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Abstract

Recognition of human speech has long been a hot topic among artificial intelligence and signal processing researches. Most of current policies

for this subject are based on extraction of precise features of voice signal and trying tomake most out of them by heavy computations. But this focus

on signal details has resulted in too much sensitivity to noise and as a result, the necessity of complex noise detection and removal algorithms,

which composes a trade-off between fast or noise robust recognition.

This paper presents a novel approach to speech recognition using fuzzy modeling and decision making that ignores noise instead of its detection

and removal. To do so, the speech spectrogram is converted into a fuzzy linguistic description and this description is used instead of precise acoustic

features. During the training period, a genetic algorithm finds appropriate definitions for phonemes, and when these definitions are ready, a simple

novel operator consisting of low cost functions such as Max, Min, and Average makes the recognition. The approach is tested on a standard speech

database and is compared with Hidden Markov model recognition system with MFCC features as a widely used speech recognition approach.

# 2006 Published by Elsevier B.V.
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1. Introduction

Recognition of human speech is a problem with many

solutions, but still open because none of the current methods are

fast and precise enough to be comparable with recognition

capability of human beings. Several methods exist for

recognition of human phonemes such as Hidden Markov

models [1], time delay neural networks [2], support vector

classifiers with HMM [9], independent component analysis

[16], HMM and neural-network hybrid [23], and more. A

common problem of many speech-processing approaches is the

very high sensitivity to noise or environmental effects, which

results in the necessity of noise detector and eliminator

algorithms and in turn, slow and complex speech recognizer

systems.

There are two motivations to start a fuzzy-logic approach

towards the problem of creating a fast and accurate speech

recognizer: First, as we humans do [8], instead of detection and

removal of the noise, a speech recognition system can just

ignore it and fuzzy inference and pattern recognition is a very

suitable tool for robust results in existence of high noise level.

Second, as Zadeh states [26], we have experienced that more

precise computations in cognitive tasks does not necessarily

result in more precise results and it may even result in poorer

answers and this might be due to the very fuzzy nature of

cognitive problems.

Based on these ideas, a fuzzy-logic approach to cognitive

tasks such as speech recognition seems to be very suitable and

there are many contributions to fuzzy speech recognition. But

in most of these approaches, fuzzy logic is just a high-level

decision maker, which makes the final step of recognition or is

just used as a means of integrating data from different sources

while the system still works with conventional precise acoustic

data of speech signals. For example, in [19,20], the inputs of a

conventional neural network are replaced with fuzzy numbers

and it is used on a standard speech database to recognize speech

samples. As indicated before, the method does not make any

specific fuzzy data conversion and has only used fuzzy

techniques to make the neural network more robust versus

small perturbations. Very much the same [18], use fuzzy

numbers as the inputs of a dynamic programming approach to

compare signal patterns with previously learned word patterns.

Again, the only contribution of fuzzy is in making DP inputs

robust to small changes. In [4,5], a general fuzzy integrator is

used to combine the different evidences in an automatic speech
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recognition process. As it is specified in those papers, they have

used conventional speech features for decision-making and the

only role of fuzzy is in combining the final decisions.

Also in [12], a general fuzzy pattern recognizer system tries

to separate specific utterances of speech signal using standard

acoustic parameters, again fuzzy is only used as the final pattern

recognizer and the speech data is the same as other approaches

[13,14,25,6,15,17] are other samples of neuro-fuzzy

approaches to speech recognition, again using standard speech

signal features and a neural network as the final decision maker.

And at last [25,3], add fuzzy numbers to Hidden Markov model

methods to make the input data immune to noise.

Hence, it can be concluded that despite the existence of

numerous cited speech recognizers that use fuzzy logic in some

part of their decision making, there is no approach that is

designed based on fuzzy thinking and they can all be called

fuzzifications of an existing crisp approach. To have a speech

recognizer with fuzzy soul, this paper presents an approach to

phoneme recognition which converts the speech spectrogram

into a fuzzy linguistic description at the first step and uses this

representation instead of conventional precise acoustic data

during the training and recognition stages. To do so, different

phonemes are represented with linguistic terms and the

recognition is done by a simple operator using low cost

functions such as maximum, minimum, and average.

The rest of this paper is organized as follows: In the next two

sections, fuzzy representation of speech data and recognition

approach are discussed, then, following the training algorithm

details come the experimental results and comparisons and at

last come the conclusions and future works.

2. Linguistic representation of speech spectrogram

Most speech processing systems use the spectrogram of

speech signal as their initial source of data. The spectrogram of

speech signal is a two-dimensional image which presents the

amplitude of each available frequency at each time sample of

the given voice signal. Fig. 1 presents a voice signal and Fig. 2

presents its spectrogram. As it is seen, in a normal

representation of voice signal (Fig. 1), we just have the signal

amplitude at each time frame (each sample). Similarly, the time

axis of the spectrogram (Fig. 2), represents time, but the vertical

axis represents the frequencies and the brightness of each point

specifies the amplitude of that certain frequency at that time.

As the human auditory system recognizes the lower

frequency signals with higher resolution in compare with

higher frequencies, the vertical axis of the spectrogram is

usually stretched so that it presents low frequencies with more

precision and high frequencies with less. A standard method for

this stretching is the Mel scale [24], which stretches the

frequency based on an experimental diagram (presented in

Fig. 3). After this stretching, the spectrogram of Fig. 2 is

represented as in Fig. 4.

The source data for our model is the Mel-stretched

spectrogram of the voice signal. The first step of both

recognition and training processes is the conversion of this

spectrogram into a fuzzy linguistic description. The fuzzifica-

tion approach is based on three major ideas:

(1) A human recognizer does not read the spectrogram with full

precision and pays attention only at local features such as

‘‘A short length of high amplitude around 6 kHz frequency’’

or ‘‘A long trend of high frequency starting from 6 kHz

moving towards 4 kHz’’.

(2) A human does not decide based on precise speech

amplitudes and only a rough measure is sufficient such

as high or low amplitude.

(3) We do not count speech frames and use relative lengths such

as a long or short.

Based on these ideas and to reduce the size of input data, we

divided the frequency axis into 25 bands and made a local data

reduction in each band1: Each column of the spectrogram in
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Fig. 1. Speech signal: normal view.

1 We chose 25 ranges just because Mel scaling has 25 ranges, but any other

range count can also be used and it can be tested in further experiments.



each band is considered as one block and will be represented

with a rough measure of that block’s high amplitude values. To

choose this measure, we introduce a simple operator called

Max10, which gives a rough maximum of a set of numbers.

In general, Max N is defined as an operator, which can have a

range of effects from maximum to average of a set of numbers.

To do so, Max N sorts the input numbers and takes the average

of the highest N percent of values. Using Max N instead of

normal maximum helps in more robustness versus unwanted

high values due to noise. Max N is formally represented in

Eq. (1), the data reduction process is depicted in Fig. 5 and the

result over the entire spectrogram is presented in Fig. 6. Note

that after this conversion, the image has only 25 values in each

vertical line (frequency axis) but the time axis is not altered.

The entire input conversion process is represented in Fig. 7

diagram.

V : a vector ofM numbers

SortðVÞ : a function that sortsV so that SortðVÞi
will be the highest value of V and SortðVÞM
will be the lowest
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To represent a phonemewith linguistic terms using this data,

a gradient of color names is used to represent different ranges of

amplitudes which starts from black for lowest amplitude, then

blue, magenta, red, yellow, green, cyan and finally fading to

white showing the highest value. Each of these colors spans

above a range of amplitudes and is described with a trapezoidal

fuzzy membership function as in Fig. 8. Also, as different

phonemes have different lengths (it is shown in Figs. 2, 4 and 6),

five fuzzy lengths (very short, short, average, long and very

long) are also defined with trapezoidal shapes to express

phonemes’ lengths. Our primary assumptions for the exact

shape of color and length sets are presented in Table 1, but the

values are later optimized using the training approach, which is

presented in Section 4.

Using the above definitions, each phoneme can be described

by an expression stating its length, and its probable colors for

each band. Fig. 9 presents an example for phoneme definition.

Note that a disjunction of different colors can be used in

expressing each band’s color.

Based on this type of phoneme modeling, a phoneme

recognizer system must have the definitions for fuzzy colors

(definition of trapezoids for each of eight colors), definition of
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Fig. 2. Spectrogram of a speech signal, separated vertically with phoneme positions.

Fig. 3. The Mel scale diagram.



fuzzy lengths, and description of all phonemes using the

previously stated colors and lengths which includes a length

value for each phoneme and color values for each frequency

band of every phoneme.

To use it formally in the next section, we will express

phoneme P with a set of 25 � 2 fuzzy color sets (two

possible colors for each band) and a fuzzy set for its length

as:

P.Colori,j: for band colors with i 2 {1, . . ., 25} and j 2 {1, 2}

for 25 bands and two possible colors for each band.

P.Length: for phoneme length.
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Fig. 5. A sample for data reduction process.

Fig. 4. Spectrogram of speech signal after Mel stretching.



3. The recognition process

Assuming that a suitable set of fuzzy colors, fuzzy lengths

and phoneme descriptors exist, this part presents the recogni-

tion approach which classifies given voice inputs into phoneme

classes. To categorize the given input, the degree of

compatibility of the input to each of the phoneme descriptions

is computed and the input is classified into the phoneme class,

which has the highest compatibility value.

Thus, at the beginning of the comparison stage, we have an

input and several color patterns, each pattern for one phoneme.

To compare the input with each of the color patterns, we have

25 � N values for the input (25 rows, each for one band and N
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Fig. 7. Input conversion process.

Fig. 6. Spectrogram after data reduction.

Fig. 8. Trapezoidal fuzzy set definitions for colors and lengths.



columns, as the input patterns my have arbitrary number of

frames) and a color pattern that has 25 � 2 colors (25 rows,

each for one band and two colors for each band because a

disjunction of two colors is allowed). The comparison of these

two items is done in three steps:

3.1. Step 1: single frame pattern matching

The first step is to compute how much each frame of the

given input belongs to the specified color pattern of the

phoneme. Thus, if the input signal has N frames, the

compatibility of each frame to current phoneme’s describing

colors is computed independent of the other N � 1 frames.

To compute this compatibility, a Min of Max approach is

used: First, each input value in each band is compared with

the disjunctive colors describing that band and the maximum

value is selected, then the minimum of these values for

all bands is chosen and regarded as the frame’s compati-

bility with the pattern. Assuming vector V as input and P as

the pattern, Eq. (2) formally represents the similarity

computation formula and a sample of this task is presented

in Fig. 10.

Similarity ¼ Min
i¼1;...;25

ðMax
j¼1;2

ðP:Colori; jðViÞÞÞ (2)

3.2. Step 2: color compatibility aggregation

Once the compatibility of each frame with the color pattern

is computed, the results on all frames of the given sample must

be aggregated. To make the aggregation, we must get a general

measure of all frames similarity to the required pattern. If we

just use the minimum or maximum operators, we highly

increase the risk of noise sensitivity as a single good or bad

sample can affect the decision. Thus, we have defined another

operator similar to Max N called Average N, which computes

the average of N% of middle values in a set of numbers.
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Table 1

Initiate definition of colors and lengths

Start point First max Last max End point

Black color 0 0 0.05 0.35

Blue color 0 0.05 0.22 0.50

Purple color 0 0.23 0.35 0.63

Red color 0.05 0.36 0.50 0.80

Yellow color 0.23 0.51 0.63 0.93

Green color 0.36 0.63 0.80 0.99

Cyan color 0.51 0.81 0.93 0.99

White color 0.63 0.94 0.99 0.99

Very short length 2 2 3 5

Short length 2 2 6 10

Medium length 2 6 12 17

Long length 8 12 20 30

Very long length 12 18 69 99

Fig. 9. A sample description for a phoneme. For each band, two most promising colors represent the band as described in training algorithm.



As expressed in Eq. (3), the operator sorts the given numbers,

excludes the lower and higher (100 � N/2)% of numbers and

averages the rest.

V : a vector ofM numbers

SortðVÞ : a function that sortsV so that SortðVÞi
will be the highest value of V and SortðVÞM
will be the lowest

X ¼
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(3)

Using this operator, we apply Average80 on results of previous

step to prune 10% of the lower and higher results and average

the reset as the final decision. Fig. 11 shows a sample of this

step.

3.3. Step 3: length matching

The input of the second step is the compatibility measure of

the sample with the specified pattern of colors. In this part, the

sample’s length (number of frames) is compared with the fuzzy

linguistic term specifying the phoneme length and its

compatibility is multiplied by the color compatibility of the

input to make the final compatibility value. Fig. 12 shows the

overview of the three steps together.

4. Training algorithm

In the previous two sections, our fuzzy modeling of the

speech signal and our way of comparing the input data and the

linguistic description of phonemes were presented. But we need

an appropriate set of definitions to perform the recognition task.

This section presents the training algorithm we have used to

define phoneme patterns. To do so, we have used a conventional

genetic algorithm [10], which will be briefly described in the

next subsections.

4.1. The genome and its fitness

The first necessity for a genetic algorithm approach is to

present a complete recognizer in the form of a genome. Fig. 13

shows the structure of our genomes which includes the

definition of all eight colors, definition of the five length sets

and description of all phonemes.

Genome’s fitness is defined as a general measure on how

correct it can recognize all training samples. To compute it, all

training samples are categorized based on the definitions in that

genome and the genome receives its fitness based on how many

of these categorizations have been correct. The fitness can be

computed using Eq. (4) formulas.

G : Agenome

S : The set of training samples

CorrectPhonemeðsÞ : The correct phoneme class of sample s

RecðG; sÞ : The phoneme class that a recognizer

which is built based on genomeG;
classifies the input s into

CorrectSetðG; SÞ ¼ fsjs2 S andRecðG; sÞ
¼ CorrectPhonemeðsÞg

FitnessðGÞ ¼
jCorrectSetðG; SÞj
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(4)
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Fig. 10. Sample of Min of Max computation of step 1.



4.2. Mutation operator

The mutation operator receives a genome as its input and

creates a new genome by duplicating the previous one with

minor changes. To do so, we copy a genome and randomly

change one of its parts as follows:

If the selected part is the definition of a color or a length, one

of its four points is changed, randomly by +0.01 or �0.01 and

then, if the four points would not be in ascending order (due to

mutation), they are resorted. Fig. 14 presents the possible

mutations for a sample color definition.

And if the selected part is a phoneme definition, one of its

colors or its length can alter to a close linguistic value, for exam-

ple, if it is defined thatphonemeXhascolor red at itsfirstband, the

definition may change to colors purple or yellow at that band.

4.3. Cross over operator

The cross over operator receives two genomes and creates

two new genomes by randomly choosing different parts from

each genome. In other words, assuming the two original

genomes as parents and the new genomes as children, the

definition of each of the colors for each of the children is

randomly taken from one of the parents and the same thing

happens for length and phoneme definitions.

4.4. Control process of training

The training process starts by randomly creating 100

genomes which all have color and length definitions as

specified in Table 1, but their phoneme definitions are set
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Fig. 12. Overview of recognition step.

Fig. 11. Total frames’ color matching at step 2 of recognition.
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Fig. 13. Genome’s structure.

Fig. 14. Possible mutations for a sample color/length definition.



randomly. Assuming a minimum required fitness to stop the

optimization, the rest of the process is run for as many iterations

as necessary.

In every iteration each existing genome creates a

new genome using the mutation operator. Also each

genome randomly pairs with another genome and using

the cross over operator, they together create two new

genomes and add them to the gene pool. By this point, we

have 300 genomes, where 200 are new and created from the

old 100 one. Then, the genomes are sorted based on their

fitness values and 200 of the genomes which have least

fitness values are dropped off, and then, another iteration

starts.

Therefore, using crossover and mutation operators, we

explore the space of possible genomes and pruning based on

fitness guides the search towards areas with better genome. The

training process is entirely presented in Chart 1 and the results

are represented in the next section.

It must be noted that, at the beginning of every iteration, each

genome will have one and exactly one mutation with 100%

probability, and also pairs with another genome and performs a

cross over, again with 100% probability. Therefore, we can

assume a mutation rate equal to (1/size of genome) which

becomes ((1/(8 + 5) � 4 + 62 � (1 + 2 � 25)) = 0.03%) and a

cross over rate equal to 100%

5. Experimental results

The proposed algorithm is tested on Timit2 speech database

with 62 phoneme classes. The benchmark system is an HMM

based isolated phoneme recognition system with MFCC

features [1,7,21,22]. Training and testing was performed

separately for single speaker and multiple speaker cases. For

single speaker tests, we chose 20 randomly selected speakers

from Timit and for multiple speaker tests, we extracted 20 sets,

each including samples of five randomly chosen female

speakers and five male speakers. In all tests, training was

performed with 90% of samples for each set and testing with the

remaining 10% of the same set. Each test is repeated five times

and with six different noise levels, namely clean, 30, 20, 10, 0

and �10 dB. Fig. 15 presents the average recognition rates in

tests on clean data and Fig. 16 presents the recognition

performance in existence of different noise levels.

As it is common in speech recognition, besides reporting the

recognition rate for cases that the proposed system has correctly
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Chart 1. Training diagram.

2 The DARPA TIMIT speech database is produced to provide acoustic

phonetic speech data for the development and evaluation of automatic speech

recognition systems. It consists of utterances of 630 speakers that represent the

major dialects of American English.



classified the given phoneme, we have reported the cases where

the correct answer has been among the top three scores of the

algorithm and also the top six.3 To do so, instead of just

choosing the class with highest similarity to the input, we have

chosen the classes, which had the top three or six similarities.

Training in all cases was continued until the progress rate of

best fitness dropped below 0.1% in 1000 iterations.

As depicted in Fig. 15, for single speaker tests, ourmethod has

been able to identify the phonemes correctly in 85% of cases

while the Top-3 recognition rate was 95% and Top-6 has been

98% and these values are 20–10% lower for the benchmark

HMM–MFCC system. Multiple speaker tests have also shown a

similar advantage in compare with HMM–MFCC results.

Moreover, as expected from the fuzzy nature of the system

and depicted in Fig. 16, this approach has shown 20–28% more

immunity against noise in normal noisy environment (SNR:

30–10 dB) and this immunity decreases while the noise level

approaches the amounts that makes the input not identifiable for

human beings but it is always above that of HMM–MFCC.

Also, to have a measure of computational complexity of our

approach in compare with MFCC–HMM feature extraction and

recognition, we ran a test to recognize 10 min of segmented

samples by both systems. As depicted in Fig. 17, the proposed

approach has been more than two times faster in feature

extraction and 50 times faster in recognition.

From the above results, it can be concluded that the proposed

fuzzy model has been quite successful in correctly identifying

human speech phonemes and this capability has been achieved

with much less computational effort in comparison with

traditional methods such as Hidden Markov models. Also, the

system has been able to quite successfully ignore noise in noise

levels, which are ignorable to human recognizers as its results

are much better than a current popular method.

6. Conclusion and future work

Despite the existence of several methods for speech

recognition, the problem is still open as no algorithm is both

fast and accurate enough to be an ultimate answer for

recognition of human speech in industrial and commercial

applications. To have a fast and noise robust speech recognizer

system, this paper presents a fuzzy modeling of speech signal
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Fig. 17. Recognition speed for 10 min of segmented samples. Horizontal axis:

processing time (ms).

Fig. 15. Recognition rate comparisons of the proposed algorithm on single speaker andmultiple speaker test sets and its comparison withMFCC–HMMbenchmark4.

Fig. 16. Recognition performance in noisy environments. Vertical axis: recognition rate; horizontal axis: signal to noise ratio (SNR) of additive white noise.

3 This is done because in most speech recognition applications, we have a

predefined set of words to recognize (called the dictionary) and we can use the

combined probabilities of recognized phonemes to make the final decision.

Thus, making a hard decision on the phoneme level is neither necessary, nor

advisable.
4 Top-N Correct Answer: The recognition rate where the correct answer is

among the top N scores of the algorithm.



by representation of speech spectrogram with linguistic terms.

The major difference with previous not fuzzy approaches is in

ignorance of details that make the recognition slow and

sensitive to small perturbations or noise. And the major

difference with other existing fuzzy models is in the fact that

this model does not use conventional acoustic features of voice

signal and is totally based on fuzzy-thinking, using new

features of speech signal which are defined by rough linguistic

terms, much a like how a human can read and translate a speech

spectrogram into phoneme classes.

The approach is tested over a standard database for single

speaker and multiple speaker phoneme recognition in both

noise-free and noisy environments. The algorithm has proved to

be quite successful in mapping samples to phonemes and also

has successfully ignored noise instead of its detection and

removal. The comparison results with a widely used approach

(Hidden Markov model with MFCC feature set) are also

presented and while the proposed method is much simpler and

uses much less computational power, it has gained significant

better results in dealing with noise and recognition in noisy

environment.

As a next step to improve the algorithm, we are working on

fuzzy models for word identification and also other approaches

to translate the spectrogram into a linguistic description, so that

to decrease the amount of data and increase noise immunity.
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