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Rate-Distortion Optimized Streaming
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Abstract—This paper addresses the problem of streaming pack-
etized media over a lossy packet network in a rate-distortion opti-
mized way. We show that although the data units in a media pre-
sentation generally depend on each other according to a directed
acyclic graph, the problem of rate-distortion optimized streaming
of an entire presentation can be reduced to the problem of error-
cost optimized transmission of an isolated data unit. We show how
to solve the latter problem in a variety of scenarios, including the
important common scenario of sender-driven streaming with feed-
back over a best-effort network, which we couch in the frame-
work of Markov decision processes. We derive a fast practical algo-
rithm for nearly optimal streaming in this scenario, and we derive
a general purpose iterative descent algorithm for locally optimal
streaming in arbitrary scenarios. Experimental results show that
systems based on our algorithms have steady-state gains of 2–6 dB
or more over systems that are not rate-distortion optimized. Fur-
thermore, our systems essentially achieve the best possible perfor-
mance: the operational distortion-rate function of the source at the
capacity of the packet erasure channel.

Index Terms—Audio coding, channel coding, error correction,
Internet, Markov processes, multimedia communication, optimal
control, protocols, video coding.

I. INTRODUCTION

THIS paper addresses the problem of streaming packetized
media over a lossy packet network, in a rate-distortion op-

timized way. In a streaming media system, a server prestores
encoded media data and transmits it on demand to a client
for playback in real time. The client buffers the data that it
receives and begins playback after a short delay of up to sev-
eral seconds. This delay is fixed and does not depend on the
length of the presentation. Once the client begins playback, it
is able to continue without interruption until the end of the
presentation. It is this continuous playback with fixed delay
that distinguishes streaming from download-and-play schemes.
Furthermore streaming is distinguished from telephony and
conferencing by its ability to store media data encoded offline,
and by its tolerance to a longer playback delay. Streaming, tele-
phony, and conferencing all transmit in real-time; however, for
streaming the media data must be encoded without the benefit
of knowing the state of the channel during transmission. For
this reason, in a streaming media system, the encoding must
be flexible and the server must adaptively select and transmit
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the correct data to the client, as a function of the state of
the network as observed by the client or server. In this paper,
we show, for arbitrary encodings and packetizations of mul-
tiple media, which packets to select for transmission, when to
transmit them, and how to transmit them (e.g., with high or low
quality of service), to minimize the expected distortion subject
to constraint on the expected rate, where the expectations are
taken over channel realizations. We measure rate as the total
number of bytes transmitted (or more generally, as the total
cost of bytes transmitted), and we measure distortion as the
total end-to-end distortion of the presentation in arbitrary but
incrementally additive units.

We set up a general framework for rate-distortion optimized
streaming of packetized media, and within it we consider sev-
eral scenarios. Throughout, we assume that the network loses
(i.e., drops) or corrupts packets at random, and delivers those
packets that it does not lose after a random delay. However, the
network may or may not have multiple qualities of service (e.g.,
with different probabilities of loss, corruption, and delay) avail-
able at different costs per transmitted byte. Also, the network
may or may not allow variations in transmission rate. Finally,
the network may or may not provide a back channel, which can
be used either for feedback (e.g., acknowledgment) from the
receiver in a sender-driven mode, or for control of the sender
(e.g., requests for transmission) in a receiver-driven mode. Thus
our framework handles a variety of scenarios of current interest:
sender-driven or receiver-driven streaming, streaming over best-
effort networks such as today’s Internet, streaming over multiple
overlay networks, streaming over networks with integrated or
differentiated services, streaming over combined wireline/wire-
less networks, and streaming over a network with access to
multiple servers. The same framework has also been shown to
handle error control for the case of receiver-driven layered mul-
ticast [1], [2].

We present the major ideas in our paper as follows. In Sec-
tion II, we cover various preliminaries, including our source and
channel models. Our source model consists of a labeled directed
acyclic dependence graph in which each node represents a pack-
etized data unit.

In Section III, we show that any of the aforementioned
transmission scenarios can be abstracted as a set of choices
for sending single packets, in which each choice is associ-
ated with a cost per byte of transmitting the packet and
an error probability of not delivering the packet by its
deadline. This leads to the concept of an error-cost function

, for which optimal perfor-
mance (for a single packet) can be achieved by selecting the
transmission option minimizing the Lagrangian
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for some Lagrange multiplier . For scenarios involving a
back channel, we identify the transmission options as policies
in a Markov decision process.

In Section IV, we show how to relate the error-cost functions
for the packets to the distortion-rate function for the entire mul-
timedia presentation. An optimal distortion-rate performance

for the entire presentation can be achieved by minimizing
for some Lagrange multiplier . In turn, can be

minimized by individually minimizing the packet Lagrangians
for appropriately chosen Lagrange multipliers .

The Lagrange multipliers ultimately depend, cyclically, on
the error probabilities . However, we develop an iterative
descent algorithm for finding solutions that are locally optimal.

In Section V, we show how to combine our optimization algo-
rithm with window and rate control to obtain practical streaming
media systems.

In Section VI, we report experimental results focusing on
sender-driven streaming over a best-effort network. Using
simulations, we show that our systems gain up to 4 dB or
more over systems approximating state-of-the-art commercial
systems, over networks with 20% packet loss.

To our knowledge, the most closely related contemporaneous
work is that by Miao and Ortega [3]–[5], which develops a low-
complexity heuristic algorithm for sender-driven scheduling of
packet transmissions over a best-effort network. Zhou and Li [6]
also develop similar heuristics.

The most closely related rigorous work is that by Podolksy
et al. [7], [8], which uses a Markov chain analysis to find the
optimal policy for transmitting layered media at a fixed rate,
including retransmissions, to minimize the end-to-end distor-
tion. To make the analysis tractable, Podolsky et al. assume
zero transmission delay and loss-free acknowledgment. Unfor-
tunately they are unable to simulate an optimal system with
more than a few source layers and more than a few transmis-
sion opportunities per frame, since the space of policies grows
exponentially in both of these quantities. One of the main con-
tributions of our paper is showing that this policy space can be
factored so that the layers are only loosely coupled, resulting in
complexity that grows roughly linearly in the number of layers.

The work of Chande et al. [9] was the first that we know of to
formulate and solve the problem of optimal transmission over a
noisy channel in the presense of feedback, using a Markov de-
cision process framework. The work of Servetto [10] also rec-
ognized that optimal transmission over a noisy channel in the
presense of feedback is a nonlinear stochastic control problem.
Inspired by these works, Chou et al. [1], [2] used an iterative
descent algorithm in a Lagrangian framework to find locally
optimal transmission policies for hybrid FEC/ARQ, assuming
jitter-free delay and loss-free retransmission requests, when the
source layers are given by arbitrary directed acyclic graphs.
Chou et al. applied their work to receiver-driven layered mul-
ticast of audio and video. That work became the starting point
for the present paper, when we realized that the same method-
ology could be used to solve the problem of Podolsky et al. in
a practical way.

There have been numerous other papers that perform some
kind of rate-distortion optimization for transmission of packe-
tized media. Many have focused on the problem of source rate

control in the absence of transmission errors [11]–[14]. (Works
that address the problem of source rate control in the presense
of transmission errors, but are not rate-distortion optimized, in-
clude [15]–[20].) Other works have focused on the problem of
error control using forward error correction (FEC). Many of
these use the priority encoding transmission (PET) technique
of Albanese et al. [21]–[30], which can be rate-distortion op-
timized using the algorithms of [22], [27], [31]–[35]. Others
of these use a systematic rate-compatible technique [1], [2],
which can be rate-distortion optimized using the algorithms of
[1], [2], [36]–[38]. The present paper is an extension of these
latter methods. (Still others use “signal processing FEC” for
error control [39]–[43], for which rate-distortion optimization
is still a research topic [4].) Some papers have investigated the
problem of error control using retransmission-based protocols,
e.g., [45]–[51]. However, with the exception of those works
listed in the previous paragraph, to our knowledge, none are
rate-distortion optimized. Finally, a few papers suggest the use
of multiple qualities of service (e.g., diffserv) to support more
cost-effective media transmission at a higher quality [52]–[54].
Of these, only [52] attempts to optimize the distortion subject
to transmission rate constraints. Our paper substantially furthers
the work in this direction.

During the time that this paper has been in review, based on
a preprint of this paper appearing as a technical report [55], a
number of papers have continued work along lines outlined in
this paper, dealing with rate-distortion optimized streaming over
a wireless last hop [56]–[59], over multiple paths [60], [61],
over multiple qualities of service [62], from multiple servers
[63], [64], through a caching proxy [65]–[68], with adaptive
media playout [69], [70], with multiple deadlines [71], with rich
acknowledgment [72], and with improved distortion-rate mod-
eling [73]–[75], as well as streaming of light fields [76], [77] and
other general advances in streaming using rate-distortion opti-
mization [78]. Other work, not in our framework, has also begun
for rate-distortion optimized streaming, such as [79]–[83], as
well as streaming over diffserv [84]–[86]. The present paper is
a considerably shortened version of [55].

II. PRELIMINARIES

In this section, we cover various preliminaries, including our
source and channel models, and we state the distortion-rate op-
timization problem that we are trying to solve. Table I summa-
rizes our notation.

In a streaming media system, the encoded data are packetized
into data units and are stored in a file on a media server. If the
server selects a data unit for transmission, the data unit is put into
a packet and sent across the network. If the packet is lost, the data
unit may be sent again in another packet. In general we assume
a one-to-many correspondence between data units and packets.
However, each packet contains one and only one data unit.

Regardless of how many media objects (audio, video, etc.)
there are in a multimedia presentation, and regardless of what
algorithms are used for encoding and packetizing those media
objects, the result is a set of data units for the presentation whose
interdependencies can be expressed by a directed acyclic graph.
Each node of the graph corresponds to a data unit, and each edge
of the graph directed from data unit to data unit corresponds
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TABLE I
NOMENCLATURE

to a dependence of data unit on data unit . That is to say,
in order for data unit to be decoded, data unit must also be
decoded. This induces a partial order between data units, for
which we write if is an ancestor of (or equivalently if

is a descendant of ). Thus, if a set of data units is received by
the client, only those data units whose ancestors have all been
also received can be decoded.

Typically, the graph of dependencies between all of the data
units in a presentation is a collection of connected components,
where each connected component is itself a directed acyclic
graph representing the dependencies between all of the data
units of an independently encoded and packetized group of
frames (GOF) of one media type. Some such directed acyclic
dependence graphs are illustrated in Fig. 1. Fig. 1(a) shows

a dependence graph typical of an embedded encoding of a
group of frames, which is packetized sequentially. Fig. 1(b)
shows a dependence graph typical of an encoding by a standard
video coder of a group of (IBBPBBPBBP) frames, which is
packetized as one data unit per frame. And Fig. 1(c) shows a
dependence graph typical of an encoding of a group of frames
by MPEG-4’s fine grain scalability (FGS) mode [87], [88].

The dependence graph is computed offline at the time that the
media data are encoded and packetized, and the data unit depen-
dencies are stored along with the data units in the file on the media
server. Also stored in the file and labeling each data unit in the
dependence graph are three constant quantities: its data unit size

in bytes, its importance in units of distortion, and its
timestamp . We now discuss each of these in turn.
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Fig. 1. Directed acyclic dependence graphs. (a) Sequential dependencies
typical of embedded codes. (b) Dependencies between IBBPBBPBBP video
frames. (c) Typical dependencies for MPEG-4 progressive fine grain scalability
mode.

The data unit size is the number of source bytes in the data
unit.

The importance is the amount by which the distortion at
the receiver will decrease if the data unit is decoded (on time) at
the receiver. Recall that a data unit can be decoded only if all of
the data units on which it depends can also be decoded. For ex-
ample, in Fig. 1(a), for the third data unit in the sequence is
the decrease in distortion if three data units are decoded instead
of only two. Similarly, in Fig. 1(b), for a B frame is the de-
crease in distortion if the B frame is decoded, compared to the dis-
tortion if the B frame is not decoded. In this way, the overall dis-
tortion can be computed as the initial distortion (i.e., the dis-
tortion if no data units are decoded) less the sum of the decreases

over all data units that have been decoded on time. We say
the distortion is incrementally additive with respect to the partial
order given by the dependence graph. An important limitation of
this incrementally additive model is that the amount by which the
distortion decreases when a data unit is decoded does not depend
on whether its sibling or cousin data units are decoded. So for ex-
ample, in this model, the decrease in distortion when a B frame
is decoded does not depend on whether or not any other B frame
is decoded. Strictly speaking, this rules out exact modeling of a
number of error concealment techniques. Fortunately, the model
canstillprovidegoodapproximationstothemost likelyvariations
in distortion under arbitrary error concealment techniques, with
properly chosen parameters.1 Extensions to the model that cover

1In general, �d should be set to the expected decrease in distortion if data
unit l is decoded, where the expectation is taken over all possible combina-
tions of losses of data units that are not ancestors of data unit l. For example,
in Fig. 1(b), �d for a B frame should be set to the weighted average of the
decrease in distortion if it is decoded with and without the benefit of its neigh-
boring B frame.

arbitrary error concealment techniques without approximation
are treated in [73]–[75], [89].2

The timestamp is the time by which the data unit must
be decoded to be useful (i.e., for the distortion to decrease by

). This corresponds to the decoder time-stamp (DTS) in
MPEG terminology, and represents the time at which the de-
coder extracts the data from its input buffer prior to presentation
(which in turn occurs at the presentation timestamp, PTS). Thus,
in the context of the server/client model for streaming,
is the delivery deadline by which data unit must arrive at the
client, or be too late to be usefully decoded. Packets containing
a data unit that arrive after the data unit’s delivery deadline are
discarded.

Each data unit is also labeled by the server on the fly with a
set of transmission opportunities
prior to at which the data unit may be put into a packet
and transmitted. Often this set of transmission opportunities is
a single time (such as a “send time”) prior to the delivery
deadline, but in general we assume it is a finite set of times

(such as the set of times at ms inter-
vals within a window ) prior to the delivery deadline.
Determination of this set is addressed in Section V.

It pays to be careful about the temporal coordinate systems
(or clocks) in which time is expressed. In this paper, we deal
with three different temporal coordinate systems: the media (or
encoder) temporal coordinate system , the sender (or server)
temporal coordinate system , and the receiver (or client) tem-
poral coordinate system . Each of these is related to the other
by an affine coordinate transformation. For details, see [55]. We
use the notation , and to denote the time of a single
event in each of the three temporal coordinate systems.

We model the network as an independent time-invariant
packet erasure channel with random delays. That means that
if the sender inserts a packet into the network at sender time
, then the packet is lost with some probability, say , in-

dependent of . However, if the packet is not lost, then it
arrives at the receiver at sender time , where the forward trip
time is randomly drawn according to proba-
bility density . Each packet is lost or delayed
independently of the other packets. This independence and
time-invariance is reasonable over short time scales (such as a
few seconds), provided the sender’s packets are not self-con-
gesting.3 More sophisticated modeling with hidden Markov
models (to accommodate “good” and “bad” network states, for
example) is also possible in our framework [60]. However, in
practice it is sufficient simply to estimate and
given the recent past. This allows the distributions to change

2With some error concealment techniques, it may be difficult to determine the
�ds in real time. However, it is always possible to determine the �ds offline,
e.g., during creation of the media file that separates real-time encoding from
real-time streaming.

3Over short time scales, the underlying state of the network path, including
the location and load of the bottleneck queue, remains relatively constant. As-
suming the sender’s packets are not self-congesting, each packet from the sender
leaves the bottleneck queue before the next packet from the sender arrives in the
queue, in steady state. (Otherwise, the sender’s packets would build up in the
queue and would cause congestion.) Therefore the set of packets already in the
queue is different for each of the sender’s packets, and hence the number of such
packets (the primary determiner of loss and delay for the sender’s packets) is
approximately independent and identically distributed given the network’s un-
derlying state.
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slowly over time to reflect changes in the underlying network
state, which has the accuracy of hidden Markov modeling, yet
the tractability of independent modeling.

For convenience, we combine the packet loss probability
and the packet delay density into a single probability mea-
sure, by assigning in the event that the packet is
lost. This places mass at infinity, and weights the density

by the factor . Thus

which is the probability that a packet sent at time is not re-
ceived by time , whether lost or simply delayed. In prin-
ciple it is not ever possible to determine by waiting for a packet
whether it is lost, or just delayed for a very long time.

We assume that the back channel, if available, can be sim-
ilarly characterized. If the client sends a packet to the server,
then the packet is lost with probability , otherwise it is de-
layed according to density . The probability that
the backward trip time is greater than is

The round trip time is by definition the
sum of forward and backward trip times. The probability that
the round trip time is greater than is therefore

where is the convolution of and .
We do not assume any particular form for the densities

, or . However, for concreteness in the next section
and in Section VI (Experimental Results) we do model these
distributions parametrically. As in [90], we model packet delay
as having a shifted Gamma distribution with rightward shift
and parameters and , e.g.,

(1)

for . This is the distribution of a random variable that
is equal to a constant plus the sum of independent iden-
tically distributed exponential random variables each with pa-
rameter [91]. One way to interpret this is that the forward
trip time FTT is the result of a packet going through routers,
each of which requires a constant processing time plus
waiting time in a steady state M/M/1 queue [92]. Since an ex-
ponential random variable with parameter has mean and
variance , the forward trip time as modeled by (1) has mean

and variance . The accuracy
of this model has recently been verified in [93].

We end this section with a discussion of our objective: rate-
distortion optimized streaming of any given presentation, or fi-
nite-duration set of packetized media. By rate we mean the ex-
pected cost of streaming the entire presentation. Cost may be
measured as the number of bytes transmitted. However it can
also be measured more generically. As we mentioned in the In-

Fig. 2. (a) Set of achievable distortion-rate pairs, its lower convex hull (dotted),
and an achievable pair (R;D) minimizing the LagrangianD+�R. Each dot is
the (R;D) performance of some algorithm. (b) Likewise, the set of achievable
error-cost pairs, its lower convex hull, and an achievable pair (�; �) minimizing
the Lagrangian � + � �.

troduction, each data unit is sent with some transmission option
, which has cost per source byte and hence a data unit

cost , where is the size of the data unit in bytes. The
cost of streaming the entire presentation is the sum of the data
unit costs for all of the data units transmitted. The rate is the
expected value of this total cost, averaged over all possible re-
alizations of the random channel, for the given presentation.

By distortion we mean the expected distortion incurred for
the entire presentation. As we mentioned earlier in this section,
whenever a data unit is decoded on time at the receiver, the dis-
tortion decreases (from some initial large distortion ) by the
importance of the data unit. The distortion incurred for the
entire presentation is therefore some initial large distortion
less the sum of the importances for all the data units decoded
on time. The distortion is the expected value of this total dis-
tortion, averaged over all possible realizations of the random
channel, for the given presentation.

We seek a streaming algorithm that, given any presentation ,
has the minimum possible expected distortion for
an expected rate . By restricting ourselves to algorithms whose
rate-distortion performance for the given presentation
lies on the lower convex hull of the set of all rate-distortion per-
formances achievable (for the presentation) by some algorithm,
as illustrated in Fig. 2(a), we can find an optimal algorithm with
expected distortion and expected rate by minimizing the
Lagrangian for some positive Lagrange multiplier .
Finding such an algorithm, under various communication sce-
narios, is the objective of this paper.

III. TRANSMITTING A SINGLE DATA UNIT

In this section, we study the problem of optimally transmit-
ting a single data unit. Knowing whether, when, and how to best
transmit each data unit in isolation will lead (in Section IV) to
optimal transmission of the entire presentation.

When considering transmission of only a single data unit, the
distortion-rate measures can be normalized. Rather than mea-
suring distortion in terms of, say, squared error, expected dis-
tortion can be measured as the “error probability” or more pre-
cisely the late/loss probability, that is, the probability that the
data unit does not arrive at its destination on time. Rather than
measuring rate in terms of, say, bytes per second, rate can be
measured as the expected number of times the data unit is trans-
mitted, or more generally, as the expected number of bytes trans-
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mitted per source byte, or more generally still, as the expected
cost per source byte to transmit the data unit. We refer to these
normalized distortion-rate measures as “error-cost” measures.

An algorithm for transmitting a single data unit, here called
a policy, has an expected error and an expected cost , where
the expectations are taken over channel realizations, e.g., packet
losses and delays. An optimal policy is one that has the min-
imum possible error for its expected cost . By restricting our-
selves to policies whose error-cost performance lies on
the lower convex hull of the set of all error-cost performances
achievable by some policy, as illustrated in Fig. 2(b), we can find
an optimal policy with expected error and expected cost by
minimizing the Lagrangian for some positive Lagrange
multiplier . In the next section we show that we can indeed re-
strict attention to such policies when looking for a streaming al-
gorithm that minimizes . We now explore the error-cost
performances that can be achieved in various scenarios.

Scenario A: Single QoS, no feedback. This is the simplest
scenario. A data unit with delivery deadline can either be
transmitted at time , or not, over a network with a
single quality of service (QoS) e.g., a best-effort network. In this
scenario, there are only two error-cost possibilities. If the data
unit is not transmitted, then the error probability is one, while the
cost per source byte (expected number of packet transmissions)
is zero. On the other hand, if the data unit is transmitted, then
the error probability is , while the
cost per source byte is one. The operational error-cost function
for this scenario and its convex hull are illustrated in Fig. 3(a)
for %.

Scenario B: Multiple QoS, no feedback. This is a more in-
teresting scenario. Suppose that there are multiple qualities of
service available on the network (or equivalently suppose there
are multiple networks) each with its own forward trip time dis-
tribution and its own marginal cost per transmitted byte. For ex-
ample, best-effort service with forward trip time could
cost microcent per transmitted byte, a low-loss service
with forward trip time could cost microcents
per transmitted byte, and a low-delay, low-loss service with for-
ward trip time could cost microcents per trans-
mitted byte. Then a data unit with delivery deadline trans-
mitted (or not) at time has one of four distortion-rate possibil-
ities: and
and and ;
and and . The oper-
ational error-cost function for this scenario and its convex hull
are illustrated in Fig. 3(b).

Scenario C: FEC, no feedback. In this scenario only a single
best-effort network is available, but the application can emu-
late different qualities of service over this network using for-
ward error correction schemes of different strengths. For in-
stance, if and , the application can emulate
a higher quality of service for a data unit transmitted at time

by 1) grouping it together with other data units also
to be transmitted at time , 2) applying an systematic
Reed-Solomon code to produce parity units, and 3) trans-
mitting the data packets plus their parity packets at time . The
original data unit cannot be recovered at the receiver by time

only if it is late or lost (which happens with probability

) and at least of the other
packets are also late or lost (which happens with prob-

ability ). Thus the

loss/late probability is reduced by a factor over best-effort,
at a cost of transmitted bytes per source byte. The error-cost
performances for various values of can be plotted (e.g.,
for and ) to produce an opera-
tional error-cost function, as illustrated in Fig. 3(c).

Scenario D: Retransmission, no feedback. This is a similar
scenario, in which quality of service can be emulated using
retransmissions. Let be discrete transmis-
sion opportunities and let be the delivery deadline. Re-
peatedly transmitting the data unit at all opportunities re-
sults in a small loss/late probability (equal to

) but a large cost (equal to ). On the other hand
transmitting the data unit at none of the opportunities results
in a large loss/late probability (equal to 1) but a small cost (equal
to 0). Intermediate loss/late probabilities and costs can also be
achieved and easily computed for any fixed transmission pat-
tern. For example, suppose represents a trans-
mission pattern where if a data packet is transmitted at
time and otherwise. Then the loss/late probability is
equal to while the cost is equal
to transmitted bytes per source byte. The error-cost
performances for all transmission patterns can be plotted
to produce an operational error-cost function, as illustrated in
Fig. 3(d).

Scenario E: Sender-driven retransmission, with feed-
back. The previous scenario becomes more realistic when
combined with feedback. Suppose the receiver sends an ac-
knowledgment packet back to the sender the instant that
it receives a data packet, and that the sender truncates its
transmission pattern upon receipt of the acknowledgment
packet. Then although the loss/late probability remains the
same, the expected number of data packet transmissions is
reduced to .4 This
scenario, which we refer to as sender-driven transmission over
a single-QoS network using retransmissions with feedback, is
the principal scenario considered in this paper. The operational
error-cost function for this scenario is illustrated in Fig. 3(e).

Scenario F: Receiver-driven retransmission, with feedback.
This is a receiver-driven version of the above scenario. The re-
ceiver initiates transmission by sending a request packet to the
sender; the sender responds by sending a data packet to the re-
ceiver. Let be discrete request opportuni-
ties at which the receiver can transmit a request packet, and let

be the deadline for delivery of the data unit to the re-
ceiver. Suppose represents a request pattern
where if a request packet is transmitted at time and

otherwise. Suppose the sender transmits the data packet
to the receiver the instant that it receives a request, and that the
receiver truncates its request pattern upon receipt of the data
unit. Then it is not too hard to show that the loss/late proba-

4To see this, consider that the quantity in parentheses is the expected value of
the indicator function of the event that a data packet is transmitted at time s ,
which in turn is the probability that none of the previously transmitted packets
are acknowledged by time s .
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Fig. 3. Error-cost functions. (a) Single QoS, no feedback. (b) Multiple QoS, no feedback. (c) FEC, no feedback. (d) Retransmission, no feedback. (e) Sender-driven
retransmission, with feedback. (f) Receiver-driven retransmission, with feedback.

bility is equal to (which is larger
than in the sender-driven case) while the expected data packet
transmission rate is equal to

(which is smaller than in the sender-
driven case). The operational error-cost function is illustrated in
Fig. 3(f).

Hybrids of any of the above scenarios are also possible. For
example, receiver-driven transmission over a multiple-QoS net-
work using retransmissions with feedback can be handled by
letting indicate a request by the receiver
at time for a data unit to be transmitted with quality of ser-
vice (and otherwise). In this case, the loss/late prob-
ability is equal to , and

the cost is equal to

, where is
the round trip time over the single backward channel and the

’th forward channel. This last “intserv/diffserv” scenario is
mathematically equivalent to a number of other scenarios of in-
terest, such as the “overlay” scenario in which the receiver is
connected to the sender by multiple physical networks, each of-
fering a different quality of service, and the “multiple server”
scenario in which the receiver has access to multiple senders
over different network paths, each offering a different quality of
service.

In the remainder of this section, we study in detail, using
a Markov decision process (MDP) framework, Scenario E:
sender-driven transmission over a single-QoS network using
retransmissions with feedback. Although the MDP framework
can be used for efficient computation, its primary importance

is conceptual. Indeed, the MDP framework can be used to gen-
eralize rate-distortion optimized streaming to other scenarios,
which are beyond the scope of this paper, such as wireless
[56]–[59], multipath [60], [61], multi-QoS [62], multiserver
[63], [64], and caching proxy [65]–[68] scenarios. The reader
is referred to the references for the applicability of the MDP
framework to these scenarios.

A Markov decision process with finite horizon is an
-step stochastic process through a state space in which an

action can be taken at each state in a corresponding trellis of
length to influence the outgoing transition probabilities and
thereby maximize an expected reward or minimize an expected
cost along the transitions. The assignment of actions to trellis
states is called a policy (denoted by ) and the optimal policy,
in our context, is the one that minimizes the expected cost

of traversing the trellis in steps starting from a
known initial state.

Fig. 4 shows the trellis for the Markov decision process as-
sociated with Scenario E. The process begins in the initial state
at time . In this state, the sender can choose either to send the
data unit, taking action , or not to send the data unit,
taking action . If the sender chooses to send the data
unit, then just prior to time , the sender can observe either that
some packet containing the data unit has been acknowledged, in
which case , or that no packet has been acknowledged,
in which case . If a packet containing the data unit has
been acknowledged by time , then the process enters a final
state at time . Otherwise the process enters a nonfinal state at
time , and the sender can once again choose either to send the
data unit, or not, repeating the process up to a total of times.
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Fig. 4. Trellis for a Markov decision process. Final states are indicated with double circles.

Each state in the trellis (circles in Fig. 4) captures the action-
observation history leading up to that state from the initial state.
That is, a state at time represents a sequence of action-
observation pairs, .

The action taken at a state determines the transition probabili-
ties to the next state. Indeed, if the next state
is the current state followed by the action-observation pair

, then (in this scenario)

where
. That is, the probability that no acknowl-

edgment arrives by time given that no acknowledgment
arrived by time is the product of the probabilities for each
data packet sent at time that no acknowledgment arrives by
time (i.e., ) given that no acknowledg-
ment arrived by time (i.e., ).

Thus any policy assigning actions to states induces
a Markov chain with transition probabilities

Let be the set of all complete paths through this Markov
chain, and let

(2)

That is, let satisfy where and
for . Then has probability

(3)

transmission cost

(4)

and error (loss/late probability)

if
if

(5)

where
. The latter expression follows from

the facts that if the path leads to an acknowledgment, then the
probability that the data packet is lost or late is zero, while if
the path leads to no acknowledgment by time , then the
probability that the data packet is lost or late is the product of
the probabilities that each data packet transmitted is lost or late

given that no acknowledgment is received
for that packet .

Armed with definitions of probability, transmission cost, and
error for each path, one can now express the expected cost and
error for the Markov chain induced by policy :

(6)

(7)

In principle, it is possible to enumerate all possible policies
, plot the error-cost performances in the error-cost

plane, and produce an operational error-cost function for this
scenario with the same results as in Fig. 3(e). However, if one is
only interested in finding a point on the convex hull of the oper-
ational error-cost function, it is simpler matter to find the policy
minimizing the expected Lagrangian

(8)

where . This can be accomplished
with dynamic programming as described in [55], or branch and
bound algorithms as described in [94]. In this paper, whatever
algorithm is used to compute the optimal choice minimizing

, for whatever scenario, we will call the transmit-one
(X1) algorithm.

As an example, Fig. 5 shows the error-cost performances of
different optimal policies computed by the X1 algorithm
described above for different values of . The expected error
is shown on a logarithmic scale. Each optimal policy is shown
as the sequence of actions taken along the
longest path in the Markov chain defined by the policy, that is,
the sequence of actions taken by the sender at each transmission
opportunity until it receives an acknowledgment. The all-zeros
policy (which never transmits) is shown at the upper left with ex-
pected error equal to 1 and expected cost equal to 0. The all-ones
policy (which always transmits) is shown at the lower right with
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Fig. 5. Optimal policies and their error-cost performances. The optimal
policies for different values of � are shown as sequences of actions
[a ; a ; . . . ; a ].

expected error equal to and expected cost equal to 2.8.
Intermediate policies are shown in between. As decreases,
the optimal policy decreases in error but increases in cost. In
this example, there are transmission opportunities every

ms. The mean forward trip time is
and the mean round trip time is , using the
parametric models discussed in Section II.

IV. TRANSMITTING A GROUP OF DATA UNITS

In this section, we study how a whole group of interdependent
data units can be transmitted in a distortion-rate optimized way,
using as a building block the scenario-appropriate method for
transmitting a single data unit.

Suppose we wish to transmit a group of data units whose
dependencies are specified by an arbitrary directed acyclic
graph. These data units could be all the data units in a ses-
sion, all the data units in a group of frames, or only those data
units whose delivery deadlines lie in a limited time window.

Let be the transmission policy for data unit
and let be the vector of transmission poli-
cies for all data units in the group. Any given policy vector

induces an expected distortion and an expected transmission
cost for the group. The expected transmission cost is the sum of
the expected transmission costs for each data unit in the group.
In turn, the expected transmission cost for each data unit

is the expected cost per byte of transmitting the data
unit, , times its size in bytes, . That is, we have for the
expected transmission cost

(9)

In particular, if is the expected number of times that data
unit is transmitted, then is the expected number of bytes
transmitted for all the data units in the group. When divided
by the duration of the group, this yields the average bandwidth
consumed.

The expected distortion for the group is somewhat more com-
plicated to express. Let be the indicator random variable that
is 1 if data unit arrives at the receiver on time, and is 0 oth-
erwise. Then is 1 if data unit is decodable by the
receiver on time, and is 0 otherwise. If data unit is decodable
by the receiver on time, then the reconstruction error is reduced
by the quantity ; otherwise the reconstruction error is not re-
duced. Hence the total reduction in reconstruction error for the
group is . Subtracting this quantity from the
reconstruction error for the group if no data units are received,
and taking expectations, we have for the expected distortion

(10)

where is the expected reconstruction error for the group if
no data units are received, is the expected reduction in
reconstruction error if data unit is decoded on time, and
is the probability that data unit does not arrive at the receiver
on time (as computed in the previous section). Here we have
used the assumption that the data packet transmission processes
are independent in order to factor the expectation in (10).

With (9) and (10) for the expected transmission cost and ex-
pected distortion for any given policy vector now in hand, we
are able to optimize the policy vector to minimize the expected
distortion subject to a constraint on the expected transmission
cost. By restricting ourselves to solutions on the lower convex
hull of the set of rate-distortion pairs , we can
solve the problem by finding the policy vector that minimizes
the expected Lagrangian

(11)

The solution to this problem is completely characterized by the
dependence graph, the set of distortion increments , and
packet sizes (which are determined by the source, source
code, and packetization) and the error-cost functions and

(which are determined by the transmission scenario and
channel characteristics). This simplifies the problem of deter-
mining the quantities needed for the optimization. However, the
minimization itself is complicated by the fact that the expression
for the expected distortion cannot be split into a sum of terms
each depending on only a single , as is usually the case in rate
allocation problems. Hence, we solve the problem using an it-
erative descent algorithm.

Our iterative approach is based on the method of alternating
variables for multivariate minimization [95]. The objective
function in (11) is minimized one variable at a
time, keeping the other variables constant, until convergence.
To be precise, let be any initial policy vector and let

be determined for ,
as follows. Select one component to op-
timize at step . This can be done round-robin style, e.g.,
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Fig. 6. Iterative Sensitivity Adjustment (ISA) algorithm.

. Then for , let ,
while for , let

(12)

where (12) follows from (11) with

(13)

The factor can be regarded as the sensitivity to losing data
unit , i.e., the amount by which the expected distortion will in-
crease if data unit cannot be recovered at the receiver, given
the current transmission policies for the other data units. An-
other interpretation of is as the partial derivative of (10) with
respect to , evaluated at . See [1], [2], [73], [74].

Now, the solution to (12) is simple. This is the problem of
transmitting a single data unit, which can be solved with the X1
algorithm as described in the previous section: find the trans-
mission policy minimizing , where

. Thus, using the X1 algorithm, the policy vector
can be determined and the process can be repeated until
converges. Convergence is guaranteed because is non-
increasing and bounded below. The overall algorithm, which
we call the Iterative Sensitivity Adjustment (ISA) algorithm, is
summarized in Fig. 6.

Along with the ISA algorithm, we have established the fol-
lowing.

Proposition (Sufficiency of the X1 algorithm). A necessary
condition for to minimize is that each

minimizes for some .
In summary, using the ISA algorithm in conjunction with

the X1 algorithm, we are able to find transmission policies
for each of the data units in a group such that

after independently following the policies, the expected dis-
tortion and the expected transmission cost are
minimal (or at least locally minimal) for each other, since they
lie on the convex hull of all operational rate-distortion pairs

, for the given set of transmission opportunities.
It is important to note that this “optimal” performance can

be improved upon, in principle, if the transmission scenario in-
volves feedback. Although independence of the transmission
processes allows us to factor the expectation across the product
in (10), this independence may be too constraining when feed-
back is available since the information fed back for one data unit
may benefit the transmission of another data unit. For example,
the knowledge that data unit has arrived at the receiver boosts
the sensitivity of the data units that depend on as well as the
sensitivity of the data units on which depends.

Thus, when feedback is available, we attempt to improve per-
formance with the heuristic of stepwise rate-distortion optimiza-
tion. Specifically, we rerun the ISA algorithm at every trans-
mission opportunity, taking into account the most recent infor-
mation fed back for any of the data units. To be more specific,
at every transmission opportunity (assuming for simplicity
that every data unit has the same set of transmission oppor-
tunities ), for every data unit , given that the
transmission process has arrived at some state , we con-
dition the quantities in (2)–(8) on , namely, the path

, the path probabilities , the error probabili-
ties , and ultimately, the expected cost, error, and La-
grangian , and . Then, we run the ISA
algorithm on these conditional quantities to determine stepwise-
optimal policies for each data unit, which we follow for one step.

This stepwise-optimal procedure can be likened to a proce-
dure common among human agents who are assigned separate
tasks toward a common goal, where achievement of the goal
depends to varying degrees on achievement of the individual
tasks. Suppose the agents call each other at the end of each
day to report their state of progress. Since it is infeasible for
an agent to follow from the outset an optimal strategy involving
contingency plans for every possible daily state of every other
agent, each agent instead optimizes his own long-term strategy
assuming an expected level of success for each other agent. The
agent is able to modify his long-term strategy daily, as the ex-
pected level of success of the other agents changes according to
their status reports.

Although this stepwise-optimal procedure does not neces-
sarily produce the optimal performance when feedback is avail-
able, it produces near-optimal performance, as our experimental
results in Section VI show. Moreover, it is tractable, because it
factors the full state space into a product of state spaces, one for
each data unit (or agent). Although these state spaces are cou-
pled, the coupling is loose. Hence it is possible to separately
solve for the optimal policy for each data unit, and then run the
ISA algorithm to couple these solutions. In contrast, the truly
optimal solution involves a state space that grows exponentially
in the number of data units as well as the number of transmis-
sion opportunities. Podolsky et al. studied such a solution in [7]
and [8], and even with a simplified channel model, concluded
that the problem is intractable when there are more than two
data units and more than two transmission opportunities. Our
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Fig. 7. Window control. The horizontal interval between s and s is the
window of transmission opportunity for data units with delivery deadline t .
The vertical interval between t (s) and t (s) is the set of delivery deadlines
t whose data units are eligible for transmission at time s.

factorization of the problem into loosely coupled problems of
transmitting only a single data unit is one of the main contribu-
tions of our work.

V. PRACTICAL STREAMING USING WINDOW

AND RATE CONTROL

In the previous two sections, we showed how a hypothetical
system can achieve locally optimal distortion-rate performance
in nonfeedback scenarios, and stepwise-optimal distortion-rate
performance in feedback scenarios. However, because we mea-
sure distortion-rate performance in an average sense, it is pos-
sible for such a hypothetical distortion-rate optimized system to
transmit most of the data units in each group in a single burst,
resulting in a large instantaneous rate despite a low average rate.
When the group of data units is large, e.g., the entire session, this
is untenable. However, window control can be used to spread out
the transmissions over the duration of the session.

In window control, different data units are given different
windows of transmission opportunities, based on their delivery
deadlines. To be specific, at any given transmission time , only
those data units whose delivery deadlines fall within the
window are given the opportunity to transmit.
The window boundaries and advance monoton-
ically with .

Fig. 7 graphs typical values of and as a
function of the transmission time . For any given
transmission time , the vertical interval

is the set of delivery deadlines whose
data units are eligible for transmission at time . Conversely,
for any given delivery deadline , the horizontal interval

is the set of times at which
data units with delivery deadline are eligible for trans-
mission. It is during this horizontal interval that data units with
delivery deadline can be transmitted. In our experiments
we choose

where the playback delay s, the playback speed ,
and . The reasons for this choice are given in [55].

Now let us consider the transmission dynamics. Beginning at
time , at each transmission opportunity (say, every

ms), the ISA algorithm runs on the group of data units eli-
gible for transmission at time . We call this group of data units,

, the transmission buffer at
time . For each data unit in the transmission buffer, the ISA
algorithm iteratively computes the sensitivity [according to
(13)], and produces the optimal policy [minimizing

according to (12)]. Upon convergence, each data unit
in the transmission buffer is sent (or not) according to the first

action in policy . Thus at each transmission opportunity, some
of the data units in the transmission buffer are sent, and others
are not. This process is repeated at each transmission opportu-
nity. This system is our basic rate-distortion optimized (RaDiO)
system, which we evaluate in the next section.

Even with window control, however, the transmission rate
can be bursty. Rate control can be used in conjunction with
window control to smooth the instantaneous transmission rate
still further. The rate control mechanism we propose is sim-
ilar, in a broad sense, to the rate control mechanisms found in
standard video encoders. In standard video encoders, the rate
control mechanism typically adjusts a quantization stepsize
[96] or possibly a Lagrange multiplier [97], [98] to affect
the instantaneous bit rate out of the encoder into an encoder
buffer. If the encoder buffer is close to empty, then or is
decreased to keep the buffer from underflowing, while if the
encoder buffer is close to full, then or is increased to
keep the buffer from overflowing. In this paper we propose a
roughly similar mechanism for controlling the instantaneous
rate of data packet transmissions out of the ISA algorithm. The
Lagrange multiplier can be increased or decreased to ad-
just the number of data units selected for transmission at each
transmission opportunity. Of particular interest is the special
case in which is adjusted so that exactly one data unit is se-
lected for transmission at each transmission opportunity. That
is, starting from zero, is increased until there remains only
one data unit in the transmission buffer for which the optimal
policy (minimizing ) has “send” as its
first action. This one data unit is relatively simple to find by
creating a list of Lagrange multipliers , where for
each data unit is the threshold for above which the data
unit is not transmitted, and below which the data unit is trans-
mitted, at the current transmission opportunity. Once this list
is created, the data unit to transmit is the data unit with the
largest on the list. The problem is to compute for each
data unit. Through a series of approximations documented in
[55], can be estimated as 0 for any data unit that 1) is
within a forward trip time (e.g., ) of its deadline,
2) has already been transmitted and has been acknowledged,
or 3) has already been transmitted within a round trip time (e.g.,

) of the current time. For the other data units, can
be estimated as multiplied by a factor of for each
unacknowledged transmission. Hence, approximate rate-distor-
tion optimal streaming can be achieved at very low computa-
tional complexity. Indeed using these approximations we have
prototyped a rate-distortion optimized streaming media server
running in Java that requires only about one percent of the
CPU on a 700 MHz Pentium III, for a 40 Kbps audio stream.
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This system is our rate-controlled RaDiO system, which we
evaluate in the next section.

VI. EXPERIMENTAL RESULTS

In this section, we report our experimental results only for the
scenario of sender-driven transmission over a single-QoS net-
work with retransmissions. First we examine in detail error-cost
optimized transmission of a single data unit, and later examine
rate-distortion optimized streaming of an entire audio presen-
tation. Throughout the section we assume that each data unit
has transmission opportunities every seconds, at sender times

with delivery deadline where
for . Thus is the size of

the window of transmission opportunity for each data unit.
The error-cost function for transmission of a single data unit

was shown in Figs. 3(e) and 5 of Section III for the parame-
ters shown in Fig. 5. Fig. 5 shows the error-cost function on a
log-linear scale, with each vertex of its convex hull labeled by
the sequence of actions for the optimal policy

corresponding to the Lagrange multiplier for that vertex.
By following policy , which transmits up to three times at
intervals of within a window of duration , it is possible to
reduce the late/loss probability to less than one percent at an ex-
pected cost of only about 1.4 transmitted packets per data unit.
The transmission interval is equal to a slightly aggressive
timeout interval: the mean RTT plus two
times the standard deviation .

It is natural to ask whether extending the window size larger
than , which is four times the mean RTT, can allow arbitrary
further reductions in the late/loss probability, or whether the re-
ductions saturate. It is also natural to ask, for a fixed window
size , whether the late/loss probability can be improved by
increasing the density of transmission opportunities. In [55] we
show that improvement saturates for window sizes larger than
four times the mean RTT, and for transmission opportunity den-
sities higher than twice per mean RTT. Hence, in subsequent ex-
periments we set to be half the mean RTT and we set .

Now we consider the overall distortion-rate performances
of various systems when streaming one minute of packe-
tized audio content. The audio content, the first minute of
Sarah McLachlan’s Building a Mystery, is compressed using
a scalable version of the Windows Media Audio codec. The
codec performs perceptual weighting on lapped orthogonal
transform coefficients, followed by bitplane coding to produce
an embedded bit string for each group of frames (GOF) of
duration about 0.75 s. The bit string for each GOF is partitioned
into segments of length 500 bytes, and packetized into data
units. Twelve 500-byte data units are kept for each GOF, for
a maximum bit rate of Kbps. The
12 data units per GOF are sequentially dependent, as shown
in Fig. 1(a). Each data unit is labeled by the decrease
in the perceptually weighted squared error if the data unit is
decoded on time and all of its predecessors in the same GOF
are decoded on time. All 12 data units in the th GOF receive
the same decoding timestamp, equal to .

We compare several streaming systems. All of the systems
use the same playback delay s and the same transmis-
sion buffer size, which ramps from 0 to 5 s during the clip

Fig. 8. Layered audio transmission.

according to the functions and as specified in
Section V. The systems also use the same channel parameters,
which are shown in Fig. 8. Transmitted packets are dropped at
random, and those not dropped receive a random delay, using a
pseudo-random number generator. The pseudo-random number
generator is initialized to the same seed for each of the systems
compared. For each system at each transmission rate, perfor-
mance is averaged over ten runs to smooth out the effects of
particular channel realizations. Fig. 8 shows, for each of the sys-
tems compared, the signal-to-noise ratio in dB of the end-to-end
perceptual distortion as a function of the transmission rate (in
Kbps) averaged over the one minute audio clip. We now de-
scribe the compared systems in detail.

System 1: No error control. In this system, there is no error
control. Data units are transmitted at most once, in GOF order. A
data unit is transmitted only if all of its predecessors in the same
GOF are also transmitted. The number of data units transmitted
in each GOF is proportional to the transmission rate. As shown
in Fig. 8, the performance of this system saturates as the trans-
mission rate increases. This is because in the absense of error
control, base layer packets are being lost 20% of the time, lim-
iting overall performance, regardless of the transmission rate.
This shows the need for some sort of error control.

System 2: Omniscient retransmission. In this system, error
control is provided by retransmissions, which may occupy up
to 20% of the channel bandwidth (equal to the packet loss prob-
ability). Data units for which the server receives negative ac-
knowledgment (NAKs) from the client are queued, and are re-
transmitted from the queue on a space-available basis. However,
data units that are still in the retransmission queue past their de-
livery deadlines are removed from the queue and are not retrans-
mitted. The remaining 80% or more of the channel bandwidth is
used for first-time transmission of data units in the same manner
as in System 1. Omniscient refers to the manner in which the
client sends NAKs. Commonly, a client will send a NAK when-
ever a packet sequence number is detected missing for more than
some timeout interval, but more sophisticated strategies are pos-
sible and are implemented in commercial streaming media sys-
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tems. Here, we provide an upper bound on the performance of
any such system by simulating an omniscient, though unrealiz-
able, strategy in which the client sends precisely one NAK for
each packet that is lost, at precisely the moment that the packet
would have arrived at the client if it had not been lost. As Fig. 8
shows, such a system with omniscient retransmission can per-
form about two dB better than a system without error control.

System 3: Rate-distortion optimization without rate control.
In this system, rate-distortion optimization using the ISA algo-
rithm is applied without rate control to the scheduling of packet
transmissions at the sender. Unlike System 2, no NAKs are
available; only ACKs are sent back to the server upon receipt
of a packet by the client. The server uses its history of pre-
vious transmissions as well as its history of acknowledgments
to determine which packets to transmit (or retransmit) at each
transmission opportunity. The Lagrange multiplier is fixed
for the entire presentation. Hence, the number of data units se-
lected at each transmission opportunity may vary, resulting in
a variable transmission rate during the presentation. However,
the average transmission rate during the presentation is well be-
haved and monotonically increases as decreases. As Fig. 8
shows, rate-distortion optimization without rate control outper-
forms the system with omniscient retransmissions by up to four
or more dB, and outperforms the system without any error con-
trol by up to an additional two dB, for a total gain up to six or
more dB.

System 4: Rate-distortion optimization with rate control. In
this system, the approximations described in Section V are used
to estimate for each data unit the Lagrange multiplier above
which the data unit is not selected for transmission. At each
transmission opportunity, the data unit with the highest such
is selected for transmission. The time until the next transmission
opportunity is the size of the selected data unit divided by the
desired transmission rate. As Fig. 8 shows, there is very little
penalty (a fraction of a dB) for using this computationally effi-
cient, constant-rate algorithm.

System 5: Rate-distortion bound. The lowest possible dis-
tortion at the receiver if it receives at most bits per second
on average during a clip is given by the operational distortion-
rate function , which can be computed from the source
sequence using the optimal pruning algorithm of [99]–[101].
Since with high probability bits per second
must be transmitted by the sender for the receiver to receive

bits per second ( being the capacity of an era-
sure channel with loss probability ), is the
the lowest possible distortion if the sender transmits bits per
second on average during the clip. We plot the corresponding
signal-to-noise ratio in Fig. 8, which shows that no streaming
system can achieve substantially better than the systems pre-
sented in this paper.

VII. CONCLUSION

This paper develops a framework for rate-distortion opti-
mized streaming, and within the framework develops practical
systems that essentially achieve the operational distortion-rate
function of the source at the capacity of the channel. Thus,
there do not exist systems that can perform significantly better.

One of the main lessons in the paper is that rate-distortion
optimized streaming of an entire presentation can be solved by
focusing on error-cost optimized transmission of a single data
unit in isolation. The set of choices for transmitting a single data
unit is the only difference between widely different transmission
scenarios, and hence rate-distortion optimized streaming can be
easily extended to different transmission scenarios, including
sender-driven or receiver-driven transmission over best-effort
networks, multiple overlay networks, integrated or differenti-
ated services networks, combined wireline/wireless networks,
and multiple access networks.
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