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Metamaterials are being applied to the development and construction of many new devices throughout the electromagnetic
spectrum. Limitations posed by the metamaterial operational bandwidth and losses can be e
ectively mitigated through the
incorporation of tunable elements into the metamaterial devices. 	ere are a wide range of approaches that have been advanced
in the literature for adding recon�guration to metamaterial devices all the way from the RF through the optical regimes, but
some techniques are useful only for certain wavelength bands. A range of tuning techniques span from active circuit elements
introduced into the resonant conductive metamaterial geometries to constituent materials that change electromagnetic properties
under speci�c environmental stimuli. 	is paper presents a survey of the development of recon�gurable and tunable metamaterial
technology as well as of the applications where such capabilities are valuable.

1. Introduction

Modern trends in technological development have increased
demands for multifunctional components across the spec-
trum. In the radio frequency (RF) regime, wireless communi-
cations necessitate e�cient, recon�gurable, tunable, inexpen-
sive, and electrically small antennas that can be implemented
in increasingly space-limited devices. In the terahertz band,
many materials do not respond to in-band radiation and
the components required to construct complex systems of
terahertz devices, such as lenses, switches, and modulators,
do not exist. Signi�cant e
orts are going into �lling this “gap”
in the spectrum [1]. Additionally, the emerging use of trans-
formation electromagnetics/optics, particularly with regard
to cloaking, requires spatial gradients that natural materials
do not possess. With each of these challenges, designers
must compromise among size, functionality, complexity, and
fabrication cost.

Arti�cially constructed materials, metamaterials, have
emerged as an attractive option for addressing many of
these issues and have become a useful tool in optics and

electromagnetics for the construction of devices with com-
plex spatial- or frequency-domain behavior [2, 3]. Recent
developments in recon�gurable and tunable metamaterials
have extended the possibility for fabricating metadevices [4]
and unique, subwavelength devices with practical function-
ality. In addition to exhibiting electromagnetic responses not
readily available in nature, these metadevices o
er the pos-
sibility for improved performance characteristics in smaller,
multifunction applications.

Strictly speaking, metamaterials are collections of
far-subwavelength (<�/10) resonating structures, typically
aligned in a regular crystal lattice, and may be characterized
as possessing either e
ective material parameters for bulk,
3D structures, or e
ective surface impedances for planar,
2D structures [5]. 	ese resonators are designed to couple
and interact with the free-space propagating electromagnetic
waves, rather than be excited directly by a waveguide
or transmission line. Metamaterials may be designed to
yield a desired refractive index and intrinsic impedance or
permittivity and permeability pro�le or to match a desired
frequency-dependent scattering response, which may be
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viewed as a dispersive constraint on the e
ective material
parameters. In practice, the term “metamaterial” is applied
to any subwavelength resonator, whether in a collection or as
an individual structure.

Many challenges have impeded the implementation of
metamaterial-based devices, including the bandwidth lim-
itations of strongly resonant devices, as well as fabrication
limitations and tolerances. Many solutions to these prob-
lems have been presented which involve changes to meta-
material structure, composition, and constituent material
properties. Tunable or recon�gurable metamaterials have
great potential to alleviate many of the complications with
passive metamaterials at the cost of increasing fabrication
complexity and expense. Within this review, the de�nition of
a tunable metamaterial is taken to mean a structure whose
electromagnetic behavior is intentionally modi�ed as part of
the ordinary operation of the device through the inuence
of a change in, for example, the unit cell e
ective circuit,
constituent material properties, or geometry. In addition to
the conventionally de�ned free-space metamaterials, we also
consider related structures including electromagnetic band-
gap (EBG)materials or high-impedance surfaces (HIS), since
they may be designed to mimic the properties of an e
ective
magnetic conductor [6, 7].

	is paper is intended to provide a comprehensive survey
of publishedmetamaterial tuningmethods over all frequency
bands and to give comparison information between compet-
ing techniques and their applications.

2. Overview of Efforts and Techniques

2.1. Metamaterials and Metamaterial-Inspired Devices.
Many antenna [8, 9], microstrip/transmission line [10],
and frequency-selective surface (FSS) applications use
the term “metamaterial-inspired” to describe their use of
resonant structures as loading or �lter elements within
the design, especially when the resonator in question has
been repurposed from a metamaterial structure. 	e design
and measurement procedure and goals may be viewed as
a loose discriminator between a “metamaterial-enabled”
and a “metamaterial-inspired” device. Metamaterial-enabled
devices make use of the e
ective bulk or scattering properties
of a metamaterial and will typically employ these desired
e
ective properties in simulations during the design process.
A metamaterial-inspired device, however, will rely on the
exact behavior of individual resonators and will generally
not utilize the metamaterial unit cells so as to obtain an
e
ective bulk behavior. Although these structures are not
true metamaterials, the fabrication approaches and design
decisions share many similarities with metamaterial design,
especially in the case of recon�gurable devices. Many of the
examples in the literature of tunable metamaterials are more
properly metamaterial-inspired devices which use individual
resonators (most commonly a split-ring resonator (SRR)),
o�en strongly coupled to transmission lines or antennas,
as the proof of concept or even the �nal application for
the design. We include these papers in this review since
the challenges towards implementation are shared for both

approaches and a recon�gurable metamaterial-inspired
transmission line or antenna may be viewed as the �rst step
in the development of bulk tunable metamaterial-enabled
devices.

2.2. Tuning Method versus Frequency. A variety of tuning
methods have been examined in the literature to generate
dynamic changes in a metamaterial’s performance. 	ese
include direct changes to the unit cell’s circuit model by
varying capacitance or conductance, using electrically, chem-
ically, thermally, or optically sensitive materials to change the
constituent material properties of a structure and therefore
change its electrical response and altering the geometry of
the unit cell through stretching, shi�ing, or deforming all
or part of the structure. Some of these techniques (such as
varactor diodes) have been applied for operation at particular
wavelengths, while others (such as phase-change materials)
have been applied across the electromagnetic spectrum. Each
of these tuning methods is described in more detail in
Section 3. Figure 1 shows a diagram of tuningmethods versus
operational frequency for all recon�gurable metamaterial
and metamaterial-inspired devices reviewed in this paper.

2.3. Common Unit Cell Designs. 	e base unit cell on which
a recon�gurable metamaterial device is designed determines
the fundamental behavior of the structure. In most cases,
the starting point for the recon�gurable device is a static
designwhich is then augmentedwith the tunable component,
material, or structure. 	e physical geometry of the unit cell
determines the electromagnetic coupling into the metamate-
rial, provides (potentially desirable or undesirable) frequency
selectivity, and can allow for cancellation of electric (in the
case of the SRR) or magnetic (for the electric LC resonator)
excitations as well as for strongly coupling the electric and
magnetic responses. Especially at optical wavelengths, many
unit cells do not explicitly couple to the electric or magnetic
�elds but are tuned to resonate simultaneously in the same
geometry [11]. Unit cells with well-de�ned resonant and
EM-coupling properties are commonly used to implement
metamaterials with desiredmaterial properties, while designs
for scattering control or antenna enhancements may be less
sensitive to cross-polarization or E-H�eld (magneto-electric)
coupling. Most tunable metamaterials are based on common
elemental building blocks or particles, such as thewidely used
SRR [12, 13], the complementary split-ring resonator (CSRR)
[14–16], and their electric-�eld coupled cousin the electric LC
resonator (ELC) [17–21]. O�en, the structure is modi�ed to
a greater or lesser degree to accommodate the constraints of
the tuning mechanism [22, 23]. Tunable impedance surfaces
are generally constructed from grounded square patches
(mushroom-type arti�cialmagnetic conductor (AMC) struc-
tures) [24–33]. Although basing a design on an existing
resonator can be useful, many studies have developed new
structures subject to limitations or to speci�cally leverage the
capabilities of a given tuningmechanism; this includes the use
of reorientable or variable distributions of colloidal nanopar-
ticles [34–38], interconnected grid structures [39–41], and
optimized binary FSS patterns [42, 43]. Transmission-line
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Figure 1: Examples of metamaterial tuning mechanisms in the literature plotted against their operational frequency. Groups of references are
centered on their shared operational frequency.

metamaterials may not use such a recognizable geometric
unit cell pattern as an SRR or spiral but achieve periodic
behavior instead based on their equivalent circuit model
[44–46].

3. Tuning Mechanisms

	evarious tuningmechanisms that have been demonstrated
in the literature may be divided into three general categories.
Circuit tuning involves the targeted insertion ormodi�cation
of individual impedances into the unit cell circuit model; this
includes the use of variable capacitors and switches within
and between unit cells. We classify geometric tuning as those
methods that physically perturb the structure of the unit cell
in such a way that many or multiple changes occur in the
equivalent circuit model. 	is would include moving subsets
of the unit cell relative to a �xed point or using MEMS
devices to change orientation or location of a signi�cant
fraction of the unit cell. Finally, material tuning leverages
changes inmaterial parameters of a substrate, patterned layer,
or small region of the unit cell to modify the response and
properties. Phase change materials and liquid crystal devices
are examples of this technique. 	e remainder of this section
is devoted to describing the use of these methods as reported
in the literature.

3.1. Circuit Tuning. 	e electromagnetic behavior of real,
passive transmission lines, antennas, and metamaterials may
be represented as an equivalent circuit composed of lumped

inductive, capacitive, and resistive elements. 	is decompo-
sition of complex geometric structures into a well-de�ned
circuit model is highly useful for predicting the response
of modi�ed or perturbed designs. SRRs, for example, may
be represented as a parallel LC or RLC tank circuit (pos-
sibly with additional parasitic elements depending on the
frequency and exact geometry) where the inductive element
is coupled to the incident �eld. We classify circuit tuning of
metamaterials as those methods which insert, modify, and

control individual elements in the metamaterial’s equivalent
circuit.

3.1.1. Varactor Tuning. Varactor diodes represent the single
most popular tuning technique due to their simple inte-
gration into many kinds of metamaterials. By acting as
a voltage-controlled capacitance, varactors are convenient
for controlling the resonant frequency of SRRs or other
types of resonant unit cells. Limitations to their universal
application include losses due to nonzero series RF resistance,
reduced performance at higher frequencies, and challenges
with distributing the required DC bias signals throughout
a metamaterial. Varactors are very good approximations to
ideal tunable capacitors at MHz frequencies, but signi�cant
parasitic impedances accumulate and limit many metamate-
rial applications above 4–10GHz. Bias distribution has been
implemented for several speci�c metamaterial design styles.
Using varactors to recon�gure planar metamaterials (such as
HIS or AMC) alleviates the bias distribution issue by allowing
bias signals to be delivered through the vias and traces behind
the ground plane, isolated from the incident RF signals.
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Applying varactors to transmission-line metamaterials also
simpli�es the bias distribution [14–16, 23, 47–51], since
additional traces to provide bias levels can be easily sited
to avoid distortion of the desired frequency response. Bulk
3D metamaterials or transmissive planar metamaterials are
more challenging, but several implementations have showed
success by basing the geometry on an interconnected grid,
potentially with lumped resistance or inductance to prevent
RF coupling [52]. Figure 2 shows an example of a tunable
AMC structure with integrated bias lines.

Varactors are used to augment capacitive coupling within
metamaterial structures, for example, across an existing
capacitive gap [20, 31, 54–60] or between adjacent unit cells
[24, 26, 27, 29, 32, 33, 39–41, 61], as well as to completely
change the equivalent circuit by introducing a tunable capac-
itance in place of an inductor, open, or short, as done
in combined right-le� handed (CRLH) transmission line
metamaterials [62, 63].	e former, by tuning the values in an
essentially unchanged equivalent circuit, adjusts the resonant
frequency of the device, without the dramatic change in
behavior seen in the latter case.

As a semiconductor device, use of a varactor in ametama-
terial design is occasionally referred to as an “active”metama-
terial [33, 53, 54, 64, 65] although the device remains passive
for RF frequencies and is only active in its requirement for
a DC bias. Most examples have, with reasonable accuracy,
treated the varactors in their designs as ideal or nearly ideal
linear capacitors, but several studies have examined in more
detail the nonlinear e
ects of the varactor at low and high
power levels [55, 56].

Some initial descriptions of new tunable metamaterials
have used explicit lumped capacitors with di
erent dis-
crete values to approximate the varactor capacitance tuning
behavior and demonstrate the desired tuning e
ects [66–
68]. 	is strategy represents a �rst step to a full, tunable
implementation of the metamaterial.

	e use of PIN diodes [69–71] and digital potentiometers
[72] in a metamaterial shares similarities with the use of
varactors in terms of their application and ease of integration,
but these actuators a
ect resistance rather than capacitance.
	e advantages of simple control and liabilities of control
signal distribution and frequency limitations are also compa-
rable to varactors. By tuning resistance, these methods could
be applied to control or augment losses in a metamaterial
absorber design.

3.1.2. (Nearly) Ideal Switches. An ideal RF switch would be
capable of instantly changing states from a 0Ohm perfect
zero-electrical-length connection to a perfect open circuit.
Since this device does not exist, several approximations to
this ideal have been applied for the design of recon�gurable
metamaterials.

	e simplest approximation of an ideal switch is to replace
the prototype containing a switch by a pair of prototypes or
simulations, one with a metallic short and the other an open
circuit at the desired location of the switch [22, 73–78]. 	is
technique is simple and can be useful to provide a proof-
of-concept or intermediate design demonstration when no

actuator exists that can satisfy the design requirements for a
given structure.

Micro-electro-mechanical systems (MEMS) can be used
to fabricate RF switches with very high e�ciency. Here,
we consider the use of MEMS as localized (relatively) self-
contained switches between two points in the metamaterial
equivalent circuit, rather than tuning by changing the geom-
etry of the unit cell (which is discussed in Section 3.2). Apply-
ingmultiple switches per unit cell or group of unit cells allows
multiple responses to be generated, as illustrated in Figure 3.
MEMS switches that physically make and break contact
between two terminals can be manufactured, but most
RF MEMS switches are better analyzed as high-magnitude
capacitance modulators. In electromagnetics terms, tuning
between a large and a small capacitance will yield a good
approximation to an ideal RF switch. Unlike varactor diodes,
the capacitance ranges achieved by MEMS actuation can
o�en be su�cient to yield nearly ideal switching behavior
and are used as more realistic alternatives to open/short
actuation [22].

MEMS switching performance is exceptional [79–81].
Limitations on the use of MEMS switches include high
actuation voltages (on the order of 70–150V) that are di�cult
to interface with CMOS control circuits, high manufacturing
variability in the “o
”-state capacitance between individual
devices [80], and either complex fabrication requirements
for an integrated design or expensive per-unit costs for
the purchase of commercially packaged devices. For these
reasons, the use ofMEMSasRF switches inmetamaterials has
been limited, with published examples demonstrating either
a single or a small number of unit cells.

3.1.3. Active, Non-Foster Metamaterials. Non-Foster refers
to active circuitry that is not subject to Foster’s reactance
theorem [82–84] which states that the reactance slope versus
frequency for any real, passive circuit must be nonnegative.
Non-Foster circuits, then, through the use of active circuitry
in the form of a negative impedance converter [85, 86], can
achieve a negative impedance slope. 	is unique characteris-
tic allows true broadband impedance manipulation through
complete or partial cancellation of reactance dispersion over
somebandwidth, rather than only at a point as is possiblewith
combinations of inductive and capacitive loads. Partial can-
cellation of reactance dispersion in a metamaterial through
the use of a negative inductance or capacitance may be used
to maintain a “resonant” e
ect over a wide operation band
[62].

Applying a non-Foster load to a metamaterial or AMC
structure [83, 87] to broaden a resonance band can be viewed
as a type of frequency-selective tuning [12], making such
devices [45, 62, 88, 89] a close cousin to other active [21]
and tunable metamaterials. Both share many of the same
design considerations as to the inclusion of active devices,
control, and bias circuitry into the limited physical space of
a metamaterial unit cell. Future work that includes tunable
or recon�gurable non-Foster elementmay yieldmany advan-
tages in terms of bandwidth and shared complexity. Figure 4
demonstrates the dramatically increased AMC bandwidth
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that can be achieved with non-Foster loads over a similar
AMC implemented with varactor loading.

As with all active circuits, individual non-Foster devices
must be frequency-limited to preserve stability.	e examples
of non-Fostermetamaterials have been implemented primar-
ily in the MHz range for size reasons as well as ampli�er
stability limitations.

3.2. Geometrical Tuning. Many metamaterials rely on con-
ducting elements that can couple with impinging electro-
magnetic waves in order to achieve a desired electric or

magnetic resonance or other e
ective behavior. Because
the metamaterial properties typically depend on the shape,
size, orientation, and proximity of the conducting elements,
techniques that alter the geometry of the conducting elements
can provide an excellent means for tuning or switching the
metamaterial response.

At optical wavelengths, one nascent technique for geo-
metrical tuning is to use self-assembly to align resonant
nanorods in solution [36, 37]. In this method the entire
conducting elements are aligned by applying a local electric
�eld gradient via electrodes. 	e gold (Au) nanorods have
a di
erent resonant wavelength depending on whether the
incident electromagnetic wave is aligned with the electric
�eld oriented along the length of the rod or orthogonal to
the length. Hence, the metamaterial response can be changed
by aligning the nanorods in di
erent orientations or by
allowing them to disperse in the solution. Another related
technique disperses Au nanorods in liquid crystal or other
anisotropic uids, so that the Au nanorods can be aligned
with the liquid crystal molecules [90]. 	is technique helps
to align the conducting nanorods within a larger volume and
points toward a capability of realizing bulk recon�gurable
metamaterials.

Another related geometry tuning technique that has been
demonstrated in the THz regime is tilting the resonant con-
ducting elements in order to alter the metamaterial response
[91, 92]. In both of these demonstrations, SRR elements
were tilted using MEMS [91] or thermal [92] control. 	e
SRR element is anisotropic in both e
ective permittivity
and e
ective permeability, so tilting the element causes it
to couple di
erently with an incident wave. Hence, tilting
techniques are useful for recon�guring the absorption or
�ltering spectrum of the metamaterial as well as causing
electric or magnetic resonances to appear and disappear in
regions of the electromagnetic spectrum.

In addition to reorienting entire elements, metamaterials
can be geometrically tuned by moving conducting elements
in relation to each other [38, 81, 93–108]. MEMS are fre-
quently employed to perform the mechanical movement of
conducting elements for THz metamaterials [38, 80, 93, 95,
101]. When conducting elements are moved closer or further
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apart, the coupling between them changes, which can result
in shi�s in resonance frequency or changes in resonance
strength. Moving conducting elements can also recon�gure
the shape of the element. For example, in [101] one arm of
a cross can be disconnected and moved to reconnect with
the neighboring cross element. 	is kind of recon�guration
changes the response of the metamaterial from being polar-
ization independent to being dichroic. One novel technique
for moving conducting elements in a metamaterial involves
stretching the substrate, so that the elements on the substrate
become further separated [97], producing large shi�s in
the resonant frequency of the elements. Several tunable
HIS have been demonstrated that operate by mechanically
shi�ing an upper plate of elements along the surface [102,
109] or vertically [105] in order to adjust the phase of the
reected wave, illustrated in Figure 5. Tuning the phase of
a HIS is e
ective for steering a radiated beam from an

antenna system [102, 109]. Several tunable HIS have also been
demonstrated that employMEMS to raise or lower capacitive
conducting plates in the unit cell [103, 104, 106, 110]. 	is
technique e
ectively changes the capacitance in a part of the
element and operates similar to the circuit tuning techniques
described in Section 3.1.

Perhaps the most impressive form of geometric tuning is
described in [111], where mercury (Hg) SRRs were formed
by using microuidics to inject Hg into SRR molds to form
the resonators. 	is system can place the Hg resonators
and remove them in real time in order to recon�gure the
metamaterial response.

Geometrical tuning can provide drastic changes in the
metamaterial properties because the shape of the conducting
elements has such a large inuence on the corresponding
resonance. However, implementing geometrical tuning is
challenging because a physical control mechanism is needed
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to manipulate the conducting elements. Typically, the control
mechanisms, whether they are electrodes for self-assembly or
MEMS actuators, are complicated to design and fabricate and
they need to be accounted for in simulation.

3.3. Material Tuning. While changing the shape of resonant
elements provides a range of opportunities for tuning, the
constituent materials that make up the unit cell ultimately
control the properties of the metamaterial. In the literature,
a variety of constituent materials have been evaluated and
exploited for tuningmetamaterials by controlling the permit-
tivity, permeability, and conductivity of parts of the unit cell.

	e electrical size of the conducting resonant elements is
a
ected by the permittivity of the surrounding medium. For
instance, a dipole element in free space is resonant when its
length is approximately half of the wavelength. However, if
this dipole is embedded in a dielectric, it becomes resonant
at half the wavelength size in the dielectric. 	is means that
if tunable dielectric materials can be incorporated in the
unit cell, the resonance wavelength of the metamaterial can
be tuned as the constituent material permittivity changes.
Several papers have theoretically investigated the e
ects
of changing the substrate permittivity on a metamaterial
response [112–114]. 	ere are a few candidate materials that
have been used for permittivity tuning of metamaterials,
including Ba0.5Sr0.5TiO3 (BST) ferroelectric �lms, liquid
crystal, and Ga-Sb-Te (GST) phase-change materials. BST
�lms provide a permittivity change under voltage bias and
have been used as a substrate for tuning SRR elements along
a transmission line at microwave frequencies [115, 116]. BST
can also be tuned via change in temperature as demonstrated
in [13] for tuning the resonance frequency of SRRs. Liquid
crystals o
er dielectric tuning over a broad range of the
electromagnetic spectra from RF all the way through optical

wavelengths. Liquid crystals are anisotropic in permittiv-
ity due to their composition of long, aligned molecules
and exhibit changes in permittivity due to applied voltage,
induced magnetic �eld, optical excitation, and even thermal
change, which can be exploited to tune metamaterials. 	ere
are a number of theoretical and practical demonstrations
showing the tuning of negative index materials and magnetic
resonances at optical wavelengths [34, 35, 42, 117–120],
including the example shown in Figure 5. 	e same shi�
in magnetic resonance has been explored for designing a
metamaterial that switches between being highly transmis-
sive and reective by reorienting liquid crystal molecules
included in the unit cell [119]. GST phase-change materials
have discrete crystalline and amorphous phases that possess
distinct electrical properties at infrared wavelengths and that
can be switched between by subsequentlymelting and cooling
the material. Several papers have investigated the use of
GST as a constituent material for tuning metamaterials [43,
107, 121]. GST was used as the resonant element in [43] to
change scattering behavior among being highly reective,
transmissive, or absorptive. GST was also explored as a
substrate in [107, 121] that can switch a metamaterial mirror
between reection polarization states.

Permeability tuning can also be achieved at RF using
ferrite materials. In [122], yttrium iron garnet (YIG) rods
having a negative permeability are incorporated into a meta-
material unit cell. Applying a magnetic �eld bias allows the
permeability of the YIG rods to be tuned from negative to
positive, causing a change in response of the metamaterial.
While negative permeability constituent materials are not
available at THz or higher frequencies, ferrite materials can
be a useful tuning method at RF.

	e third general area for constituent material tuning
is conductivity. Conductivity change is frequently accom-
plished using semiconductor materials with applied voltage
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[17] or optical pumping [124–128]. 	e semiconductor can
be incorporated as a substrate under all elements [17, 128]
or as an inductive load over part of the resonant elements
[125–127] to tune their resonant frequency. Graphene has
also been used to inductively load resonant elements in a
HIS when under a voltage bias [129]. A variety of techniques
have also been employed to change the conductivity of the
resonant elements themselves. Semiconductor SRRs have
been used with a change in conductivity achieved thermally
[18] or by applying a magnetostatic �eld [19]. Conduct-
ing polymers have also been used as resonant elements
in metamaterial absorbers [75]. 	e conducting polymers
exhibit large changes in conductivity (i.e., from resistive to
conductive) when stimulated by certain chemical analytes.
	is enables the metamaterial to recon�gure from reecting
to absorbing or to change resonant frequencies. VO2 phase-
change materials also exhibit large conductivity changes with
a voltage bias and have been used to form the resonant
elements in several metamaterial experiments [130–132].

Bulk material-based tuning is ultimately limited by the
range of electromagnetic responses available in the con-
stituent substances, where eachmaterial system poses unique
implementation challenges. For instance, BST and VO2 o
er
useful permittivity and conductivity changes, respectfully,
but they are both sensitive to temperature and thus must be
used in temperature controlled environments. GST phase-
change material on the other hand does not su
er from
temperature variation, but incorporating the heating and
cooling mechanisms into the metamaterial to control the
phase transitions between crystalline and amorphous states is
challenging. Research needs to continue in the development
of tunable material systems that can be harnessed to meet
application speci�c recon�gurable metamaterial needs.

4. Applications and Tuning Goals

	e inherent nature of tunable and recon�gurable metama-
terials a
ords them the ability to be used in a wide variety
of applications. 	e distinctions between these end goals
are largely a matter of perspective. Shi�ing the frequency
of a passband is functionally identical to changing from a
transmissive to reective surface at a �xed frequency. Inter-
pretation of an identical change in response can be made in
terms of scattering parameters, e
ective material parameters,
or the metamaterial’s loading e
ect on an adjacent antenna
or transmission line. We acknowledge the discretionary
nature of categorizing tunable metamaterials into intended
applications; however, in this literature survey, we de�ne
four broad common application areas. First, we discuss the
design of tunable metamaterials as an enabling technology
for tunable �lters and antennas; this focuses onmetamaterials
that are primarily designed to shi� the resonant frequency
or alter the device’s bandwidth. We then note metamaterials
that are optimized to modulate the scattering (transmis-
sion, reection, and absorption) of a material at a given
resonant frequency. We classify designs meant to spatially
vary the index of refraction with a focus on transformation
electromagnetics. Finally, we recognize tunable structures

that manipulate wave propagation characteristics including
directivity, radiation pattern, polarization, and propagation
mode.

4.1. Tunable Filters and Antennas. A major focus of tunable
and recon�gurable metamaterials lies with designing tunable
�lters and frequency-recon�gurable antennas. One desirable
feature of such devices is tunable frequency band selectivity.
In wireless communications, using tunable metamaterials
enables wider ranges of operating bands within a minimal
geometry. Bossard et. al. have applied liquid crystal super-
strates to shi� the frequency of the transmission band in an
infrared FSS device, as illustrated in Figure 6. Reynet and
Acher demonstrated tunable varactor-loaded metamaterials
based on conducting coils [57]. Later works introduced
this concept into transmission lines and antennas, where
tuning was achieved by varying capacitance, typically of
SRRs and CSRRs [16, 23, 46–50, 62, 123, 124, 133]. Zhu et
al. demonstrated an electrically small, tunable SRR antenna
operating in the UHF frequency band [123]. As shown in
Figure 7, this varactor-loaded dipole-like structure provides
a tunable narrowband (notch �lter) alternative to wideband
antennas in RF communication systems. 	e antenna has
the advantage of compact size, low cost, and easy fabrication
as well as implementation. Researchers have attained similar
RF frequency tunability through a variety of other methods,
such as through MEMS [22, 73, 79, 81, 93, 94], tunable
EBG surfaces [59, 78, 95, 112, 134, 135], ferroelectric rods
and �lms [13, 115, 116, 122], vanadium dioxide switches [130,
131], and liquid crystals [42, 117, 118, 136]. 	ese proposed
designs exhibited varied tunable RF �lter types, such as
band-stop, band-pass, and notch �lters. Whereas the �lters
discussed above are actively voltage-controlled, designers
have also demonstrated nonlinear varactor-loaded (or p-i-n-
loaded) metamaterial �lters that vary with incident power,
making them ideal for nonlinear devices such as RF limiters
[55, 56, 69]. Frequency tunability is especially desirable for
fabricating exible devices in the terahertz and optical bands.
Such devices could include sensitive platforms for measuring
chemical or biological agents, temperature sensors, and
intelligent detectors among other applications [18, 19, 96,
97, 125, 126, 137]. Furthermore, in contrast to scanning the
center frequency of a desired response feature, another essen-
tial functionality is tunable bandwidth, or recon�gurable
�ltering type, that is, dynamically switching between band-
pass, band-stop, notch, and so forth. Several authors have
demonstrated metamaterial structures that exhibit recon-
�gurable �lter types, as well as tunable center frequencies
[14, 39, 63]. Tunable �lters, FSSs, and antennas have wide
ranges of applications across the electromagnetic spectrum.
Tunable metamaterials o
er a cost-e
ective, compact, and
exible option for implementing tunable band selectivity

and recon�gurable �lter functionality in applications ranging
fromRF communication systemdesign to optical sensors and
detectors.

4.2. Scattering Parameter Tuning. Tuning the transmission,
reection, and absorption characteristics of a material at
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Figure 6: (a) An illustration of a liquid-crystal-based tunable FSS unit cell. (b) Changing the applied potential di
erence between the FSS
and the quartz slide changes the liquid crystal orientation and the scattering response of the FSS. Used by permission [42].

(a)

0

−5

−10

−15

−20

−25

−30
350 400 450 500 550

Frequency (MHz)

S1
1

m
ag

n
it

u
d

e 
(d

B
)

1V 3V

1.5V 4V

2V 9V
2.5V

(b)

Figure 7: (a) 	is varactor-loaded dipole-like antenna has a (b) narrow-band but tunable notch-�lter response, allowing operation over a
wide range of frequencies while avoiding spurious signals. Used by permission [123].

a particular frequency a
ords the designer the creation
of devices such as switches, modulators, FSSs, absorbers,
sensors, and more. Tunable metamaterials o
er avenues for
realizing these devices in low-pro�le mediums with ultrafast
tuning capabilities. A fundamental goal for dynamically
controlling the scattering from a material is amplitude mod-
ulation. Tunable metamaterials enable designers to create
high-speed modulators that alter the transmission and/or
reection amplitude of an incident electromagnetic wave [17,
21, 67, 111, 127, 138]. Practical devices emerge from this funda-
mental functionality, such as high-speed switches operating
in the terahertz andnear-infrared bands [38, 98, 128].Ou et al.
demonstrated a switchable metamaterial that operates in the
optical band at three orders of magnitude faster than previ-
ously achieved [38]. As shown in Figure 8, electrostatic forces

were used to drive parallel strings atmegahertz frequencies to
modify the transmission and reection spectra of the device.
	e characteristics of this device make it ideal for protec-
tive optical circuitry and recon�gurable optical networks.
Tunable scattering characteristics are also vital to developing
tunable cloaks and electromagnetically transparentmaterials.
In particular, by controlling the reection and transmission,
designers can create perfect absorbers, reduce radar cross
section, or achieve complete transmission and reection
from a surface [29, 68, 70, 75, 91, 92, 119, 139]. Tao et al.
designed a MEMS-based structurally tunable metamaterial
that can dynamically modify its transmission amplitude in
the terahertz regime [91]. Rotating the unit cell plane with
respect to the incident electric and magnetic �elds alters the
coupling e�ciency. Structural recon�guration time can be
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Figure 8: (a) Scanning electron microscope (SEM) image of photonic metamaterial device and schematic of driving circuit. (c) SEM image
of single metamolecule and plasmonic �eld distribution for OFF and ON states. (b) Transmission and (d) reection spectra of photonic
metamaterial at varied induced static voltages. Used by permission [38].

on the order of milliseconds, allowing this design to be used
in applications ranging from recon�gurable �lters, thermal
cantilever-based detection, or tunable absorbers, cloaks, or
concentrators. Controlling scattering also has several applica-
tions in the optical band; varying transmission and reection
enables the development of optical temperature sensors,
switches, modulators, and other planar optical metamaterial-
enabled devices [90, 99]. One particular application is in
compressive sensing. Werner et al. demonstrated a phase
change material that could spatially modify its complex
index of refraction to dynamically change the e
ective size
and shape of an aperture [43]. 	is beam-forming aperture,
with its ultrafast response in the infrared band, could then
be used for compressive sensing, a technique where few
information rich measures are sampled to construct high-
resolution images. 	is technique is a step towards achieving
the desired resolution while maintaining the area coverage
andminimizing the cost, size, weight, and power of the sensor
system.Controlling the scattering characteristics of amaterial

enables designers to create a wide variety of common devices
across the electromagnetic spectrum.

4.3. Spatial Tuning for GRIN Lenses. 	e recent explosion
of research in transformation electromagnetics techniques
[140, 141] has increasingly put emphasis on spatially modi-
fying the parameters of materials. In particular, these spa-
tial gradients are primarily focused on altering index of
refraction. Sheng and Varadan investigated the e
ect of
substrate dielectric (relative permittivity) on a metamaterial
structure [113]. By varying the relative permittivity from 1 to
14, the structure’s resonant frequency dropped from 16GHz
to 6GHz [114]. 	is discovery provided a foundation for
designing voltage tunable dielectric substrates, which led
to the development of microfabricated arti�cial dielectrics
for microwave circuits [100]. While this research addressed
only modifying the overall index of refraction of a substrate,
several authors developed methods for creating materials
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with spatially varying indices of refraction [34, 36, 37, 72,
120, 132]. Spatial gradients are the fundamental mechanisms
in electromagnetic cloaking. Researchers have demonstrated
spatially varying material parameters that are intended to
guide electromagnetic waves around a desired region [41, 45,
54]. Wang et al. designed a recon�gurable cloak that could
be tuned for multiple operating frequencies. Furthermore,
this cloak could be switched from a visible to invisible status
[41].	emechanism for attaining this cloak’s spatial gradient
index of refraction relaxes fabrication precision constraints
because each unit cell can be tuned independently. 	ese
features make it ideal for cloaking in RF communication
systems [142]. 	e structure, material parameters, and �eld
distribution of this cloak are depicted in Figure 9. In addition
to varying index value, researchers have also demonstrated
metamaterials that vary in anisotropy [101]. Such features can
be used in creating displays, beamsplitters, isolators, cloaks,
and hyperlenses and in controlling luminescence.

4.4. Antenna Propagation Tuning. Tunable metamaterials
also provide the potential for increasing existing compo-
nent functionality and enhancing propagation properties,
such as scanning range, radiation pattern, and directivity,
while simultaneously reducing costs. In particular, tun-
able metamaterials have found applications in fabricating
recon�gurable directive antennas and beam steering devices,
especially for radar and communication systems: radomes,
radar absorbent materials, reectors, electromagnetic inter-
ference shielding, and terrestrial and satellite communica-
tions. Many of the e
orts towards achieving beam steering
focus on developing electrically and mechanically tunable
high-impedance or arti�cial magnetic surfaces [24–28, 30, 31,
33, 53, 64–66, 80, 95, 102–106, 109, 110, 129, 143, 144]. Arti-
�cial magnetic surfaces typically consist of planar periodic
metallic elements backed by a PEC ground plane. Coupled
with tuning elements, they are commonly utilized as tun-
able high impedance ground planes to achieve low-pro�le
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antenna con�gurations. Costa et al. employed this concept
to create a steerable bow-tie antenna [64]. Figure 10 displays
the arti�cial magnetic surface, the reection phase at var-
ied capacitance values, and the resulting beam deections.
Ratajczak et al. demonstrated a directive antenna using a
planar electromagnetic band-gap reector based on the same
design principles [28], which is shown in Figure 11. 	is
proposed design o
ers advantages over traditional directive
array antennas, which su
er from complex, expensive, and
bulky feeding networks with high losses. 	is design is easier
to fabricate and simple to use in large frequency bands, has
low losses due to awaveguide feed structure, andhas a tunable

radiation pattern. With average tuning ranges of approxi-
mately ±45 degrees, these tunable impedance surfaces o
er

low-cost, low-pro�le, and light-weight alternatives to tradi-
tional scanning antennas and reectors. Similar functionality
can be achieved with digitally addressable, anisotropic, and

SRR-basedmetamaterials [20, 76, 77, 107, 121]. Several papers
also document work towards creating partially reective sur-
faces that alter the reection and transmission phases for use
in Fabry-Perot cavity systems to obtain directive emissions
[32, 40, 60, 61]. Tunable metamaterials also o
er increased
functionality when incorporated into existing devices. Meng
et al. demonstrated a recon�gurable magnetic metamaterial-
loaded waveguide in which the propagation mode could
be switched between le�-handed and right-handed [108].

	is increases the functionality of microwave waveguide
systems by allowing designers to broaden the scanning range
or control the radiation pattern of leaky wave antennas,
which increases the link capacity for multi-input/output
communication systems.

5. Remaining Challenges

Based on the existing capabilities described in the literature,
several broad goals are seen for future developments. Extend-
ing tuning concepts that have been demonstrated at an indi-
vidual or small number of unit cells to tile or �ll large regions
is necessary for the implementation of many metamaterial
or transformation electromagnetics/optics devices, such as
lenses. Very few studies have demonstrated spatial tuning
of metamaterials for the creation of recon�gurable gradient-
index lenses, for example. Expanding the recon�gurable unit
cells to large regions of independently tunable elements
requires the associated development of tuning and control
signal distribution throughout the metamaterial. Finally,
extending the tunable range and application exibility of
recon�gurable metamaterial devices will enhance the useful-
ness and applicability of this design strategy to solving real-
world problems.

Another general area for future development is the
expansion of available tunable materials. In particular, phase-
changematerials are under continueddevelopment to expand



International Journal of Antennas and Propagation 13

(a)

Wc = 14.00mm

Wc

Wc

Wp = 12.80mm

Wp

Wp

Wp1 = 6.00mm

Wp1

Wp2 = 8.00mm

Wp2

h = 3.175mm

�r = 2.2

h

Rs

Ch Cp

Lp

Cpi

Cpi

Zi = Ri + iXi

1/Cpi
 ∼ Xi

�via = 1.5mm

�via

Cvi

Zi = i/Cpi


Ch = 3.00 mm

(b)

Figure 11: (a) Recon�gurable reectarray that changes the reection coe�cient from the surface by varying the capacitance between the
central via and the ground plane. (b) Reectarray unit cell geometry and equivalent circuit model. Used by permission [28].

the range of material formulations and to re�ne the switching
and tuning circuitry. While phase-change materials have
already been commercialized for high speed memory appli-
cations in computer hardware, their suitability for incorpo-
ration into practical, high-speed switchable metamaterials
is a topic of ongoing research. 	e development of smart
materials that respond to environmental stimuli is also an
area of future development. Multiple works were highlighted
in the literature looking at conducting polymers that can
change properties under stimulus by chemical analytes.
Further work is required in both the material science and
electromagnetic �elds to identify candidate sensing materials
and develop metamaterial platforms to bring other smart
devices into practice.

Finally, extending the tunable range and application exi-
bility of recon�gurablemetamaterial devices will enhance the
usefulness and applicability of this design strategy to solving
real-world problems. 	ere is room for advances in material
and switch development as well as identifying metamaterial
geometries that are sensitive to the switching property in
order to increase the device tuning range and functionality.

6. Conclusion

In this review, we have extensively documented the state of
the metamaterials �eld as it applies to the generation and
usage of tunable or recon�gurable electromagnetic responses.
Although metamaterials are themselves in the early stages of

development, we have illustrated that the study of tunable
metamaterials is a vibrant and active sub�eld, based on the
breadth and depth of the applications and methods that have
been reported on in the literature. By classifying the tuning
mechanisms and applications into groups based on function-
ality and capability, rather than operational frequency, our
main goal is to provide a comprehensive overview of the state
of the art in tunable and recon�gurable metamaterials. New
tuning methods and analysis techniques may be applied to
existing static metamaterial designs to dramatically increase
their capability and e
ectiveness. Although there is more
progress that must be made before many of the techniques
discussed here may be practically applied, rapid develop-
ments in tunable metamaterials hold great promise for future
implementations.
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the “Bando Unità Ricerca 2011.”



14 International Journal of Antennas and Propagation

References

[1] H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent
progress in electromagnetic metamaterial devices for terahertz
applications,” IEEE Journal on Selected Topics in Quantum
Electronics, vol. 17, no. 1, pp. 92–101, 2011.

[2] J. B. Pendry, A. J. Holden, D. J. Robbins, andW. J. Stewart, “Mag-
netism from conductors and enhanced nonlinear phenomena,”
IEEE Transactions onMicrowave�eory and Techniques, vol. 47,
no. 11, pp. 2075–2084, 1999.

[3] D. Schurig, J. J. Mock, B. J. Justice et al., “Metamaterial
electromagnetic cloak at microwave frequencies,” Science, vol.
314, no. 5801, pp. 977–980, 2006.

[4] N. I. Zheludev and Y. S. Kivshar, “From metamaterials to
metadevices,”Nature Materials, vol. 11, no. 11, pp. 917–924, 2012.

[5] C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J.
Booth, and D. R. Smith, “An overview of the theory and
applications of metasurfaces: the two-dimensional equivalents
of metamaterials,” IEEE Antennas and Propagation Magazine,
vol. 54, no. 2, pp. 10–35, 2012.

[6] D. J. Kern, D. H. Werner, and M. Lisovich, “Metaferrites: using
electromagnetic bandgap structures to synthesize metamaterial
ferrites,” IEEE Transactions on Antennas and Propagation, vol.
53, no. 4, pp. 1382–1389, 2005.

[7] Z. Bayraktar, M. D. Gregory, X. Wang, and D. H. Werner,
“Matched impedance thin planar compositemagneto-dielectric
metasurfaces,” IEEE Transactions on Antennas and Propagation,
vol. 60, no. 4, pp. 1910–1920, 2012.

[8] A. Erentok and R. W. Ziolkowski, “Metamaterial-inspired
e�cient electrically small antennas,” IEEE Transactions on
Antennas and Propagation, vol. 56, no. 3, pp. 691–707, 2008.

[9] P. Jin and R. W. Ziolkowski, “Broadband, e�cient, electrically
small metamaterial-inspired antennas facilitated by active near-
�eld resonant parasitic elements,” IEEE Transactions on Anten-
nas and Propagation, vol. 58, no. 2, pp. 318–327, 2010.

[10] C.-Y. Cheng and R. W. Ziolkowski, “Tailoring double-negative
metamaterial responses to achieve anomalous propagation
e
ects along microstrip transmission lines,” IEEE Transactions
on Microwave �eory and Techniques, vol. 51, no. 12, pp. 2306–
2314, 2003.

[11] S. Yun, Z. H. Jiang, Q. Xu, Z. Liu, D. H. Werner, and T. S.
Mayer, “Low-loss impedance-matched optical metamaterials
with zero-phase delay,” ACS Nano, vol. 6, no. 5, pp. 4475–4482,
2012.

[12] M. Barbuto, A. Monti, F. Bilotti, and A. Toscano, “Design
of a non-Foster actively loaded SRR and application in
metamaterial-inspired components,” IEEE Transactions on
Antennas and Propagation, vol. 61, no. 3, pp. 1219–1227, 2013.

[13] E. Ozbay, K. Aydin, S. Butun, K. Kolodziejak, and D. Pawlak,
“Ferroelectric based tuneable SRR based metamaterial for
microwave applications,” in Proceedings of the 37th European
Microwave Conference (EUMC ’07), pp. 497–499, Munich,
Germany, October 2007.
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