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Abstract

Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of
quercetin on lipid metabolism, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w)
quercetin for 12 weeks. Gas chromatography and 1H nuclear magnetic resonance were used to quantitatively measure
serum lipid profiles. Whole genome microarray analysis of liver tissue was used to identify possible mechanisms underlying
altered circulating lipid levels. Body weight, energy intake and hepatic lipid accumulation did not differ significantly
between the quercetin and the control group. In serum of quercetin-fed mice, triglycerides (TG) were decreased with 14%
(p,0.001) and total poly unsaturated fatty acids (PUFA) were increased with 13% (p,0.01). Palmitic acid, oleic acid, and
linoleic acid were all decreased by 9–15% (p,0.05) in quercetin-fed mice. Both palmitic acid and oleic acid can be oxidized
by omega (v)-oxidation. Gene expression profiling showed that quercetin increased hepatic lipid metabolism, especially v-
oxidation. At the gene level, this was reflected by the up-regulation of cytochrome P450 (Cyp) 4a10, Cyp4a14, Cyp4a31 and
Acyl-CoA thioesterase 3 (Acot3). Two relevant regulators, cytochrome P450 oxidoreductase (Por, rate limiting for
cytochrome P450s) and the transcription factor constitutive androstane receptor (Car; official symbol Nr1i3) were also up-
regulated in the quercetin-fed mice. We conclude that quercetin intake increased hepatic lipid v-oxidation and lowered
corresponding circulating lipid levels, which may contribute to potential beneficial effects on CVD.
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Introduction

Cardiovascular diseases (CVD) are globally the most important

cause of mortality. High consumption of fruits and vegetables are

thought to be protective against CVD [1]. These protective effects

have been suggested to be mediated by the flavonoid content of

fruits and vegetables [2]. Various classes of flavonoids are common

in plant foods, one being the flavonols. Quercetin is the major

dietary flavonol in the Western diet, which is present in, for

example, apples, tea, red wine and onions. Epidemiological studies

have shown that the intake of this dietary flavonoid is associated

with a reduction of CVD risk [3,4,5].

Elevated circulating levels of free fatty acids (FFA) and

triglycerides (TG) are known risk factors for CVD [6,7,8,9]. In

particular, increased levels of FFA and TG are associated with

atherosclerosis, ischemic damage, pro arrhythmia, myocardial

infarction, and heart failure. Accumulation of toxic lipid interme-

diates, suppression of glucose usage, or mitochondrial dysfunction

potentially play a role in these effects [9]. Several studies showed

that supplementation of quercetin to the diet decreased serum FFA

and/or TG levels in rodents [10,11,12]. The cardio protective

properties of quercetin may therefore be explained by the lipid

lowering effect of quercetin. However, in these studies the FFA

and TG levels were measured with enzyme-based assays.

Recently, we have shown that flavonoids interfere with these

enzymatic FFA and TG assays, which will lead to incorrect,

apparently lower FFA and TG levels [13]. Therefore, it can be

questioned whether quercetin has a true biological effect on lipid

metabolism. Since various fatty acids are differently associated

with CVD risk, it is also important to examine whether quercetin

changes specific lipids [14]. Furthermore, based on gene

expression analysis some genes have been put forward to explain

the effects of quercetin on lipid metabolism [11,12], but these

results are not conclusive. The aim of the present study was to re-

examine the effects of quercetin on lipid metabolism, with state-of-

the-art analytical techniques, to exclude any interference of

quercetin in the measeruments. Gas chromatography (GC) and

a novel technique, 1H-nuclear magnetic resonance (1H-NMR)

lipid profiling of mouse serum (based on [15,16]), were used to

profile and quantify different serum lipids. In addition, whole

genome microarray gene expression analysis of liver tissues was

applied to unravel the possible underlying mechanisms. For this

gene expression analysis the liver was chosen as target organ, since

it is one of the major effector organs of lipid metabolism. This
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principal combination of profiling of serum lipids and gene

expression were used to investigate the mechanisms of action of

quercetin on lipid metabolism.

The results show that a quercetin supplemented mild-high-fat

diet in mice increased hepatic lipid metabolism, especially omega

(v)-oxidation and reduced corresponding circulating lipid levels.

These results contribute to the understanding of the protective

properties of quercetin on CVD.

Materials and Methods

Animals and Treatments
Twenty-four male C57BL/6JOlaHsd mice (Harlan Laborato-

ries, Horst, The Netherlands) were individually housed and

maintained under environmentally controlled conditions (temper-

ature 21uC, 12 h/12 h light-dark cycle, 45% humidity). The mice

had ad-libitum access to food and water. The food was a pelletized

diet (Research Diets Services B.V., Wijk bij Duurstede, the

Netherlands) with a mild-high-fat content of 30 energy % (en%).

The fat content (en% and fat composition) corresponds to the

average human intake in the Netherlands (Dutch Food Consump-

tion Survey, 1998). The mice entered the experiment at 10 weeks

of age. After two weeks of adaptation, the quercetin group (n= 12)

received the mild-high-fat diet supplemented with 0.33% (w/w)

quercetin (Sigma, Zwijndrecht, the Netherlands) for twelve weeks.

The control group (n= 12) was given the mild-high-fat diet

without quercetin. The body weight and food intake of individual

mice were monitored on a weekly basis. After 12 weeks of

intervention all mice were fasted for two hours before anesthetisa-

tion by inhalation of 5% isoflurane. Blood was sampled via orbital

extraction in collect serum tubes (Greiner Bio-one, Longwood,

USA), which were centrifuged for 10 min at 3000 g 4uC to obtain

serum, which was stored at 280uC. After blood collection, the

mice were killed using cervical dislocation and the liver was

dissected, weighted and snap frozen in liquid nitrogen and stored

at 280uC. The experiment was performed according to the Dutch

Animal Experimentation Act (1996) and the experimental protocol

was approved by the Animal Welfare Committee of Wageningen

University, Wageningen, The Netherlands (DEC 2007080).

Figure 1. Representative pictures of hepatic lipid staining with Oil red O. There were no significant differences in lipid accumulation
between the control (A) and the quercetin (B) group. The lipid levels were comparable to mice fed a normal-fat diet (C) and much lower than the
positive control of hepatic lipid accumulation from mice fed a high-fat diet (D).
doi:10.1371/journal.pone.0051588.g001
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HPLC Analysis of Quercetin Serum Levels
HPLC with a coulometric array detector was used to measure

the amount of quercetin in serum. For this 35 ml of serum was

hydrolyzed by incubation with 15 ml of 12.5 mg/ml b-glucuron-

idase/sulfatase in 0.5 M sodium acetate (pH=5) with 5 g/l

ascorbic acid for two hours at 37uC to obtain deconjugated

quercetin, isorhamnetin and tamarixetin. Subsequently, all sam-

ples were deproteinized by mixing with 100 mL acetonitrile and

50 mL 20% H3PO4, with 3g/L ascorbic acid and centrifugation

for 10 min at 13500 rpm at 5uC. Twenty ml of the supernatant was

analyzed on a HPLC system consisting of two pumps (model L-

2100; Hitachi, Tokyo, Japan), an autosampler (Model L-2200,

Merck Hitachi), a CoulArray Module (Model 5600, ESA,

Chelmsford, MA, USA) with electrochemical channels using

carbon electrodes arranged in line and set to increasing specified

potentials (1 = 20 mV; 2= 100 mV; 3= 250 mV; 4= 500 mV)

and a thermostatic column/cell chamber set at 30uC. The

chromatography was performed on a Platinum C18 column

(EPS; 15064.6 mm, 3m, Grace Davison Sciences, Deerfield, IL,

USA) equipped with a MPLC Newguard precolumn (Brownlee

RP18 7 mm 1563.2 mm, Perkin Elmer, Shelton, CT, USA), using

a gradient elution with two mobile phases. Mobile phase A

consisted of 15% acetonitrile in 25 mM H3PO4 buffer (pH 2.4).

Mobile phase B consisted of 50% acetonitrile in 25 mM H3PO4

buffer (pH 2.4). The gradient, at a flow rate of 1.0 ml/min, was as

follows: 0–20 min, linear gradient from 0% to 100% mobile phase

B; 20–22 min, isocratic at 100% B; 22–30 min, linear return from

100 to 0% B; the total runtime was 30.0 min. Quercetin,

isorhamnetin and tamarixetin were quantified using calibration

curves made with commercially available standards.

Hepatic Lipid Staining with Oil Red O
Frozen liver sections (7 mm) were fixed with 3.7% buffered

formalin. Neutral lipids were stained with Oil red O (Sigma). The

stained areas were quantified based on a described method [17]

using Photoshop software (version 12.0.4, Adobe). Briefly, contrast

was enhanced with automatic contrast tool, red pixels were

selected with the colour range selecting tool, and total selected area

was measured in mm2. Ten to 16 pictures per animal were

quantified (n = 6–8). Controls of hepatic lipid accumulation were

liver of C57BL/6JOlaHsd mice fed a normal-fat diet (10 en% of

fat) or a high-fat diet (40 en% of fat) for twelve weeks.

Serum Lipid Analysis with Enzymatic Assays
FFA assay (Wako NEFA-HR(2) kit, Sopachem BV, Ochten,

The Netherlands) and TG assay (TG liquicolor kit, Human,

Wiesbaden, Germany) were performed as described previously

[13].

Figure 2. Cumulative serum profile of fatty acids originating from total lipids. Fatty acids were measured with GC. The levels of palmitic
acid (16:0), oleic acid (18:1(n-9)), and linoleic acid (18:2(n-6)) were significant lower in the quercetin group. Data is presented as mean6 SEM. Asterisks
indicates a significant difference between the control and the quercetin group; *** p,0.001.
doi:10.1371/journal.pone.0051588.g002
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Serum Fatty Acid Analysis with GC
Total serum fatty acids were extracted from 50 ml serum as

described [18], using dichloromethane instead of chloroform [19].

Ten mg of nonadecanoic acid methyl ester (NuCheck Prep, USA)

was added to each sample before extraction, as an internal

standard. Samples were transmethylated to fatty-esther methyl

esthers (FAME) by incubation in 1 M sodium methoxide in dry

methanol for 20 min at 80uC. The reaction mixture was then

cooled, acidified with 98% sulphuric acid and incubated for

1 hour at room temperature to methylate free acids. Lipid methyl

esters were extracted with hexane, and the hexane extracts were

subsequently dried under a nitrogen flow. Next, the residue was

dissolved in 100 ml of n-heptane and stored at 220uC under

nitrogen until analysed. All reactions were performed under

nitrogen atmosphere. GC was performed with a Trace-GC gas

chromatograph combined with AS 2000 autosampler (Thermo-

Finnigan, USA), equipped with a capillary split/splitless injector

and a flame ionization detector. Analyses of FAME were

performed on a fused-silica capillary column coated with

chemically bond stationary phase CP-Sil 88 CB (100 m,

0.32 mm I.D.). The oven temperature was programmed as

follows: from 80uC to 260uC at 2uC/min, then to 280uC at

10uC/min, where it was maintained for 45 min. The injector and

detector temperatures were set at 250uC and 270uC, respectively.

Hydrogen carrier gas was maintained at a head pressure of 70 kPa

and total flow of 44 ml/min, with a split ratio of 1:35. Integration

software Clarity version 2.4.1.57 (Data Apex Ltd. Prague, Czech

Rep.) was used for data acquisition and handling.

Serum Lipid Analysis with 1H-NMR
Total serum lipids were extracted from 20 ml of blood serum as

described [18] based on [15,16] with some adaptations to optimise

the protocol. Briefly, 20 ml of 150 mM sodium phosphate buffer

with 0.04% azide (pH=3) was added per serum sample. Then

900 ml chloroform:methanol (2:1) v/v and 900 ml 0.15 M NaCl

(pH=3) were added to the sample. Samples were shaken for 5

minutes on a horizontal shaker and centrifuged for 10 minutes at

4500 g to separate the organic and water phase. The lower

organic phase was recovered and the aqueous layer was extracted

Table 1. Fatty acid composition of the control and quercetin
diet in percentages.

Lipids Control diet (%) Quercetin diet (%)

C12:0 0.09 0.08

C14:0 1.11 1.09

C14:1 0.06 0.06

C15:0 0.08 0.08

C16:0 22.40 22.26

C16:1 1.25 1.25

C17:0 0.30 0.30

C17:1 0.19 0.15

C18:0 10.79 10.87

C18:1 trans 0.46 0.47

C18:1 33.87 33.94

C18:1 1.60 1.61

C18:2 24.23 24.21

C18:3(n-6) 0.01 0.01

C18:3 0.71 0.72

C20:0 0.23 0.22

C20:1 0.55 0.56

C20:2 0.29 0.30

C20:3(n-6) 0.05 0.05

C22:0 0.06 0.06

C20:3(n-3) 0.20 0.20

C24:0 0.06 0.06

C22:5(n-3) 0.00 0.07

C22:6(n-3) 0.02 0.03

Saturated FA 35.12 35.02

MUFA 37.98 38.04

PUFA 25.51 25.59

doi:10.1371/journal.pone.0051588.t001

Figure 3. 1H NMR difference spectrum of the quercetin-fed mice minus the control mice. Serum samples from mice exposed to quercetin
minus the 1H NMR spectra of the sera from control mice is represented by the top line. The control group is represented by the middle line and the
quercetin group is represented by the lowest line. Two representative parts of the spectrum are presented in the figure. PUFA, poly unsaturated fatty
acids; MUFA, mono unsaturated fatty acids; FA, fatty acids; TG, triglycerides; PGLY, phosphoglycerides; PC phosphatidylcholine; EC, esterified
cholesterol; TC total cholesterol.
doi:10.1371/journal.pone.0051588.g003
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again with 500 ml chloroform. The collected organic layers were

combined and evaporated to dryness using argon. The samples

were vacuum and freeze dried and dissolved in chloroform

containing 0.03% tetramethylsilane. 1H NMR was measured on a

Bruker AVANCE spectrometer operating at 600 MHz. For each

spectrum 256 (Free induction decays (FID)) transients were

collected with a flip angle of 90u, with an acquisition time of

1.82 s, a relaxation delay of 4 s, a spectral width of 30 ppm and a

standard noesy 1D pulse sequence, at 25uC, and four dummy

scans were used. The FID with 64K data points were once zero-

filled and multiplied by an exponential window function with a

0.2 Hz Line-broadening before a subsequent Fourier transforma-

tion. To all spectra a baseline correction was applied and the

spectra were aligned on the chloroform peak at 7.24 ppm.

The nature of the various resonances was based on the 1H

NMR spectra as reported [15,16]. The regions selected to quantify

the different lipid fractions were as follows; TG (4.300–

4.250 ppm), total FFA (1.380–1.198 ppm), mono unsaturated

fatty acids (MUFA) and PUFA (2CH=CH2)(5.41 to 5.27 ppm),

other PUFA than 18:2 FA (2.862–2.768 ppm), 18:2 FA including

linoleic acid (18:2(n-6)) (2.767–2.721 ppm), 18:1 and 16:1 FA

including oleic acid (18:1(n-9)) (2.050–2.011 ppm), 22:6 FA

including docosahexaenoic acid (22:6(n-3)) (2.379–2.342 ppm),

v-3 FA (0.957–0.947 ppm), phophoglycerides (PGLY) (5.258–

5.190 ppm), phosphatidylcholine (PC) (3.787–3.738 ppm), esters

of cholesterol (EC) (4.651–4.539 ppm) and total cholesterol (TC)

(0.902–0.895 ppm).

Fatty Acid Composition of Diets
Fatty acids from the diets were extracted with accelerated

solvent extraction according to the manufacturer’s protocol

(Thermo Scientific) and dissolved in toluene. Subsequently,

toluene was evaporated under nitrogen at 40uC and fatty acids

were dissolved in iso-octane (5 ml) and 200 ml 2 M KOH in

methanol was added and the mixture was shaken for one minute.

For neutralization, NaHSO4 was added and samples were shaken

for 1 minute. The iso-octane fraction (1 ml) was injected in the gas

chromatograph equipped with a capillary split injector (split ratio

1:40) and flame ionization detector. Analyses were performed on a

CP select column for FAME (50 m60.25 mm ID). The oven

temperature was programmed from 100uC to 230uC at 6uC/min.

RNA Isolation
For RNA isolation, liver was homogenized in liquid nitrogen,

total RNA was isolated using TRIzol reagent (Invitrogen, Breda,

The Netherlands) followed by purification with RNeasy columns

(Qiagen, Venlo, The Netherlands). RNA concentration and purity

were measured using a Nanodrop spectrophotometer (IsoGen Life

Science, Maarsen, The Netherlands); all RNA samples were of

high purity. RNA quality was additionally checked on the

Experion automated electrophoresis system (Bio-Rad, Veenen-

daal, The Netherlands).

Microarray Analysis
For global transcriptome analysis of liver samples, 4644 K

Agilent whole-mouse genome microarrays (G4122F, Agilent

Figure 4. Percentages of lipids present in serum per mouse
plotted for quercetin mice to control mice. Lipids were measured
with 1H NMR. Data is presented as the mean ratio of percentages of
lipids present in serum per mouse plotted for quercetin-fed (Q) mice
over control (C) mice. Total FFA were not changed, while other PUFA
than 18:2 FA, 22:6 FA, and, w-3 FA were significantly increased. TG were
significantly decreased by the quercetin diet. Data is presented as mean
6 SEM. Asterisks indicates a significant difference between the control
and the quercetin group; * p,0.05, **p,0.01, *** p,0.001. PUFA, poly
unsaturated fatty acids; MUFA, mono unsaturated fatty acids; FA, fatty
acids; TG, triglycerides; PGLY, phosphoglycerides; PC phosphatidylcho-
line; EC, esterified cholesterol; TC total cholesterol.
doi:10.1371/journal.pone.0051588.g004

Figure 5. Volcano plot of all expressed probes by global
hepatic gene expression analysis. Volcano plot of all probes
showing statistics FDR-adjusted p-values plotted against the fold
change of each probe (quercetin vs. control). Frames outline genes that
are regulated with absolute fold change .1.75 and a FDR-adjusted p-
value ,0.01; these gene symbols, names and functions are also
represented in table 1.
doi:10.1371/journal.pone.0051588.g005
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Technologies Inc., Santa Clara, CA) were used. Preparation of the

samples and the microarray hybridizations were carried out

according to the manufacturer’s protocol with a few modifications

as described previously [20]. All materials and reagents were from

Agilent Technologies, Palo Alto, USA unless stated otherwise.

Briefly, cDNA was synthesized for each animal from 1 mg RNA

using the Agilent Low-RNA Input Fluorescent Linear Amplifica-

tion Kit without addition of spikes. Thereafter, samples were split

into two equal amounts, to synthesize Cyanine 3-CTP (Cy3) and

Cyanine 5-CTP (Cy5) labelled cRNA, using half the amounts per

dye as indicated by the manufacturer. Labelled cRNA was purified

using RNeasy columns (Qiagen). All samples had a cRNA yield

higher than 825 ng and a specific activity of at least 8.0 pmol Cy-

dye per mg cRNA. Cy3-labeled cRNA samples were pooled on an

equimolar basis and used as a common reference pool. Individual

Table 2. Regulated hepatic genes with an absolute fold change .1.75 and FDR-adjusted p-value ,0.01.

Gene Symbol Gene Name Fold Change

FDR adjusted

p-value Function

I. Cyp4a14 Cytochrome P450 4a14 6.68 0.0015 v-oxidation of medium-chain fatty acids

II. Cyp4a10 Cytochrome P450 4a10 2.98 0.0083 v-oxidation of medium-chain fatty acids

III. Usp2 Ubiquitin specific peptidase 2 2.95 0.0032 regulation of intracellular protein breakdown, cell cycle regulation and
stress response

IV. Acot3 Acyl-CoA thioesterase 3 2.38 0.0018 catalysator of hydrolysis of acyl-CoAs (C12–C16) after v-oxidation to FFA
and coenzyme A

V. Por P450 (cytochrome) oxidoreductase 1.97 0.0036 electron donor for the microsomal cytochrome P450 mixed-function
oxidase system

VI. Cyp4a31 Cytochrome P450 4a31 1.90 0.0086 v-oxidation of medium-chain fatty acids

VII. Coq10b Coenzyme Q10 homolog B 1.85 0.0074 an essential electron carrier and proton translocator in the mitochondrial
respiratory chain

VIII. Insig2 Insulin-induced gene 2 21.78 0.0076 lipid and cholesterol metabolic process

IX. Spon2 Spondin 2, extracellular matrix protein21.98 0.0040 essential in the initiation of the innate immune response

X. Chka Choline kinase alpha 22.00 0.0005 phosphatidylcholine biosynthesis

doi:10.1371/journal.pone.0051588.t002

Figure 6. Microarray confirmation by RT-qPCR. The quercetin (Q)
regulated genes Cyp4a14, Cyp4a10, Acot3, Car (Nr1i3) and Por,
compared to the control (C) found by microarray analysis were
confirmed with RT-qPCR. Data is presented as mean 6 SEM (n= 12).
Asterisks indicates a significant difference between the control and
quercetin group; ** p,0.01.
doi:10.1371/journal.pone.0051588.g006

Figure 7. Schematic representation of the quercetin-regulated
genes involved in v-oxidation. Microarray and RT-qPCR analysis
showed an up regulation of Cyp4a14, Cyp4a10, Acot3, Por and Car.
Quercetin is suggested to activate Car and/or Por (dashed arrow).
Activation of the transcription factor CAR can induce the microsomal
cytochrome P450 enzymes, CYP4a14, CYP4a10 and CYP4a31, which are
important enzymes involved in v-oxidation. POR is the electron donor
for the microsomal cytochrome P450 mixed-function oxidase system.
Formed DCA by v-oxidation are further degraded by peroxisomal b-
oxidation to shorter chain fatty acids. ACOT3 is involved in the transport
of DCA into the peroxisomes by hydrolysis of long-medium chain fatty
acyl-CoA esters to FFA, which can be further transported out of
peroxisomes to mitochondria for b-oxidation or excreted in the urine.
FA, fatty acids; DCA, dicarboxylic acids.
doi:10.1371/journal.pone.0051588.g007
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825-ng Cy5-labeled cRNA and 825-ng pooled Cy3-labeled cRNA

were fragmented in 16 fragmentation and 16 blocking agent at

60uC for 30 min and thereafter mixed with GEx hybridization

buffer (HI-RPM) and hybridized in a 1:1 ratio at 65uC for 17 h in

the Agilent Microarray Hybridization Chamber rotating at

10 rpm. After hybridization, slides were washed according to the

manufacturers’ wash protocol. Arrays were scanned with an

Agilent scanner with 10 and 100% laser-power intensities.

Normalisation and Microarray Data Analysis
Signal intensities for each spot were quantified using Feature

Extraction version 9.1 (Agilent Technologies). Median density

values and background values of each spot were extracted for both

the experimental samples (Cy5) and the reference samples (Cy3).

Quality control for every microarray was performed visually by

using ‘Quality control graphs’ from Feature extraction and M-A

plots and box plots, which were made using limmaGUI in R

(Bioconductor, Wettenhal, 2004). Data were imported into

GeneMaths XT 2.0 (Applied Maths, Sint-Martens-Latem, Bel-

gium). Spots with an average Cy5 and Cy3 signal twice above

background were considered expressed and log transformed. The

Cy5 signal was normalized against the Cy3 intensity as described

before [21]. Pathway analysis was performed using MetaCore

(GeneGo, St. Joseph, Michigan, USA) and Ingenuity Systems

(Ingenuity, Redwood City, California, USA). Fold change was

expressed as the ratio of the quercetin group versus the control

group. Microarray data has been deposited in NCBI Gene

Expression Omnibus (GEO) under accession number GSE39140.

Real Time Quantitative Polymerase Chain Reaction (RT-
qPCR)
RT-qPCR was performed using the RNA of the liver samples to

validate the microarray data. One microgram of RNA of all

individual samples was used for cDNA synthesis using the iScript

cDNA synthesis kit (Bio-Rad). RT-qPCR reactions were per-

formed with iQ SYBR Green Supermix (Bio-Rad) using the MyIQ

single-colour real-time PCR detection system (Bio-Rad). Individ-

ual samples were measured in duplicate. Data were normalized

against reference genes beta-2 microglobulin (B2m) and hypoxan-

thine phophoribosyltransferase 1 (Hprt1) which were chosen based

on stable gene expression levels (geNorm, Ghent University

Hospital, Ghent, Belgium) and the microarray data. Primers were

designed using the NCBI Primer-Blast (NCBI Web site).

Sequences of the used primes were as follows: cytochrome P450

4a14 (Cyp4a14); 59-TTCTTTCGCCTGCGGAATGC-39 and 59-

CACTCCATCTGTGTGCTCGTGA-39, cytochrome P450 4a10

(Cyp4a10); 59-TCTACCCACCTGTCCCAGGC-39 and 59-

ACACCTCTGGATTTGGCCACA-39, acyl-CoA thioesterase 3

(Acot3); 59-GCTGTGACCTACCTGCTCAGTCA-39 and 59-

ATATAGAGCCATTGATGATGACAGCGG-39, cytochrome

P450 oxidoreductase (Por); 59-CGAGGGCAAGGAGCTG-

TACC-39 and 59-CACAGGTGGTCGATGGGTGG-39, consti-

tutive androstane receptor (Car; official gene symbol Nr1i3); 59-

CCGTGTTGCCTCTGCTCACA-39 and 59-GGTTAGG-

GACCGGAAGAGCG -39, beta-2-microglobulin (B2m); 59-

CCCCACTGAGACTGATACATACGC-39 and 59-

AGAAACTGGATTTGTAATTAAGCAGGTTC-39, hypoxan-

thine-guanine phosphoribosyltransferase (Hprt1); 59-TGA-

CACTGGTAAAACAATGCAAACTTTG-39 and 59-

GAGGTCCTTTTCACCAGCAAGCT -39.

Statistical Analysis
For microarray analysis, Student’s t tests were used with false

discovery rate (FDR) adjustment for multiple testing correction

according to Benjamini-Hochberg [22]. GraphPad Prism version

5.03 (Graphpad Software, San Diego, USA) was used for other

statistical analysis, with Student’s t test being used to compare the

two groups. Two-way ANOVA was used for analysis of the lipid

profiles in serum and diets, followed by a Bonferroni post hoc test.

P-values smaller than 0.05 were considered statistically significant.

Results

Body Weight, Energy Intake and Quercetin Uptake
Body weight (BW) and energy intake of the adult male mice,

which were fed a mild-high-fat diet with or without quercetin

supplementation, were not significantly different between the

quercetin and the control group during all 12 weeks. Final body

weight was 27.961.9 and 28.561.6 (mean 6 SD) gram, and

cumulative total energy intake was 45806172 and 46366207 kJ

for the quercetin and control group, respectively.

The calculated quercetin intake for the quercetin-fed mice was

,400 mg/kg BW/day. The sum of quercetin and isorhamnetin

after deconjugation in serum was 13.563.1 mM expressed as

aglycone (quercetin was 6.760.9 mM, isorhamnetin was

6.862.6 mM, and no tamarixetin was found). No quercetin was

found in serum of the control animals.

Relative liver weight was significantly lower in the quercetin-fed

mice (3.80% 60.20; p = 0.007) compared to the control mice

(4.08%60.26), while no significant differences were found for

other organs, including white adipose tissue, brown adipose tissue,

lung, heart, muscles (data not shown). Hepatic lipid staining

showed no significant differences between the quercetin and

control group (Figure 1a and b); the Oil red O recorded areas were

4806493 mm2 and 3216440 mm2, respectively. The hepatic lipid

levels were much lower than a positive control of hepatic lipid

accumulation (13,15164,410 mm2) and in the same range of

hepatic lipid levels found in liver of mice fed a normal-fat diet

(5166271 mm2) (Figure 1c and d).

Serum Lipids as Determined by Enzymatic Assays
Quantification of serum FFA and TG levels was performed

using the enzymatic FFA and TG assays, which showed a

significant decrease of 13% FFA (p,0.05) and 27% TG (p,0.05)

due to the quercetin diet. However, since quercetin has been

shown to interfere with these enzymatic assays resulting in

incorrect, apparently lower FFA and TG levels [13], two

additional analytical techniques were applied to assess serum lipid

profiles, and to check if the decreased FFA and TG levels detected

by the enzymatic assays represent real biological effects.

Serum Fatty Acid Profile as Determined by GC
GC fatty acid profiles reveales fatty acids originating from TG,

FFA, cholesteryl esters and phospholipids. The serum fatty acid

profile showed a total decrease of 7% (p,0.001) in the quercetin-

fed mice. The levels of palmitic acid (16:0), oleic acid (18:1(n-9))

and linoleic acid (18:2(n-6)) were 9–15% lower (p,0.001) in the

quercetin group (Figure 2). These are the main fatty acids in the

quercetin diet and the control diet, which were similar in terms of

fatty acid composition (Table 1). All other fatty acids that were

present in the serum showed a tendency of decreased levels due to

the quercetin treatment, except for some poly unsaturated fatty

acids (PUFA), such as arachidonic acid (20:4(n-6)) and docosahex-

aenoic acid (22:6(n-3)) which were slightly, but non significantly,

increased in the serum of quercetin-supplemented mice.
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Serum Lipid Profile as Determined by 1H NMR
1H NMR measurement reveals total TG, FFA, cholesterol and

phospholipids that are present in serum, separately. Figure 3

presents the 1H NMR difference spectrum, that is composed of the
1H NMR spectra of serum samples from mice exposed to

quercetin (n = 12) minus the 1H NMR spectra of the sera from

control mice (n = 12). The different regions (based on [15,16])

were selected to obtain information on several subsets of FFA and/

or TG, as shown in Figure 3. Integration of the respective peak

areas in the 1H NMR spectra of the individual serum samples

resulted in the amounts of the various lipids. The data are

presented in figure 4 as the mean ratio of percentages of lipids

present in serum of quercetin-fed mice as compared to control

mice. From these data it follows that upon quercetin exposure the

levels of TG are significantly decreased with 14% (p,0.001), while

some specific poly unsaturated FFA levels were increased with 11–

16%; these were PUFA other than 18:2 FA (p,0.01), 22:6 FA

(p,0.001), and v-3 FA (p,0.05). The total amount of FFA was

the same in both groups, the levels of PGLY and PC showed no

change and the EC and TC showed a slight increase, although not

significant. This implies that the overall decrease in lipid levels that

are observed in the GC analysis are due to a decrease in TG.

Quercetin Altered the Expression of Genes Involved in
Lipid Metabolism
Gene expression was analysed using whole genome gene

expression microarrays. Of the 23,256 probes being expressed,

415 probes were significantly differently expressed by quercetin

treatment (p,0.05, FDR-adjusted). Regulation of lipid metabo-

lism by quercetin was found by pathway analysis of the differently

expressed genes using the two major analysis programs, Metacore

and Ingenuity. ‘Phospholipid metabolism’ was the most signifi-

cantly regulated pathway in Metacore with a p-value of 4.8E-05

(with 3 down-regulated and 1 up-regulated gene out of 33 genes).

Ingenuity pathway analyses identified: ‘LPS/IL-1 Mediated

Inhibition of RXR Function’ as the most regulated pathway (p-

value of 5.46 E–05, with 13 up-regulated genes out of 187). In this

pathway Car is the central transcription factor and the genes, in

particular cytochromes P450, overlap partly with the ‘linoleic acid

pathway’, which is the number 3 pathway (p-value of 1.7E–03

with 4 up-regulated genes out of 83 genes) in Metacore. Although,

in each of these pathways a relative small number of genes were

regulated out of the total number of genes present, it was clear that

these regulated genes corresponded with the top significantly

regulated genes. The ten most regulated genes (absolute fold

change .1.75 and a FDR adjusted p-value ,0.01), where almost

all involved in lipid metabolism, particularly in v-oxidation of fatty

acids (Figure 5, table 2). These genes involved in v-oxidation

included Cyp4a14, Cyp4a10, Cyp4a31, Acot3 and Por. Altogeth-

er, lipid metabolism, and in particular v-oxidation, were identified

as being regulated by quercetin in the liver.

Confirmation with RT-qPCR
The quercetin induced changes in expression of Cyp4a14,

Cyp4a10, Acot3, Car, and Por that were identified by microarray

analysis, were confirmed with RT-qPCR (Figure 6). Cyp4a14,

Cyp4a10, Acot3 and Por were significantly up-regulated in the

quercetin group, while the up regulation of Car followed the same

trend, but did not reach significance.

Discussion

This study showed that chronic intake of quercetin in mice

lowered serum lipid levels which are risk factors for CVD.

Microarray analysis indicated that hepatic genes involved in lipid

metabolism, in particular in v-oxidation of fatty acids, could be

responsible for these quercetin-induced effects.

Other studies have also observed that supplementation of

quercetin to a high-fat diet decreases serum FFA and/or TG levels

in mice [10,11,12]. However, these circulating FFA and TG levels

were measured with commercial enzymatic assays, which have

recently been found to be sensitive to interference of quercetin and

its major metabolite quercetin-3-O-glucuronide, resulting in

apparently incorrect lower detected levels [13]. Here, besides

these enzymatic assays, we also used two independent analytical

methods for quantification of serum lipid profiles; GC and 1H

NMR techniques. The observed effect of quercetin on lipid levels

measured with the enzymatic FFA and TG assays (FFA -13% and

TG -27%) was higher than measured with the two analytical

techniques (GC: total fatty acids -7% and 1H NMR: FFA -2%, TG

-14%). This confirms interference of quercetin in the enzyme

based assays [13] in the physiological range of quercetin exposure

and as a consequence overestimate the lipid lowering effect of

quercetin. Nevertheless, with GC and 1H NMR a significant

reduction in serum lipid levels was found, proving that lipid

lowering is a real biological effect of quercetin. The GC data

revealed that the specific serum fatty acids palmitic acid (16:0),

oleic acid (18:1(n-9)) and linoleic acid (18:2(n-6)), originating from

total lipids, were all significantly decreased in the quercetin-fed

mice. Moreover, with 1H NMR, serum lipids were measured

separately, which revealed that serum TG levels of the quercetin

group were significantly decreased, while total FFA, cholesterol

and phospholipid levels remained unchanged. This indicates that

the decreased levels of palmitic acid (16:0), oleic acid (18:1(n-9))

and linoleic acid (18:2(n-6)) found by GC originated from TG.

Moreover, the 1H NMR data showed unchanged levels of total

FFA and increased levels of PUFA in the serum of the mice on the

quercetin diet, which indicate a shift from saturated fatty acids to

PUFA, which are known as the more healthy fatty acids. Together,

these data proved that quercetin significantly reduced serum lipid

levels and resulted in a more beneficial lipid profile.

The increased levels of PUFA and the decreased levels of

saturated fatty acids cannot be fully explained by the microarray

data. Genes involved in beta oxidation or specific desaturases were

not differentially regulated by the quercetin diet.

There were no significant differences found in the serum

phospholipid levels, while pathway analysis revealed phospholipid

metabolism as a regulated pathway. However, based on gene

expression it was not clear how phospholipid metabolism would be

affected, since up as well down regulated genes were observed in

different parts of this pathway, and a relative small number of

genes of the total pathway was regulated. Therefore, it was

concluded that this was not a crucial pathway in this study.

Quercetin induced a decrease in relative liver weight in our study.

This decrease cannot be explained by a decrease in hepatic lipid

accumulation, because hepatic lipid levels were not affected by

quercetin. Other studies [11,12] have shown a decrease in lipid

accumulation in liver upon dietary administration of quercetin and

thus seem to be in contrast with our study. While a study with

mulberry leaves, high in quercetin, did report unmodified lipid

accumulation in the liver [23] and is thus in line with our data.

The differences may be explained by the diets used in the different

studies. We have used a mild-high-fat diet rich in unsaturated fatty

acids, which did not result in extensive lipid accumulation in the

liver, since the found hepatic lipid levels were in the same range as

found for mice fed a normal-fat diet. The other studies that show a

quercetin induced decrease in lipid accumulation used a high

saturated fatty acid rich diet which induced lipid accumulation in
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the liver [11,12]. This suggests that quercetin may prevent lipid

accumulation in the liver under adverse dietary conditions, but not

with relatively healthy diets. In general, quercetin induced altered

lipid metabolism on a mild-high-fat diet (our study), a normal-fat

diet [10], and different high-fat diets [11,12]. Suggesting, that

quercetin can affect lipid metabolism independent of the diet,

although the impact of this effect can be different.

Using whole genome microarrays and confirmation by RT-

qPCR, we showed that quercetin up-regulates Cyp4a10, Cyp4a14,

Cyp4a31, Acot3, Por, and, possibly Car. An integration of these

genes into a single ‘hepatic pathway’ differentially expressed by

quercetin treatment is proposed in Figure 7. Normally, fatty acids

are mainly metabolized by b-oxidation first in peroxisomes (very

long chain FFA) and subsequently in mitochondria (long, medium,

and short chain FFA). Another type of fatty acid oxidation is v-

oxidation, which occurs in the endoplasmatic reticulum by

members of the cytochrome P450 4A family [24]. Omega-

oxidation becomes more important during periods of increased

influx of fatty acids into the liver, for example in our high-fat diet

mice study, in obesity, and when the mitochondrial oxidation

system is insufficient to metabolize fatty acids [25,26]. In these

situations v-oxidation can prevent lipid toxicity [27]. Fatty acids

oxidized by v-oxidation result in v-hydroxy fatty acids which are

then dehydrogenated to a dicarboxylic acid in the cytosol. These

dicarboxylic acids are further degraded by peroxisomal b-

oxidation to shorter chain dicarboxylic fatty acids, which can be

excreted in the urine, metabolized by the peroxisomal oxidation

system to succinate and acetyl CoA, or completely oxidized after

transport into the mitochondrial b-oxidation system [28]. A small

increase of ketone bodies was found in the quercetin-fed mice

suggesting an increase of b-oxidation (292.56199.2 versus

185.66118.1 mM, p= 0.12).

Acot3 was also up-regulated in our study, and the enzyme

ACOT3 hydrolyses long-medium chain fatty acyl-CoA esters to

FFA, and thus facilitate transport into peroxisomes. The FFA can

subsequently be transported out of peroxisomes to mitochondria

for further b-oxidation [29,30].

It has been described that, among others, palmitic acid (16:0)

and oleic acid (18:1(n-9)) can be hydroxylated by CYP4A11, the

human variant of murine Cyp4a10 [31]. This is especially

consistent with the serum fatty acid profile obtained in the present

study (Figure 2), where levels of palmitic acid (16:0) and oleic acid

(18:1(n-9)) were significantly lower in the quercetin-fed mice. The

significant up regulation of Cyp4a10, Cyp4a14, Cyp4a31 and

Acot3 therefore explains the observed reduced serum levels for

these specific fatty acids.

In humans, various polymorphisms are described in the genes of

cytochromes P450s and they can be considered as one of the major

determinants of individual susceptibility to CVDs [32]. Allelic

variations in CYP4A11 are suggested to result in an increased risk

for hypertension [25,32]. Hypertension can be caused by

increased serum lipid levels [6], which were decreased by

quercetin in our study with concomitant up regulation of Cyp4a

genes.

The up regulation of the Cyp4a genes is consistent with the

significant, 1.97 fold up regulation of Por by quercetin. POR is an

enzyme that is required for electron transfer to cytochrome P450

enzymes and is therefore rate limiting for P450 enzymes. Deletion

of the Por gene in a mouse model reduced hepatic P450 activity by

more than 95%. Moreover, hepatic Por knockout (Por-KO) mice

showed decreased CYP4A protein levels, and an enlarged and

fatty liver. Based on these observations, it was concluded that the

P450 system plays a major role in regulating lipid homeostasis and

hepatic lipid levels [33,34]. Two to three-fold more genes were

significantly regulated when WT mice were exposed to quercetin

compared to Por-KO mice. These genes were, among others,

involved in fatty acid metabolism pathways. This suggests that

hepatic POR mediates many of the biological effects of quercetin,

including fatty acid metabolism [35]. These results underscores

our data, which showed an up regulation of Por.

It is also suggested that P450 expression can be mediated via a

CAR-dependent signaling pathway [36]. CAR is a transcription

factor that is highly expressed in the liver. It is shown that ligand

dependent activation of CAR increased lipid metabolism in

rodents [37,38] and it is also shown that this can lead to

specifically increased expression of genes involved in v-oxidation

[39]. Furthermore, exposure of quercetin to HepG2 cells

transfected with CAR showed that CAR can be activated by

quercetin [40,41]. Our data showed significant up regulation of

Car (FC= 1.37, FDR adjusted p-value = 0.005), which suggests

that Car has an important role in quercetin mediated regulation of

lipid metabolism.

This study used male mice, therefore caution is needed in

translating these data to female mice. It is known that there are sex

differences in the sensitivity to CAR activators and also Cyp4a

genes can be under sex-dependent control [42,43]. In conclusion,

quercetin can affect hepatic lipid metabolism, especially v-

oxidation. This is shown by the up regulation of Cyp4a10,

Cyp4a14, Cyp4a31, Acot3, Por and the transcription factor Car.

These effects are associated with decreased corresponding

circulating lipid levels, which may contribute to potential

beneficial effects on CVD.
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