0.69 0.040  1.026 0.70
0050t100s2p100 0.003  2527.5 0.60 0.010  1.007 0.64 0.012  1.009 0.62 0.021  1.018 0.65
0050t100s2p125 0.004  2530.0 0.63 0.005  1.001 0.63 0.009  1.005 0.64 0.028 1.025 0.64
00100t75s1p100 0.011  5105.8 0.54 0.026  1.015 0.55 0.019  1.008 0.54 0.064  1.063 0.54
00100t75s1p125 0.011  5105.8 0.55 0.010  0.999 0.55 0.029 1.019 0.56 0.045 1.041 0.55
00100t75s2p100 0.023  5170.0 0.51 0.010  0.987 0.52 0.023  1.000 0.53 0.027  1.004 0.52
00100t75s2p125 0.006  5082.5 0.52 0.017  1.010 0.53 0.018 1.012 0.54 0.023  1.017 0.53
00100t100s1p100  0.016  5131.3 0.63 0.024  1.009 0.64 0.030 1.014 0.63 0.050  1.042 0.64
00100t100s1p125 0.019 5148.3 0.63 0.014  0.995 0.64 0.017  0.998 0.65 0.042  1.030 0.65
00100t100s2p100  0.006  5080.0 0.58 0.012  1.006 0.59 0.024 1.019 0.60 0.035 1.031 0.61
00100t100s2p125 0.006  5082.5 0.61 0.002  0.996 0.61 0.018  1.012 0.61 0.024 1.018 0.61
Average 0.007  3359.1 0.60 0.010  1.003 0.60 0.015  1.008 0.61 0.032 1.027 0.61
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Appendix B CtD Minimization Solutions

In Table[9] the column gap indicates the optimality gap for the best IP solution. The average, minimum,
and maximum values for the CtD, RtD and RtP metrics (in minutes) are shown in the columns labeled
mean, min and max, respectively.

Table 9: CtD Minimization

CtD RtD RtP
Instance gap mean min max mean min max mean min max
0r50t75s1p100 0.0000  28.52 10 63 10.60 5 37 0.76 0 32
0r50t75s1p125 0.0000 32.46 8 76 10.43 5 32 0.60 0 16
0r50t75s2p100 0.0001  27.95 9 64 10.03 5 19 0.21 0 8
0r50t75s2p125 0.0000  32.00 8 7 9.98 5 22 0.16 0 11
0r50t100s1p100 0.0000 30.91 11 66 12.98 5 44 1.39 0 37
0r50t100s1p125 0.0000 34.76 8 78 12.74 5 41 1.14 0 21
0r50t100s2p100 0.0001  29.93 9 65 12.00 5 27 0.43 0 14
0r50t100s2p125 0.0000 33.86 8 78 11.83 5 27 0.26 0 14
0050t75s1p100 0.0004  27.55 8 70 10.95 5 55 1.04 0 39
0050t75s1p125 0.0001  31.15 8 76 10.81 5 34 0.89 0 23
0050t75s2p100 0.0000 26.83 8 63 10.23 5 19 0.30 0 8
0050t75s2p125 0.0000  30.52 8 76 10.17 5 19 0.24 0 12
0050t100s1p100 0.0001  29.87 8 82 13.27 5 67 1.54 0 48
0050t100s1p125 0.0002  33.51 8 85 13.16 5 67 1.43 0 48
0050t100s2p100 0.0000  28.96 8 65 12.37 5 30 0.64 0 15
0050t100s2p125 0.0001  32.60 8 78 12.25 5 25 0.53 0 17
00100t75s1p100 0.0145 27.48 8 63 10.44 5 36 0.77 0 20
00100t75s1p125 0.0221 31.54 8 76 10.64 5 39 0.98 0 30
00100t75s2p100 0.0251  27.48 8 63 10.44 5 27 0.76 0 11
00100t75s2p125 0.0211  31.31 9 76 10.41 5 24 0.72 0 17
00100t100s1pl100  0.0334  30.07 9 64 13.03 5 45 1.65 0 25
00100t100s1p125  0.0017  32.88 8 T 11.98 5 42 0.60 0 22
00100t100s2p100  0.0000  28.58 8 65 11.54 5 23 0.13 0 8
00100t100s2p125  0.0315  33.46 8 82 12.56 5 71 1.15 0 62
Average 0.0063  30.59 84 72.0 11.45 5.0 36.3 0.76 0.0 233
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Appendix C Cost Constrained CtD Solutions

Tables[10[and [11] facilitate comparing solutions obtained for &« = 1 and « = 1.05 against the unconstrained
CtD optimization results. The column labeled CtD restates the average CtD time values. Considering
these as base values, the columns labeled r.CtD indicate the CtD time values as a percentage of the base
values. Columns labeled gap indicate the optimality gap values.

Table 10: Cost constrained CtD minimization («

:1)

CtD Minimization

Cost Constrained CtD Minimization

%55 minimum-pay

%70 minimum-pay

%85 minimum-pay

%100 minimum-pay

instance gap CtD gap r.CtD gap r.CtD gap r.CtD gap r.CtD

0050t100s1p100  0.0001 29.87 0.0001 1.0000 0.0001 1.0000 0.0001 1.0000 0.0001 1.0000
0050t100s1p125  0.0002 33.51 0.0001 1.0000 0.0002 1.0000 0.0002 1.0000 0.0002 1.0000
0050t100s2p100  0.0000 28.96 0.0011 1.0014 0.0001 1.0003 0.0035 1.0052 0.0019 1.0028
0050t100s2p125  0.0001 32.60 0.0006 1.0006 0.0004 1.0006 0.0087 1.0098 0.0004 1.0003
0050t75s1p100 0.0004 27.55 0.0004 1.0000 0.0004 1.0000 0.0004 1.0000 0.0004 1.0000
0050t75s1p125 0.0001 31.15 0.0009 1.0010 0.0006 1.0006 0.0001 1.0000 0.0001 1.0000
0050t75s2p100 0.0000 26.83 0.0003 1.0007 0.0005 1.0007 0.0077 1.0104 0.0036 1.0045
0050t75s2p125 0.0000 30.52 0.0001 1.0003 0.0004 1.0007 0.0005 1.0013 0.0006 1.0010
0r50t100s1p100  0.0000 30.91 0.0004 1.0006 0.0000 1.0000 0.0000 1.0000 0.0001 1.0000
0r50t100s1p125  0.0000 34.76 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000
0r50t100s2p100  0.0001 29.93 0.0022 1.0033 0.0001 1.0000 0.0008 1.0007 0.0006 1.0007
0r50t100s2p125  0.0000 33.86 0.0014 1.0024 0.0014 1.0018 0.0016 1.0021 0.0005 1.0006
0r50t75s1p100 0.0000 28.52 0.0012 1.0035 0.0002 1.0004 0.0000 1.0000 0.0000 1.0000
0r50t75s1p125 0.0000 32.46 0.0017 1.0018 0.0017 1.0018 0.0000 1.0000 0.0000 1.0000
0r50t75s2p100 0.0001 27.95 0.0024 1.0047 0.0013 1.0025 0.0011 1.0011 0.0025 1.0025
0r50t75s2p125 0.0000 32.00 0.0104 1.0131 0.0001 1.0003 0.0011 1.0013 0.0001 1.0003
Average 0.0001 30.7113 0.0015 1.0021 0.0005 1.0006 0.0016 1.0020 0.0007 1.0008
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Table 11: Cost constrained CtD minimization (o = 1.05)

CtD Minimization

Cost Constrained CtD Minimization

%55 minimum-pay

%70 minimum-pay

%85 minimum-pay

%100 minimum-pay

instance gap CtD gap r.CtD gap r.CtD gap r.CtD gap r.CtD

0050t100s1p100  0.0001 29.87 0.0001 1.0000 0.0001 1.0000 0.0001 1.0000 0.0001 1.0000
0050t100s1p125  0.0002 33.51 0.0001 1.0000 0.0002 1.0000 0.0002 1.0000 0.0002 1.0000
0050t100s2p100  0.0000 28.96 0.0007 1.0007 0.0001 1.0003 0.0042 1.0045 0.0026 1.0028
0050t100s2p125  0.0001 32.60 0.0007 1.0006 0.0005 1.0006 0.0065 1.0064 0.0004 1.0003
0050t75s1p100 0.0004 27.55 0.0004 1.0000 0.0004 1.0000 0.0004 1.0000 0.0004 1.0000
0050t75s1p125 0.0001 31.15 0.0009 1.0010 0.0006 1.0006 0.0001 1.0000 0.0001 1.0000
0050t75s2p100 0.0000 26.83 0.0004 1.0007 0.0007 1.0007 0.0086 1.0089 0.0044 1.0045
0050t75s2p125 0.0000 30.52 0.0001 1.0003 0.0004 1.0007 0.0010 1.0013 0.0006 1.0007
0r50t100s1p100  0.0000 30.91 0.0007 1.0006 0.0000 1.0000 0.0000 1.0000 0.0001 1.0000
0r50t100s1p125  0.0000 34.76 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000
0r50t100s2p100  0.0001 29.93 0.0014 1.0013 0.0001 1.0000 0.0008 1.0007 0.0006 1.0007
Or50t100s2p125  0.0000 33.86 0.0007 1.0009 0.0002 1.0003 0.0009 1.0009 0.0005 1.0006
0r50t75s1p100 0.0000 28.52 0.0006 1.0007 0.0003 1.0004 0.0000 1.0000 0.0000 1.0000
0r50t75s1p125 0.0000 32.46 0.0008 1.0006 0.0005 1.0006 0.0000 1.0000 0.0000 1.0000
0r50t75s2p100 0.0001 27.95 0.0023 1.0025 0.0005 1.0007 0.0010 1.0011 0.0025 1.0025
0r50t75s2p125 0.0000 32.00 0.0015 1.0016 0.0001 1.0003 0.0012 1.0013 0.0001 1.0003
Average 0.0001 30.7113 0.0007 1.0007 0.0003 1.0003 0.0016 1.0016 0.0008 1.0008
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Appendix D PDM Solutions

Table [12| compares the solutions obtained when minimizing CtD with those obtained with perfect demand
management. Columns labeled CtD, RtD and RtP report the mean CtD, RtD, and RtP metrics for the
CtD minimization solutions (base values) and columns labeled r.CtD, r.RtD, and r.RtP indicate the
values of these metrics for the PDM solutions as a percentages of the base values, respectively.

Table 12: PDM with CtD minimization

Porp Solution PDM Improvements (%)
Instance CtD RtD RtP r.CtD r.RtD r.RtP

Or50t75s1p100  28.52 10.60 0.76 84.99  59.62 30.26
Or50t75s1pl25  32.46 1043 0.6 87.06 59.73 30.00
Or50t75s2p100  27.95 10.03 0.21 85.94  60.82 42.86
Orb0t75s2p125  32.00 9.98 0.16 87.81 60.82 43.75
0r50t100s1p100  30.91 12.98 1.39 81.11  55.01 30.94
Or50t100s1p125 34.76 12.74 1.14 83.40 54.63 29.82
0r50t100s2p100  29.93 12.00 0.43 82.36  56.00 34.88
0r50t100s2p125 33.86 11.83 0.26 84.58 55.87 42.31

0050t75s1p100  27.55 10.95 1.04 82.79 56.71 40.38
0050t75s1p125  31.15 10.81 0.89 84.82 56.15 31.46
0050t75s2p100  26.83 10.23 0.3 83.56  56.89 40.00
0050t75s2p125  30.52 10.17 0.24 85.62  56.93 41.67
0050t100s1p100 29.87 13.27 1.54 78.54  H1.77 42.21
0050t100s1p125 33.51 13.16 1.43 80.69 50.84 33.57
0050t100s2p100 28.96 12.37 0.64 79.14  51.17 34.38
0050t100s2p125 32.60 12.25 0.53 81.53  50.86 24.53

Average 30.71 1149 0.72 83.37  55.86 35.81

Table |13 compares the solutions obtained when minimizing cost with those obtained with perfect demand
management. The section labeled Poogsr presents the minimum cost solution values (base values) and the
section labeled PDM Solution presents the percentage improvements when perfect demand management
is in place.
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Table 13: PDM with cost minimization

Pcost Solution

PDM Solution

instance 55% mp 70% mp %85 mp %100 mp 55% mp 70% mp %85 mp %100 mp
0050t100s1p100  2545.50 2545.50  2565.50 2600.50 0.991 0.992 0.985 0.986
0050t100s1p125  2558.00 2563.00 2568.00 2625.50 0.985 0.983 0.983 0.974
0050t100s2p100  2527.50  2545.00 2551.25 2573.75 0.997 0.990 0.992 0.987
0050t100s2p125  2530.00 2532.50 2542.50 2592.50 0.996 0.995 0.991 0.978
0050t75s1p100 2535.00  2540.00 2556.00 2588.00 0.994 0.992 0.988 0.987
0050t 75s1p125 2530.00 2528.00 2550.00 2583.00 0.996 0.997 0.993 0.993
0050t75s2p100 2526.25  2521.25  2537.50 2563.75 0.998 1.000 0.993 0.991
0050t75s2p125 2537.50 2522.50 2548.75 2567.50 0.993 1.000 0.991 0.989
Or50t100s1p100  2432.50 2462.50 2457.50 2517.75 0.997 0.987 0.986 0.993
0r50t100s1p125  2435.00 2435.00 2450.00 2525.00 0.994 0.994 0.988 1.000
0rb0t100s2p100  2431.25 2451.25  2461.25 2510.00 0.996 0.996 0.986 0.982
0r50t100s2p125  2432.50 2436.25 2443.75 2466.25 0.995 0.994 0.994 0.995
0rb50t75s1p100 2420.00 2430.00 2435.50 2497.75 1.000 0.996 0.995 0.995
0r50t75s1p125 2425.00 2425.00 2440.00 2505.00 0.998 0.998 0.993 0.998
0rb50t75s2p100 2427.50 2432.50 2443.75 2482.50 0.997 0.995 0.991 0.990
0r50t75s2p125 2420.00 2453.75  2447.50 2492.50 1.000 0.986 0.990 0.982
Average 2482.09  2489.00 2499.92 2543.20 0.995 0.993 0.990 0.989
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