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One of the universal traits of microorganisms is their ability to form multicellular structures, the cells of which differentiate and
communicate via various signaling molecules. Reactive oxygen species (ROS), and hydrogen peroxide in particular, have recently
become well-established signaling molecules in higher eukaryotes, but still little is known about the regulatory functions of ROS
in microbial structures. Here we summarize current knowledge on the possible roles of ROS during the development of colonies
and biofilms, representatives of microbial multicellularity. In Saccharomyces cerevisiae colonies, ROS are predicted to participate
in regulatory events involved in the induction of ammonia signaling and later on in programmed cell death in the colony center.
While the latter process seems to be induced by the total ROS, the former event is likely to be regulated by ROS-homeostasis,
possibly H2O2-homeostasis between the cytosol and mitochondria. In Candida albicans biofilms, the predicted signaling role
of ROS is linked with quorum sensing molecule farnesol that significantly affects biofilm formation. In bacterial biofilms, ROS
induce genetic variability, promote cell death in specific biofilm regions, and possibly regulate biofilm development. Thus, the
number of examples suggesting ROS as signaling molecules and effectors in the development of microbial multicellularity is rapidly
increasing.

1. Introduction

Since the first observations of microorganisms by Antonie
van Leeuwenhoek and their isolation and cultivation by
Robert Koch, microorganisms have been traditionally viewed
as simple unicellular organisms. As a result of this pre-
sumption, all microbial studies have been conducted using
shaken liquid cultivations. However, during the last few
decades, it has become obvious that microorganisms are
able to form multicellular structures such as colonies and
biofilms. More and more examples of multicellularity have
been described, and it has become evident that multicellular
behavior, although initially considered an exception, is
instead the rule for microbes. Species of the most distant
clades of both Archea and Bacteria form biofilms, as did their
ancestors some 3.3 billion years ago, indicating that biofilm
formation is a universal and ancient bacterial trait [1].
Biofilms and colonies are also formed by eukaryotic microbes
(yeasts and molds) in different environments. Multicellular

communities are thus prevalent forms of microbial existence
in natural settings.

The structural complexity and degree of organization
of microbial multicellular structures vary from a simple
single-layer biofilm and simple aggregates to complicated
structures like the fruiting bodies of myxobacteria and slime
molds [2, 3], complex natural biofilms [4] and the colonies
of various microbes [5]. Importantly, cells within these
structures differentiate and use various signaling molecules
to coordinate and regulate the metabolism and development
of the community. All these characteristics, that is, structural
complexity, cellular differentiation, intercellular signaling
and coordinated development, are basic attributes of true
multicellularity. However, unlike conventional multicellular
organisms, microorganisms retained the ability to survive
and divide in their unicellular state.

The biofilm community gains a number of unique
properties, especially in terms of resistance to various
stresses and toxins. This is of particular importance, because
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the resistance of biofilms to medical treatment is an impor-
tant problem in current infection control. For this reason,
biofilms have become the subject of intensive research in
recent years [1, 6–10].

The production of reactive oxygen species (ROS) is an
inevitable consequence of an aerobic lifestyle. Because of
their reactive nature, ROS can cause oxidative damage to
DNA, proteins, lipids and other cellular components, and an
excess of them leads to extensive cell damage and eventually
cell death. To protect themselves from the deleterious effect
of ROS, cells have evolved many defensive mechanisms
including, for example, enzymes capable of ROS removal,
such as catalase, and various peroxidases for the removal
of hydrogen peroxide or superoxide dismutase, eliminating
superoxide radicals. Although ROS have been traditionally
viewed as purely harmful, a more complex picture of their
role in cellular physiology has been gradually emerging over
the last decade. Recent data have suggested that a certain level
of ROS is in fact beneficial to longevity through the adaptive
mechanism called hormesis [11, 12]. During hormesis, low
doses of stress or toxin induce mechanisms that protect the
organism against this stressor and evoke crossadaptation to
other stresses. In addition, a growing number of data suggest
that ROS participate in signaling pathways in plants, animals,
and fungi [13–15] and even in interspecies communication
[16], and it has also been proposed that they play a role in the
development of multicellularity [17]. Despite being widely
accepted as signaling molecules in higher organisms, little
is known about the role of ROS in microbial populations.
However, the last few years have produced intriguing new
data indicating that ROS-induced processes are involved in
differentiation and signaling in yeast and bacterial commu-
nities.

Here, we focus on the functions of ROS in multicel-
lular communities of unicellular yeast and bacteria. We
summarize current knowledge on the possible roles of
ROS and stress defense in the development of S. cerevisiae
colonies. In the second part of this review, we summarize
current knowledge on the role of oxidative stress defense
and endogenous ROS production in other well-studied
microbial multicellular structures—Candida albicans and
bacterial biofilms.

2. Saccharomyces cerevisiae Colonies

The yeast S. cerevisiae is one of the most studied model
organisms in genetics and molecular biology. It is also
widely used for studies on the mechanisms of cellular aging,
longevity, stress resistance, and adaptation. However, little
is known about yeast life within multicellular communities
and only a few groups (including ours) have performed pilot
studies that regard development, ageing, adaptation, and
differentiation of both laboratory strain colonies (e.g., [18–
22]; see also below) and biofilm colonies resembling natural
biofilms in various aspects (e.g., [23, 24]).

2.1. Signaling, Stress Defense, and Colony Differentiation.
Yeast colonies growing on a complex agar medium with a

nonfermentable carbon source undergo several developmen-
tal stages characterized by changes in the pH of the surround-
ing medium, shifting from acidic to alkali and vice versa [25]
(Figure 1). Alkalization of the medium is accompanied by
the release of volatile ammonia that can act as a signaling
molecule that is able to induce alkalization and ammonia
production in neighboring colonies. Thus the development
of colonies is synchronized [26]. After several days, the
ammonia production declines and colonies enter the second
acidic phase. Extensive transcriptional changes occur during
the transition from the first acidic to the alkali phase (which
occurs between day 7 and 11 of colony development) [27]
indicating metabolic reprogramming from a typical respi-
rative metabolism to a different, not yet fully characterized
metabolic program. Among others, genes involved in the
mitochondrial TCA cycle and oxidative phosphorylation are
repressed while other metabolic genes (e.g., peroxisomal β-
oxidation, amino acid metabolic genes, methyl glyoxylate
cycle) are induced. Interestingly, in parallel to metabolic
reprogramming, the repression of a group of genes that
belong to environmental stress response (ESR) genes [28]
was observed. These genes also include important players in
oxidative stress defense CTT1, SOD1, and CCP1 encoding
for cytosolic catalase, cytosolic superoxide dismutase, and
mitochondrial cytochrome c peroxidase, respectively, and a
master regulator of ESR genes, MSN4 [27]. Later on during
the alkali-to-2nd-acidic-phase transition, some ESR genes,
for example, CTT1, are derepressed, while the expression of
others such as SOD1 is kept lower than in the 1st acidic phase.
Expression changes agreed with the levels of the enzyme
activities. Ctt1p and Sod1p activities decrease during the
alkali phase and increase again after the alkali phase has
turned into the second acidic phase [19, 22].

In parallel with metabolic reprogramming, the cells of a
colony population significantly diversify. Until the beginning
of the alkali phase and ammonia production, the colony
population is relatively homogeneous. Upon entering the
alkali phase, nondividing cells in the colony, which account
for the vast majority of the colony population, start to
differentiate both in a horizontal and vertical direction. This
horizontal diversification leads to the emergence of a cell
population of nondividing or slowly dividing chronologically
aged cells in the colony center and to the cell population
of the colony periphery, where colony accrual occurs and a
significant number of cells still divide. Notable physiological
differences were found between central and marginal cells in
terms of both their metabolism and stress-related features.
First, central cells produce levels of ROS several times higher
than cells from the colony margin and exhibit some features
of programmed cell death, also in contrast to cells from the
colony margin [19, 29]. Secondly, central cells maintain a
relatively high activity of oxidative stress defense enzymes
Sod1p, Sod2p, and Ctt1p during the alkali phase, while
a significant decrease in these activities was observed in
marginal cells [19]. Nevertheless, their increased antioxidant
capacity obviously does not protect some of the central
cells from high ROS production and cell death. Thirdly,
changes in carbon metabolism typical for the acidic-to-alkali
transition are mainly induced in the marginal cells [19].
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Figure 1: Regulatory role of H2O2/ROS in the development of yeast colony. Below: development of S. cerevisiae colony, which passes through
1st acidic, alkali and 2nd acidic. Above: periods of hypothesized H2O2 and ROS involvement in the regulation of colony development.
Colonies were photographed with a Hitachi HV-C20 color camera with Cosmicar lenses, Kaiser Prolite illumination system, and NIS
Elements software (Laboratory Imaging).

Ammonia signaling seems to be important for this
differentiation. A detailed study of sok2∆ strain, Sok2p being
a transcription factor involved in various signaling events
regulated by the Ras-cAMP-PKA pathway, showed that the
center-margin differences described in wild type colonies are
diminished or absent in colonies of this ammonia-signaling-
deficient strain [30]. Surprisingly, a very similar colony
phenotype in terms of differentiation was observed in strains
lacking mitochondrial superoxide dismutase Sod2p and
cytosolic catalase Ctt1p, both of which diminish ammonia
signaling [19]. However, the absence of cytosolic superoxide
dismutase Sod1p has a different phenotype. Colonies of the
sod1∆ strain produce ammonia at the same time and even
in slightly larger quantities than the wild type with colony
differentiation even more pronounced than in the wild type
[19].

The vertical differentiation observed in the central part
of the colony results in two cell layers, the upper and the
lower, composed of cells possessing completely different
physiologies [18]. Cells on the upper layer are multiple-stress
resistant and long-living, while the cells of the lower layer
produce more ROS, despite activating the expression of some
stress-defense genes, and slowly die.

2.2. Role of Stress-Defense Mechanisms in Colonies: Direct
Defense or Regulation? Some of the results obtained using
colonial populations are in stark contrast to studies on yeast
liquid cultivations under starvation conditions, where the
indispensability of ESR genes (including those encoding
stress defense enzymes) and genes involved in mitochondrial
respiration for the long-term survival was shown [31–
33]. For example, strains deficient in cytosolic superoxide
dismutase Sod1p are known to have a severe oxygen-
dependent growth defects, including lysine and methionine

auxotrophies as a consequence of oxidative damage to the
metabolic pathways synthesizing these amino acids [34].
The deletion of SOD1 also dramatically decreases survival
during aging [35]. These defects put selective pressure on the
emergence of suppressor mutations compensating for these
defects [36, 37]. On the other hand, the role of mitochondrial
Sod2p and Ctt1p in the survival and longevity of liquid
yeast populations is less evident. The absence of Sod2p has
little effect during fermentative growth but its importance
increases when growing on respiratory substrates, consistent
with the presumed role of Sod2p in removing the superoxide
radicals resulting from mitochondrial respiration [35]. The
role of cytosolic catalase seems ambiguous, since its deletion
leads to lower stress protection and a decreased ability to
adapt to stress conditions on the one hand [38, 39], but also
to increased survival during chronological aging on the other
[40]. On the whole, antioxidant protection, or at least some
of its components, seems to be important for the long-term
survival of yeast populations in shaken liquid cultures.

The situation in colonies is almost the opposite. While
sod2∆ and ctt1∆ colonies are incapable of ammonia signal-
ing, sufficient metabolic reprogramming and differentiation
and, consequently, their marginal cell population exhibit
decreased survival, sod1∆ colonies produce ammonia, dif-
ferentiate and survive in the same manner as wild-type
colonies. In addition, sod1∆ colonies were almost free of
cells with mutations suppressing the stress-sensitivity of
sod1∆ in liquid cultivations. Altogether, sod1∆, sod2∆, and
ctt1∆ behavior as well as the observed drop in some stress-
defense enzyme activities during the alkali phase suggests
that it is alkalization, ammonia production, and metabolic
reprogramming, not stress defense and direct removal of
radicals, that matter in colony differentiation and the survival
of part of the population [19, 41]. In addition, from day 5
onwards, the ROS level in the colony is considerably lower
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than that in liquid cultivations ([19] and unpublished data)
in both wild-type colonies and colonies of the sod1∆, sod2∆
and ctt1∆ strains.

Why do sod1∆ colonies develop normally with even more
pronounced differentiation than wild-type colonies, while
the deletion of some other genes involved in antioxidative
defense (SOD2, CTT1) is deleterious to the colony’s ability
to produce ammonia and differentiate? One possibility is
that a ROS signaling pathway exists that regulates colony
development (Figure 2). This pathway would be activated in
wild-type colonies at a particular point in their development
and could regulate the beginning of ammonia production
(Figure 1). As hypothesized in Figure 2, the signal would
be stronger in sod1∆ colonies, but weaker in ctt1∆ colonies
and even weaker or absent in sod2∆ colonies. The observed
phenotypes cannot be simply explained by an increase or
decrease in a particular ROS concentration and some more
complex mechanism is likely to be involved. Superoxide dis-
mutases catalyze the dismutation of superoxide to hydrogen
peroxide and oxygen and so participate in the interconver-
sion of various ROS types. Thus the absence of either of
cytosolic or mitochondrial SOD would lead to an increase in
superoxide concentration and, simultaneously, to a decrease
in H2O2 concentration in the respective compartment. This
leads to alternation in the homeostasis and/or ratio of
H2O2 concentration between the mitochondrial matrix and
cytosol. In contrast to superoxide, H2O2 is relatively stable
and can penetrate into other cellular compartments through
the membranes. Changes in its production in different
compartments thus lead to changes in the H2O2 gradients
and homeostasis and/or H2O2 concentration ratio between
the mitochondrial matrix and cytosol. We propose that
this ratio, rather than the absolute concentration of any
of the ROS, is the signal that leads to some of the initial
changes resulting in ammonia production, alkalization and
to the physiological changes connected with it. This model
is consistent with the phenotype of ctt1∆ colonies, since
the absence of this enzyme lowers the mitochondrial-to-
cytosolic H2O2 ratio, similarly to the sod2∆ strain. A possible
mode of action of H2O2 includes the regulation of protein
function through peroxiredoxins and thioredoxins, protein
modifications by S-glutathiolation and direct inactivation by
H2O2 [13, 42, 43].

Since it has been shown that different ROS trigger
different adaptive responses [44], there clearly must be
multiple ROS sensing pathways. That different ROS have
different effects was shown in studies of the hormetic effect
of superoxide and hydrogen peroxide on liquid cultivations.
Both oxidants increase the longevity of the population
when applied at moderate concentrations. While superoxide
only induces longevity when applied during the logarithmic
phase of growth, in contrast H2O2 only induces longevity
when applied to stationary cultures [40, 45]. This would
be consistent with its role in chronologically aging colonies,
as proposed above. Moreover, evidence from plant research
indicates that the ROS signal is often generated in short
pulses [14]. This indicates that not only the amount and type
of ROS, but also the precise timing of the ROS signal could
be important.

Alternatively, ROS-scavenging enzymes could possess
other regulatory functions, possibly independent of their
antioxidant properties. For example, the function of the
voltage-dependent anion channel (VDAC), a porin of the
mitochondrial outer membrane, is diminished in the absence
of Sod1p [46]. VDAC plays an important role in regu-
lating mitochondrial activity and apoptosis [47] and its
closing leads to a decrease in metabolite exchange and
communication between the mitochondrial intermembrane
space and the cytosol [48, 49]. The absence of Sod1p also
affects metabolic regulation in cells [50]. Deletion of the
SOD1 gene causes a lessening of glucose repression, an
important regulatory mechanism affecting nearly all aspects
of S. cerevisiae metabolism. Moreover, sod1∆ cells have an
increased level of mitochondrial biomass when growing
in both media, with a repressing or nonrepressing carbon
source. Both superoxide dismutases, Sod1p and Sod2p,
were identified in a large-scale protein-protein interaction
study as potential regulators of DNA repair and chromatin
remodeling [51].

2.3. ROS in Programmed Cell Death in Colony. Beside their
possible role in signaling leading to ammonia production
and the start of colony differentiation, ROS seem to play an
important role in the further development of differentiated
cells (Figure 1). Programmed cell death in yeast can be
induced by various signals, but their common factor is an
increased ROS concentration (for reviews on yeast apoptosis,
see [52–55]). ROS therefore seem to be the executioners of
programmed cell death in yeast. As described above, cells in
the center of a differentiated colony undergo programmed
cell death, while cells at the colony margin are healthy and
free of ROS [19, 29]. In contrast, the decreased center-margin
differentiation observed in the colonies of non-ammonia-
producing strains results in an increased cell death rate at
the colony margin [19, 29]. A relatively high production
of ROS occurs in the center of differentiated ammonia-
producing wild-type and sod1∆ colonies. Notably, oxidative-
stress-defense-deficient mutants with a defect in ammonia
production (sod2∆ and ctt1∆) do not exhibit increased ROS
production in the colony center [19]. We propose that ROS
are produced by the central cells in response to ammonia
and/or alkalization and their production leads to cell death.
ROS production in these cells is probably not a consequence
of a low antioxidant capacity of the central cells, but rather
part of a developmental program of the colony.

The dead cells in the colony center are likely to release
nutrients that are then used by the cells at the edge of
the colony to grow and survive [29, 56]. In addition, dead
cells not only release nutrients from their biomass, but also
stop consuming from the common nutrient pool. Since cells
in the margin of the colony are younger and have better
prospects of colonizing other localities, it makes sense if
the colony invests in these prosperous cells at the expense
of central cells. Opponents of the concept of programmed
cell death in microorganisms could argue that cell death
could bring no advantage for a unicellular organism, since
the whole organism (one cell) dies and so this trait could



Oxidative Medicine and Cellular Longevity 5

Sod1p

Sod2p

Ctt1p

Sod2p

Wild type

Mitochondria

Cytosol

sod1∆

sod2∆

ctt1∆

Colony NH3 signaling

and differentiation

Signal

Signal

Signal

Signal

mitochondrial cytosolic

H2O2 homeostasis in

wild-type colony

H2O2

H2O2

H2O2

H2O2

mitochondrial

H2O2

H2O2

cytosolic

H2O2

mitochondrial

H2O2

cytosolic

H2O2

mitochondrial

H2O2

cytosolic

H2O2

H2O2

H2O2

H2O2

H2O2

H2O2

H2O + O2

H2O + O2

H2O + O2

H2O + O2

Sod2p

Sod2p

Sod1p

Sod1p

Sod1p

Ctt1p

Ctt1p

Ctt1p

?

?

?

?

O•−

2

O•−

2

O•−

2

O•−

2

O•−

2

O•−

2

O•−

2

O•−

2

Figure 2: Hypothesis on the effect of H2O2 balance on induction of ammonia signaling. Left: predictions of changes in H2O2 concentration
in cytosol and mitochondria of wild type and three oxidative-stress-defense-deficient strains based on reactions catalyzed by three main stress
defense enzymes, cytosolic and mitochondrial superoxide dismutase Sod1p and Sod2p, respectively, and cytosolic catalase Ctt1p. Orange
arrows indicate predicted H2O2 gradient between mitochondria and cytosol in wild-type strain and the three mutants. H2O2 gradient in
wild-type cells is proposed on the basis of the prediction that mitochondria are the major site of ROS production in starving respiring
cells from acidic-phase colonies. Right: the balances compare the mitochondrial-cytosolic H2O2-homeostasis of the particular mutant strain
and the wild-type colony. The H2O2 imbalance towards the higher H2O2 concentration in the cytosol abolishes the induction of ammonia
signaling and proper colony development and differentiation.

not be a subject to natural selection. However, when we
consider unicellular organisms in terms of populations, it
makes sense that the death of some cells could increase the
prospects for survival of other cells in the same population.
Moreover, microbial communities are often of clonal origin
in nature; that is, they originate from one or a few cells and
thus it is highly probable that the nutrients released by the
sacrificed cells would benefit the kin of these cells, making
this programmed cell death evolutionarily sustainable.

3. Candida Biofilms

Biofilms formed by Candida sp. can be serious problems
in medical treatment, as they are usually highly resistant to
extracellular toxins and drugs. ROS presumably play some
role in Candida biofilms. Transcriptomic studies revealed
that the biofilm population increases the expression of stress-
defense genes, in particular those involved in combating
oxidative stress, when compared to planktonic cultures [57].
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Similar results were confirmed at the proteomic level [58].
The ROS level is dramatically decreased in biofilm when
compared to a planktonic cultivation [58]. Whether this is
a consequence of the activation of antioxidant mechanisms
in biofilms or whether life in the biofilm per se results in
a decreased ROS production (as with life in a colony) is
unclear. It seems that a common mechanism for oxidative
stress resistance and multicellular behavior exists in C. albi-
cans, since cell adhesion, biofilm formation, and oxidative
stress resistance are influenced by a common factor, the
cell wall protein Hwp2p [59]. As the release of ROS during
phagocyte respiratory burst is a crucial part of the immune
response, adaptation to oxidative stress and oxidative stress
defense enzymes help the yeast cells to survive respiratory
burst and are thus important factors in pathogen virulence
[60]. The increased oxidative stress defense of biofilms could
also be responsible for their increased resistance to antifungal
agents such as azoles, the toxicity of which involves the
production of ROS [61].

3.1. Farnesol Signaling and ROS. Intercellular signaling by
farnesol is involved in the induction of oxidative stress
defense. Farnesol is a sesquiterpene alcohol produced by
Candida sp. that acts as a quorum sensing (QS) molecule
[62]. Quorum sensing is a synchronized transcriptional
response of a microbial population to the presence of a small
molecule called an autoinducer. Given that the autoinducer
is produced continuously by all cells in the population, its
concentration is proportional to the cell density.

Farnesol in C. albicans was shown to inhibit hyphae
formation [63], to inhibit biofilm growth [64], to induce
programmed cell death [65], to evoke ROS production
[66], and to promote resistance to oxidative stress [67].
The latter involves farnesol-induced catalase expression via
inhibition of the Ras-cAMP pathway [66] and, in parallel,
farnesol-induced ROS production, which adapts cells to
oxidative stress and induces protective mechanisms [68].
Farnesol thus acts as an intercellular adaptive signal that
confers oxidative stress resistance to the cells within the
same population. It is possible that the farnesol-induced
high level of ROS and membrane-permeable hydrogen
peroxide, in particular, participate in the farnesol signaling
pathway, thus behaving as another intercellular signaling
molecule. The possible signaling role of H2O2 in C. albicans
is illustrated by the findings that low concentrations of
hydrogen peroxide can induce the yeast-to-hyphal morpho-
logical transition [69], while higher concentrations induce
programmed cell death [70, 71]. It was shown that H2O2

activates the AP-1-like stress-responsive transcription factor
Cap1p, the stress-activated protein kinase Hog1p and also the
checkpoint kinase Rad53p, which regulates hyperpolarized
bud growth and filamentation [72–74]. Interestingly, these
H2O2-regulated pathways are regulated and coordinated by
the antioxidant enzyme thioredoxin, which appears to be a
master regulator of redox signaling in C. albicans [72].

Farnesol also induces ROS production in other fungal
and bacterial species [75–77]. Farnesol can thus act like an
antibiotic, killing competing microbes and, in parallel, it

induces mechanisms (e.g., cAMP-mediated oxidative stress
adaptation) that protect the producing cells from farnesol’s
toxic effect. A similar strategy was described in killer toxins
produced by different yeast species [78]. Different outcomes
described for farnesol signaling (i.e., adaptation, differen-
tiation or apoptotic cell death) could be the consequences
of various concentrations of farnesol and combination of
the farnesol signal with other factors, for example, other
signaling molecules, cell physiology, nutrient status, and cell
location in the biofilm.

4. Bacterial Biofilms

The stages of biofilm formation, that is, attachment, matura-
tion, and dispersal of the bacterial biofilm, are all regulated
by environmental cues as well as by intercellular signaling
molecules [6, 79]. The role of various QS signals, indole,
and polyamine signaling in the regulation of biofilm devel-
opment has been described [80–82]. Beside these signaling
molecules, ROS are another possible signal involved in
biofilm formation (Figure 3). The role of ROS in cell death
and the generation of genetic variants within a biofilm is
well-described, while ROS’ signaling function and cross-
talk with other signaling pathways as well as their role in
microbe-microbe, host-pathogen, or host-symbiont types of
interactions are slowly emerging but mostly remain to be
discovered.

4.1. ROS-Induced Diversity and Differentiation of Cells within
a Biofilm. Many bacterial species develop genetic variability
when growing within a biofilm, but not during cultivations
of planktonic cells [83–86]. Variability was demonstrated
as the frequency of the different colony morphotypes,
resistance to antibiotics, swimming and sliding motility
and exopolysaccharide production. Since different environ-
mental conditions require different cell adaptations, genetic
variability increases the chances of the community surviving
under a broader spectrum of conditions. In the biofilms
of Pseudomonas aeruginosa, the emergence of their genetic
variability is dependent on oxidative-stress-induced DNA
double-strand breaks and on their repair by the RecA
system, which introduces genome rearrangements [84].
Interestingly, increasing resistance to oxidative stress or
adding an antioxidant to the medium significantly reduced
cell variance in the biofilm, while deletion of the catalase
gene increased the variance [84]. ROS- and RecA-dependent
biofilm cell variation was also described in Listeria mono-
cytogenes [87]. Similar results were obtained from studies
of Staphylococcus pneumoniae biofilm phenotypic variation.
In this case, the “suicide” gene spxB encodes for pyruvate
oxidase, which produces high amounts of hydrogen peroxide
and which is responsible for the unusually high death rate
in S. pneumoniae stationary cultures and possibly also in
biofilms [88]. Likewise, SpxB-mediated production of H2O2

induces the cell death of about 10% of the population,
leading to the release of DNA from the cells in two
oral bacterial species, Streptococcus sanguinis and Strepto-
coccus gordonii [89, 90]. This extracellular DNA (eDNA)
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is an important part of the biofilm extracellular matrix,
it enhances cell-cell adhesion, regulates biofilm dispersal,
serves as a nutrient source, and is available to be taken
up and incorporated into the chromosome by competent
cells [91–95]. Given that streptococcal biofilms contain a
high percentage of competent cells [96], eDNA release could
be an important factor in creating genetic variability in
biofilms. Moreover, the mutagenic activity of H2O2 [97]
towards eDNA even increases this variability. Interestingly,
spxB expression is controlled by the catabolic repression
regulator CcpA, linking the roles of metabolism and H2O2

in biofilm development [98]. Hydrogen-peroxide-induced
genetic variation and cell death were also reported in biofilms
of Pseudoalteromonas tunicata, Marinomonas mediterranea,
Caulobacter crescentus, and Chromobacterium violaceum,
depending on the presence of the lysine oxidase encoded
by the alpP gene and its homologues [99]. This hydrogen
peroxide-producing enzyme is common among bacterial
species, which makes variability and cell death regulated by
ROS a common bacterial trait. Interestingly, AlpP-mediated
cell death is also important for dispersal of the biofilm,
that is, the release of planktonic cells from the biofilm. Cell
death in the biofilm center presumably provides nutrients
that increase the size, metabolic activity, and phenotypic
variability of the dispersed cells [100]. Remarkably, besides
H2O2, lysine oxidase also produces ammonia, but its possible
signaling function in biofilms has not been explored. P.
aeruginosa biofilm dispersal and cell differentiation are also
regulated by the signaling molecule nitric oxide, a radical
that could give rise to a spectrum of oxidants called reactive
nitrogen species (RNS). Low concentrations of NO caused
P. aeruginosa biofilm dispersal and enhanced swimming and
swarming cell motilities, while higher NO concentrations
induced cell death [101]. At least some of these effects are
probably induced by NO-derived RNS, as RNS were detected
in the biofilm. NO is produced by P. aeruginosa cells under
anaerobic conditions through anaerobic respiration from
nitrates and nitrites and is further reduced by NO reductase.
Since the interior of a P. aeruginosa biofilm is a hypoxic
environment [102, 103], the level of anaerobic NO and RNS
production should be proportional to biofilm depth. In this
way, cell position within the biofilm could be sensed and
dispersal and cell death could be coregulated with biofilm
growth [101].

Endogenous ROS production in the biofilm is the source
of the high variability of biofilm cells, and ROS could
act as a signal that mediates the cell death of a sensitive
subpopulation in the deeper layers of the biofilm and
metabolic differentiation in the upper part of the biofilm.
The bacterial biofilm communities thus strikingly resemble
metabolic differentiation and ammonia-regulated cell death
in S. cerevisiae colonies described above. Whether ROS-
mediated cell death is part of programmed colony/biofilm
development or it is simply the inability of a sensitive
subpopulation to withstand the accumulation of toxic
byproducts of metabolism remains an unanswered question.
The findings from yeast colonies and bacterial biofilms
showing that cell death in one subpopulation leads to
metabolic activity and variability in the other subpopulation,
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Figure 3: Inputs and outputs of ROS production in biofilms. Left:
summary of processes inducing ROS production. Right: processes
affected by ROS.

and thus increase fitness of the population as a whole, argue
for the former option.

4.2. ROS-Dependent Signaling in Biofilm. Biofilm develop-
ment is probably governed by both environmental cues as
well as by intercellular signaling molecules. The best-studied
intercellular signal is QS, which also plays a role in biofilm
formation and development [6, 79]. A variety of autoinducer
molecules have been identified in bacteria, of which the
most studied are the species-specific acylated homoserine
lactones (AHLs) found in many Gram-negative bacteria and
the furanosyl borate ester AI-2 produced and recognized
by both Gram-positive and Gram-negative species. It has
been proposed that many autoinducers are able to induce
ROS production, making ROS possible downstream signals
or effectors of QS pathways [104]. QS plays an important
role in the processes of biofilm formation and dispersal.
For example, QS signaling through AI-2 in Vibrio cholerae,
Listeria monocytogenes, Bacillus cereus, and Staphylococcus
epidermidiss and the autoinducer protein AIP in Staphylococ-
cus aureus inhibit biofilm formation. In contrast, a positive
effect on biofilm formation was described for AI-2 signaling
in Bacillus subtilis, Lactobacillus rhamnosus as well as in AHL-
mediated QS in P. aeruginosa [79, 105]. Interestingly, ROS
seem to be able to modulate quorum sensing in various
ways. ROS can inhibit autoinducer peptide signaling in S.
aureus in vitro [106]. In a study of the mouse skin infection
model, ROS-producing enzymes of the immune system were
indispensable for defense against infection by the wild-
type S. aureus strain, but not necessary for defense against
a QS-deficient strain, indicating that QS molecules could
be a target for oxidation by the immune system in vivo
[106]. Superoxide also decreases the expression of QS locus
comQXP in B. subtilis [107]. On the other hand, ROS have
the potential to increase the QS signal, as certain derivates of
AHL oxidation by ROS exhibit increased biological activity
[108]. In addition, QS regulates the expression of oxidative
stress defense genes in various bacterial species [109–112].

Additional indications of ROS-dependent signaling path-
ways regulating biofilm growth have recently appeared.
Enterococcus faecalis biofilm formation is dependent on
the presence of the xdh gene, presumably encoding for a
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selenoprotein xanthine dehydrogenase involved in purine
metabolism and uric acid utilization and possibly evoking
ROS production [113]. Cells in an E. faecalis biofilm produce
high levels of ROS via a mechanism that is reliant on the
presence of xanthine dehydrogenase, its cofactors selenium
and molybdenum and its substrate uric acid. An intriguing
model was proposed, in which uric acid in the environment
is metabolized by E. faecalis cells with concomitant H2O2

production, which in turn induces biofilm formation. H2O2

thus would be a metabolic byproduct with a signaling
function. Since uric acid is abundant in blood and urine,
that is, preferred environments for E. faecalis, it makes sense
that detecting this metabolite triggers the formation of the
biofilm to successfully colonize the host [113].

In multispecies oral biofilms, streptococci produce H2O2

from pyruvate as a mean of biochemical warfare against
other species, as well as a regulator of its own development as
described above. However, the oral pathogen Aggregatibacter
actinomycetemcomitans uses this streptococci-produced H2O2

as a signal that activates the expression of the compliment
resistance protein ApiA, which helps A. actinomycetemcomi-
tans to resist the host’s nonspecific immune response [114].

Some results suggest that ROS play a role in modulating
the indole signaling pathway. Indole acts as an intercellular
signal in many bacterial species [80]. Similarly to other
signaling molecules, indole even induces a response in
some species that do not synthesize it, and thus acts as an
interspecies signaling molecule. In Escherichia coli, indole,
which is synthetized by the enzymes coded by the tnaAL
operon, inhibits biofilm growth regulates pathogenicity and
the expression of multidrug resistance genes [115, 116].
Among other signals, tnaA expression is induced by ROS
and repressed by growth in a biofilm [117, 118]. Indole
was proposed to act as an oxidant in membranes and
to induce membrane rearrangements [119]. Furthermore,
some antibiotics induce indole production, which conse-
quently inhibits biofilm formation in E. coli, via a mechanism
involving hydrogen peroxide [120], showing that indole
signaling and H2O2 cooperate in a pathway inhibiting
biofilm growth. The opposite results, that is, indole-induced
biofilm formation in E. coli and other species, were reported
by others [121].

4.3. Biofilms and Oxidative Stress Adaptation. As with C.
albicans biofilms and S. cerevisiae colonies, there is obvi-
ously a connection between the life of bacteria within a
multicellular structure (biofilm) and their adaptation to
oxidative stress. A number of genes have been identified
that are important for both biofilm growth and oxidative
stress resistance. Examples are the transcriptional repressor
Rex and trigger factor RpoS in Streptococcus mutans [122,
123], in-silico-identified genes uspE and gadX in E. coli
[124], posttranslational regulator CsrA in Campylobacter
jejuni [125] and two-component systems GacS-GacA in
Pseudomonas sp. and ColR-ColS in Xanthomonas citri [126,
127]. The redox-sensitive DNA-binding protein OxyR is a
well-studied transcription regulator that mediates oxidative
stress response in many Gram-negative bacteria [128]. OxyR

is activated by forming an intramolecular disulfide bond
upon reaction with H2O2, which leads to the expression
of OxyR-regulated genes. The role of OxyR in biofilm
formation has been described in several bacterial species.
In E. coli, OxyR induces biofilm formation by activating
expression of the surface adhesin Ag43, which is responsible
for cell-to-cell attachment and surface adherence [129].
Similarly, OxyR regulates cell attachment by increasing the
expression of adherent fimbriae in Serratia marcescens and
Klebsiella pneumoniae [130, 131] and OxyR’s function in
biofilm formation was also reported in Neisseria gonorrhoeae
and Tannerella forsythia [132, 133].

5. Conclusions

Both endogenous and exogenous reactive oxygen species
are important stress factors in the life of microorganisms.
Endogenous ROS production is an inevitable consequence
of microbial life in the presence of oxygen and can be even
potentiated by some antibiotics that induce ROS production
in sensitive microbes [134–136]. Exogenous ROS can be
encountered during immune response to the presence of
microbes inside the animal or plant body. In addition,
many bacterial species release ROS as an oxidative weapon
against competitors in multispecies populations. In these
cases, ROS are produced by specialized enzymes. ROS are
thus widely used as a means of biochemical warfare in
nature. In order to defend against the deleterious effects
of ROS, microorganisms have evolved efficient mechanisms
of ROS removal. On the other hand, various pieces of
data suggest that ROS could play an active and important
role in processes like growth autoinhibition, cell death, and
biofilm/colony development in both yeast and bacteria. In
such cases, the enzymes producing ROS are tightly regulated
as part of a biofilm developmental program and ROS are
the effectors of some intrinsic regulation. Finally, ROS
can act as signaling molecules either by targeting specific
signaling pathways (e.g., kinases or transcription factors)
or by, for example, modifying other signaling molecules
such as quorum sensing factors. The large number of ROS-
producing enzymes and the many different responses to
ROS suggest that ROS-mediated processes are universal
in the microbial world. Improving our understanding of
the regulation and signaling driven by ROS could thus
provide deeper insight into complex biological processes
including the formation of biofilms, multicellular structures
with important implications in medicine and other fields.
The possibility of interfering with the signaling involved in
biofilm formation or biofilm dispersal with ROS-producing
or ROS-scavenging agents is especially attractive.
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“Oxidative stress involved in the antibacterial action of
different antibiotics,” Biochemical and Biophysical Research
Communications, vol. 317, no. 2, pp. 605–609, 2004.

[135] D. J. Dwyer, M. A. Kohanski, and J. J. Collins, “Role of reactive
oxygen species in antibiotic action and resistance,” Current
Opinion in Microbiology, vol. 12, no. 5, pp. 482–489, 2009.

[136] M. A. Kohanski, D. J. Dwyer, B. Hayete, C. A. Lawrence, and J.
J. Collins, “A common mechanism of cellular death induced
by bactericidal antibiotics,” Cell, vol. 130, no. 5, pp. 797–810,
2007.



Submit your manuscripts at

http://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 

Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment

AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 

Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


