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Recurrent Neural Network for 
Predicting Transcription Factor 
Binding Sites
Zhen Shen, Wenzheng Bao   & De-Shuang Huang

It is well known that DNA sequence contains a certain amount of transcription factors (TF) binding sites, 

and only part of them are identified through biological experiments. However, these experiments are 
expensive and time-consuming. To overcome these problems, some computational methods, based 
on k-mer features or convolutional neural networks, have been proposed to identify TF binding sites 
from DNA sequences. Although these methods have good performance, the context information that 
relates to TF binding sites is still lacking. Research indicates that standard recurrent neural networks 
(RNN) and its variants have better performance in time-series data compared with other models. In 
this study, we propose a model, named KEGRU, to identify TF binding sites by combining Bidirectional 

Gated Recurrent Unit (GRU) network with k-mer embedding. Firstly, DNA sequences are divided into 
k-mer sequences with a specified length and stride window. And then, we treat each k-mer as a word 
and pre-trained word representation model though word2vec algorithm. Thirdly, we construct a deep 
bidirectional GRU model for feature learning and classification. Experimental results have shown 
that our method has better performance compared with some state-of-the-art methods. Additional 
experiments about embedding strategy show that k-mer embedding will be helpful to enhance model 
performance. The robustness of KEGRU is proved by experiments with different k-mer length, stride 
window and embedding vector dimension.

Transcription factors (TFs) play a critical role in gene expression. It can control genetic information transmission 
from DNA to messenger RNA by binding to a speci�c area in DNA sequence1–3. �e mutations of TF binding sites 
and its adjacent have great in�uence on gene expression, and then increase the risk of complex disease4–8. It is no 
doubt that detailed analysis of the TF binding is signi�cant to the further study of gene expression. Many related 
researches, like digging TF binding sites and exploring the e�ect of loci mutation on TF binding, have been done 
in the lab. However, biological experiments for TF binding are expensive and time-consuming. With the devel-
opment of high-throughput sequencing technology, more and more biological datasets have been proposed9–11. 
�erefore, the principal mission of researchers is to develop a computational model to infer the underlying bind-
ing rules and identify TF binding sites without prior information from these datasets.

At the beginning of this study, many computational models, which were used to describe TF binding prefer-
ence, are proposed based on position weight matrices (PWMs) or motifs12–18. �ese models don’t consider the 
e�ect of other sequence features on TF binding, such as low-a�nity binding sites, �anking DNA, sequence GC 
bias, and so on19–24. Moreover, ChIP-seq data not only contain TF binding information, but also have the afore-
mentioned sequence features. �erefore, many ChIP-seq-based computational models have been proposed and 
have better performance than previous models14,20,25–32. For example, unlike original kmer-SVM, Mahmoud et al.33  
extracted gapped k-mer feature from ChIP-seq and trained a SVM classi�er, which would be used to predict 
functional genomic regulatory elements and tissue-speci�c enhancers. �is change has greatly improved the pre-
diction performance of original model. In addition, some computational models have made a comprehensive 
application of ChIP-seq and DNase-seq27,34–41, which ensure the prediction accuracy of these models. What’s 
more, some researchers also proposed related models to identify functional modules from a whole-genome 
sequence42,43, like promoter44, enhancer45,46, and recombination spots47. For instance, a two-layer predictor45, 
named ‘iEnhancer-2L’, was developed to identify enhancers and their strength by pseudo k-tuple nucleotide 
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composition. Liu et al.47 proposed an ensemble learning approach to identify recombination spots by using 
multi-modal feature obtained from genome sequence.

Due to the reason that deep learning48,49 can learn feature information directly from huge amounts of data, 
it has developed very rapidly in the past few years and has been widely used in computer vision50, image analy-
sis51–55, speech recognition56, natural language processing (NLP)57, and others58,59. Recently, researchers used deep 
learning to extract gene regulation information from DNA sequences38,60–63. For example, Babak et al.28 proposed 
a model based on deep convolutional neural networks (CNN), named DeepBind, to predict the sequence spe-
ci�cities of DNA- and RNA- binding protein. �is model has achieved better performance than other existing 
methods. Zeng et al.64 made a systematic exploration of CNN application in DNA-protein binding. �e char-
acteristic of this study is that they used a �exible cloud-based framework to achieve the rapid exploration of 
alternative neural network architectures. �ese CNN-based models have achieved better performance, but we 
also note that CNN only focus on the current state and cannot capture the in�uence of previous state and future 
state on current state. To address this problem, Quang et al.65 proposed a hybrid convolutional and recurrent 
neural network framework for predicting the function of short DNA sequence. Since recurrent neural networks 
(RNN)66 can e�ectively extract feature information from time-series data, it has been widely used in the process 
of sequence data, like text classi�cation, video description. In this paper, we use Bidirectional Gated Recurrent 
Units (GRU)67 network to extract feature information from DNA sequence, and then predict TF binding sites by 
using the feature information.

Neural networks cannot be used for text analysis directly unless we transform text data into the speci�c for-
mat68–70. �erefore, word embedding was proposed to solve the defect of one-hot, which can’t re�ect the distribu-
tion characteristic of text data. For word embedding, word corpus, speci�c language model and feature learning 
should be �nished at �rst, and then words or phrases from the corpus are mapped to vectors of real numbers71–74. 
In this paper, k-mer is considered as a word in the sentence, so DNA sequences are divided into a k-mer series 
with a speci�ed length and stride window. �ese k-mer datasets would be sent into Bidirectional GRU network 
for feature learning and classi�cation.

Here, we proposed KEGRU, a novel computational method for predicting DNA-protein binding sties. In 
KEGRU, a DNA sequence is divided into a k-mer sequence with a speci�ed length and stride window at �rst. 
And then, the k-mer sequence is mapped into D-dimensional vector space by word2vec. �irdly, we use BiGRU 
to learn features from k-mer sequences and give prediction result. To evaluate the performance of our model, 
we chose four cell line TF binding datasets HESC, A549, HUVEC and MCF7 from the Encyclopedia of DNA 
Elements (ENCODE)75 project. Experiment results show that our model has better performance than other com-
peting methods on the task of predicting TF binding sites. We prove that k-mer embedding is helpful for the 
transformation of k-mer sequence. We verify the in�uence of di�erent k-mer length, slide window and vector 
length. We also compare the performance of KEGRU with three baseline methods: gkmSVM, DeepBind and 
CNN_ZH64. We hope that our method could contribute to the study of DNA sequence modeling and DNA reg-
ulatory mechanisms.

Results
In this section, we used the Keras platform to implement the KEGRU model. A series of experiments were 
performed to evaluate the performance of our model. For simplicity, we call a CNN-based model, which was 
proposed by Zeng et al.64, as CNN_ZH in this paper. We compared our model with gkmSVM, DeepBind, and 
CNN_ZH. We evaluated the e�cacy of k-mer embedding strategy. We also evaluated the robustness of our model 
with di�erent k-mer length, stride window, and embedding vector dimension.

AUC (the area under the receiver operating characteristic curve) was used in this paper to evaluate the per-
formance of our model. As a common evaluation metric, AUC is widely used in machine learning and motif dis-
covery. AUC represents a probability, which is generated by a classi�er that will rank a randomly chosen positive 
instance higher than a randomly chosen negative one. In addition, we also used average precision score (APS) 
to evaluate the performance of our model. APS summarizes a precision-recall curve as the weighted mean of 
precisions achieved at each threshold, with the increase in recall from the previous threshold used as the weight.

Experiment setup. To evaluate the performance of our model, we used 125 TF binding sites ChIP-seq 
experiments from the ENCODE project, including A549, MCF-7, H1-HESC and HUVEC. For each cell type, the 
centered 101 bps were chosen as positive samples from each record in peak �le. To meet model test requirement, 
equal numbers of negative samples were generated by matching the size, GC-content and repeat fraction of the 
positive sample. Each dataset was randomly divided into three groups: training, validation and test sets.

For the training of k-mer embedding model, a k-mer corpus was generated by setting k to 5, and the stride s to 
2. We used the python implementation of the word2vec model in Gensim package to obtain the k-mer embedding 
vectors. All parameters in word2vec were le� at their default values.

Hyper-parameter. �e hyper-parameter setting in our methods consists of two groups: model-related and 
data-related. For model-related, it contains 12 parameter settings, which are generated by the combination of 
di�erent optimizer and GRU number. Details of the model-related hyper-parameter setting are summarized 
in Table 1. For each ChIP-seq dataset, we execute all hyper-parameters, and record the performance of di�er-
ent parameter settings and get the best parameter setting by comparing the performance of all datasets. �e 
hyper-parameter of three baseline models, gkmSVM, DeepBind, and CNN_ZH, remain unchanged.

�e whole process is made up of two steps: model training and data statistical analysis. In model training, for 
each ChIP-seq dataset, we used all hyper-parameters to train KEGRU on the training set with a mini-batch size 
of 200 and tested it on the validation set. A�er training, all trained model should be tested on the corresponding 
test set and record test results. In data statistical analysis, all test results are classi�ed by cell type, hyper-parameter 
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setting and test indicators. �e reason for this is that TF may have di�erent binding properties on di�erent cell 
type and a hyper-parameter setting may have better performance on one cell type and opposite case on other cell 
types. We would have the best hyper-parameter on speci�c cell type by comparing the test results.

Although the word embedding has been widely used in NLP, the e�ect of di�erent embedding strategy on 
TF binding site prediction is unknown. In addition, we still don’t know the in�uence of k-mer length, stride 
window and embedding vector dimension on model performance. �erefore, these settings were also regarded as 
hyper-parameter and would be discussed later in following section.

Performance comparison with existing methods. To demonstrate the performance of our model 
KEGRU and compare it with three baseline models gkmSVM, DeepBind and CNN_ZH, we performed a series 
of experiments with the di�erent hyper-parameter setting. Figure 1 is the concentrated display of the AUC and 
APS distribution of four models on four cell types with various hyper-parameter settings, highlighting the excel-
lent performance of KEGRU. Table 2 displays the average APS of KEGRU compared with three baseline models. 
Table 3 displays the average AUCs of KEGRU compared with three baseline models. Given the above informa-
tion, we chose the best hyper-parameter setting and used scatter plots to display the performance gap of KRGRU 
and three baseline models. Figure 2(a) shows that KEGRU has higher performance than gkmSVM on four cell 
line. Figure 2(b,c) show the performance comparison of KEGRU and other two baseline model, respectively. As 
shown in Fig. 2, our model KEGRU always performs better than three baseline models. In general, with the help 
of BiGRU and k-mer embedding, our model KEGRU has higher AUC scores than other three baseline models, 
which means that our model would be helpful for the motif discovery task.

Evaluate the effect of k-mer embedding. Although word embedding has proven its e�cacy in NLP, it 
is rarely used in human genomic research76. �e role of the embedding layer in our model is to map the k-mer 
index to k-mer vectors obtained by the pre-trained k-mer model. Previous experiments have shown that when 
using k-mer embedding and BiGRU, KEGRU has better performance than other three baseline models. But, 
the question is that we still don’t know how much the e�ect of the embedding strategy on model performance 
is. To address this question, we designed three embedding ways: no-init, init-no-train, and init-train. No-init 
means that the weights of the embedding layer are initialized with uniform distribution and the neural network 
can adjust the weights during model training. Init-no-train means that the weights of the embedding layer are 
initialized by the pre-trained k-mer vectors and will not be updated during model training. Init-train means that 

Hyper-parameter Optional

GRU units number 50,80,100

Optimizer SGD, Adam, Adagrad, RMSprop

Table 1. Hyper-parameter settings.

Figure 1. �e distribution of AUCs and APSs across 125 experiments in the task of DNA-protein binding 
prediction.
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the weights of the embedding layer are initialized by the pre-trained k-mer vectors and will be �ne-tuned during 
training. �is strategy is adopted in our model KEGRU.

Figure 3 displays the average APS of the above three embedding strategies on four datasets. �e contrast exam-
ination shows that when using pre-trained k-mer vectors, the impact of �ne-tuning is minor to the performance 
of our model. �e k-mer embedding strategy has got the desired improvements in the model performance. In 
conclusion, the pre-trained k-mer vectors could re�ect the distribution characteristics of k-mer in DNA sequence 
well, and help improve model performance.

Sensitivity analysis. In this section, we used the HUVEC dataset to analyze the e�ect of k-mer length k, 
stride window s and embedding dimension d. With the increase of k, the capacity of k-mer vocabulary would be 
explosive growth. Besides, small k can’t re�ect the characteristics of TF binding. In this paper, we reconstructed 
the k-mer corpus with di�erent k (from 4 to 6) and obtained the k-mer embedding vectors by re-training k-mer 
model. Figure 4(a) shows that our model has got close prediction performance with di�erent k.

�e number of k-mer N is determined together by DNA sequence length L, k-mer length k and stride window s.

= − +⌊ ⌋N L k s( )/ 1 (1)

Figure 4(b) shows that when using four di�erent stride window s = 2, 3, 4 and 5, the performance of our model 
is decreasing. As shown in Equation (1), the size of the k-mer corpus will be decreased by a larger s, and can lead 
to the lack of useful information. �is may have negative impact on the embedding representation. We don’t spec-
ify the stride window as 1 because it may sharply increase the size of the k-mer corpus and make a k-mer largely 

Cell Line

HUVEC MCF7 A549 H1-HESChyper-parm

gkmSVM 0.9226 0.9016 0.9134 0.9224

DeepBind 0.8601 0.8857 0.8775 0.8291

CNN_ZH 0.9368 0.9173 0.9351 0.9241

50, SGD 0.9423 0.9454 0.9328 0.9046

50, Adagrad 0.9611 0.9648 0.9582 0.9516

50, RMSprop 0.9612 0.9656 0.9601 0.9502

50, Adam 0.9613 0.9656 0.9599 0.9517

80, SGD 0.9429 0.9516 0.9357 0.9144

80, Adagrad 0.9616 0.9657 0.9466 0.9521

80, RMSprop 0.9618 0.9659 0.9600 0.9519

80, Adam 0.9618 0.9653 0.9608 0.9528

100, SGD 0.9424 0.9530 0.9342 0.9041

100, Adagrad 0.9620 0.9350 0.9455 0.9469

100, RMSprop 0.9607 0.9655 0.9607 0.9510

100, Adam 0.9619 0.9657 0.9606 0.9525

Table 2. Average APS scores across 125 ChIP-Seq datasets.

Cell Line

HUVEC MCF7 A549 H1-HESChyper-parm

gkmSVM 0.9119 0.8830 0.9031 0.9129

DeepBind 0.8613 0.8861 0.8784 0.8296

CNN_ZH 0.9335 0.9147 0.9316 0.9210

50, SGD 0.9393 0.9426 0.9285 0.9039

50, Adagrad 0.9603 0.9637 0.9565 0.9509

50, RMSprop 0.9604 0.9646 0.9583 0.9497

50, Adam 0.9605 0.9644 0.9580 0.9513

80, SGD 0.9409 0.9494 0.9320 0.9153

80, Adagrad 0.9610 0.9647 0.9453 0.9514

80, RMSprop 0.9607 0.9649 0.9584 0.9512

80, Adam 0.9608 0.9643 0.9593 0.9524

100, SGD 0.9392 0.9505 0.9301 0.9042

100, Adagrad 0.9612 0.9332 0.9431 0.9461

100, RMSprop 0.9599 0.9645 0.9591 0.9502

100, Adam 0.9611 0.9646 0.9588 0.9520

Table 3. Average AUC scores across 125 ChIP-Seq datasets.
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Figure 2. Performance comparison between KEGRU and three baseline models on four cell lines.

Figure 3. Model performance for di�erent embedding strategies.

Figure 4. Sensitivity analysis of di�erent k-mer length, stride window and embedding vector dimension, 
performed on the HUVEC dataset. �e average and median AUC scores on HUVEC are reported.
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overlap with its neighbor. �is also has great in�uence on the embedding representation. In general, to make the 
embedding layer work well, a proper stride window s 2 is recommended here.

In addition, we also analyzed the e�ect of di�erent embedding dimension d, including 50, 100, 150 and 200. 
�e model complexity will be increased by more weight parameters, which is caused by a larger d and needs to 
be learned in embedding layer. As shown in Fig. 4(c), although changes in embedding dimension d may lead to 
over�tting, the prediction accuracy of our model remains fairly constant throughout the experiment.

Discussion
In this paper, we propose a bidirectional gated recurrent unit neural network with k-mer embedding to identify 
TF binding sites from DNA sequence. �e characteristic of our model is summarized as follows. Firstly, word 
embedding has been introduced in our model and applied to k-mer sequence representation using the unsuper-
vised learning algorithm word2vec. To avoid dimension curse caused by one-hot encoding, the k-mer embed-
ding vectors are used for feature representation. �is measurement is bene�cial to following feature learning and 
classi�cation task. Secondly, our model KEGRU is suitable to processing variable-length input sequences. �e 
shortcoming of CNNs is that the length of input sequence must be �xed. �e application of BiGRU network not 
only improves the compatibility of variable length input sequence, but also is able to capture complex context 
information from the k-mer sequence. In addition, we prove that our model has better prediction performance 
than other baseline methods. We also prove that k-mer embedding is an e�ective method to improve the perfor-
mance of our model. What’s more, we show the robustness of our model through hyper-parameter experiments. 
We also show the role of NLP and RNN in the DNA sequence analysis.

�ere are still some works to be done in the future to improve the performance of our model. First, in the 
double-stranded DNA sequences, domain-speci�c modi�cations may appear identically on one strand or its 
reverse complement. �erefore, GRU with reverse complement mechanism is helpful to feature learning and 
classi�cation task. Second, the attention mechanism is also an excellent choice. Attention mechanism has been 
used in document classi�cation and sentiment classi�cation and achieved better performance. �e basic idea of 
attention mechanism is that it can focus on the key parts of the whole sequence. �is characteristic may be used 
in our model to help explore the important TF binding sites on DNA sequences. In NLP, there are some existing 
methods to embed sentence or documents into a vector directly by sentence2vec and paragraph2vec. �erefore, 
we can design a new embedding algorithm for the representation of the variable-length k-mer sequence. Finally, 
we hope that our method would contribute to the study of gene regulation mechanism.

Methods
In this section, we describe the basic structure of KEGRU at �rst. �en, we discuss the detail information of 
word embedding in our model, which is used to represent a k-mer as a low-dimensional vector. At last, we 
used Bidirectional GRUs to capture long range dependencies and form �xed-length feature representation of 
arbitrary-length DNA sequences.

Model architecture. Given the k-mer length k and stride widow s, a DNA sequence with LD base pairs will 
be split into a k-mer sequence KS with length = − +⌊ ⌋L L k s( )/ 1k D . Each k-mer in KS is indexed by positive 
integers in = K N[1, 2, , ]. �en, we will explore an appropriate approach to learn the co-occurrence informa-
tion of k-mer in KS, which will help map k-mer sequence into a vector space V.

In KEGRU, each DNA sequence is given a binary label, which represents whether the short DNA sequence is 
a TF binding region or not. Suppose that we have M labeled instances =x y{ }i i i

N
, 1, where ∈x Ki

Lk, ∈y (0, 1)
i

. Our 
task is to build the prediction model that is used to predict the label for each instance. Figures 5 shows the basic 
structure of KEGRU. We use formula (2) to represent the entire �ow:

=Y f f f x( ( ( ))) (2)pred GRU embed

where x denotes a k-mer sequence.
During k-mer embedding, a k-mer will be mapped into a vector by learning the co-occurrence statistics of 

each k-mer in k-mer sequence. We use a Bidirectional GRU network to capture the long-term dependencies, and 
then generate a �xed-length feature vector. In the prediction stage, we will obtain a prediction by performing a 
logistic regression on the feature representations. Given k-mer sequence xi and model parameters Φ, the condi-
tional likelihood of predicting label yi is computed by76:

δ β δ βΦ = + − −p y x y h hlog ( , ) log ( ) (1 y log(1 ( ))) (3)i i i
T

i
T

ii

where β denotes the prediction parameter. hi represents the learned �xed-length feature. δ denotes the logistic 
sigmoid function. Our model is trained by minimizing the loss function:

∑ϕ = − Φ

=

p y xlog ( , )
(4)i

N

i i
1

K-mer embedding with Word2vec. If we use one-hot77 to encode each word in a large number of text 
data, the word vector may be a high-dimensional vector. We have to consume more and more computer resources 
to store and process these vectors. To address this problem, researchers proposed the concept of distributed rep-
resentation78–81, including word embedding. Brie�y, the core idea behind word embedding is to model and ana-
lyze semantic similarities between words based on their distributional properties in large samples of document 
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data. A�er word embedding, words from the corpus would be mapped to vectors of real numbers, which can be 
processed by a neural network model.

In practical use, all the word vectors will be deposited into a matrix ∈
×WE Rd N , where N denotes the size of 

the corpus and d denotes the word vector dimension. We call this matrix as the embedding layer or the lookup 
table layer. �e embedding layer can be initialized through a pre-trained algorithm, and some algorithms have 
been proposed based on neural networks70, dimensionality reduction on the word co-occurrence matrix72, 

Figure 5. �e basic architectural structure of our model KEGRU. (1) We �rst built the k-mer corpus, which 
consists of a number of k-mer sequence built by splitting DNA sequence. (2) Based on the k-mer corpus built at 
�rst step, we use the pre-trained model word2vec to learn the k-mer embedding vectors. All k-mer vectors are 
stacked into the embedding matrix that will be used to initialize the embedding layer. (3) We use bidirectional 
GRU network to solve long-range dependencies problem and to learn feature information from input k-mer 
sequence. (4) �e prediction results were generated by the dense layer and the sigmoid layer, and then we use a 
loss function to compare the prediction results with the true target labels.

Figure 6. Structural comparison between (a) LSTM and (b) GRU67. (a) i, f and o denote the input, forget and 
output gates, respectively. C and E denote the current memory cell state and the new memory cell state. (b) r and 
z represent the reset and update gates. h and m are the current unit state and the candidate unit state.
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probabilistic models82, and explicit representation in terms of the context in which words appear83. For example, 
word2vec is a set of related models based on continuous bag-of-words and skip-gram. �ese models are sample 
neural networks that are trained to generate the context information of the word. As an unsupervised learning 
algorithm, Glove was used to learn word feature information from a corpus. Word vector is obtained through 
global word-word co-occurrence statistics.

In our model, each k-mer in k-mer sequence is considered as a word in the sentence. �erefore, we can use 
word embedding to represent a k-mer sequence at the word level. Given a k-mer sequence KS consisting of N 
k-mers, it can be represented as = KS k k k k{ , , , , }N1 2 3 . We �rst train a k-mer model KM through word2vec. 
�en, the vector of k-mer kt is obtained by KM:

=kv KM k( ) (5)t t

�en, the k-mer sequence KS can be represented as = KS kv kv kv kv{ , , , , }e N1 2 3 .

Bidirectional GRU. In order to deal with several shortcomings about the standard RNN model, a list of 
e�orts, including Long short-term memory (LSTM)84,85 and other similar approaches, have been proposed in this 
�eld. �e GRU was proposed by Cho et al.86. Figure 6 shows the internal structure of LSTM and GRU. In a gated 
recurrent neural network, each unit can control the �ow of information through resetting gate and updating gate, 
and all memory contents are fully exposed at each time step. Besides, the output of GRU is to achieve a balance 
between the previous memory state and the new candidate memory state.

�e update gate zt is computed by67

= + +−z sigmoid W x U h b( ) (6)t z t z t z1

where xt is the input vector of the GRU. ht−1 is the previous output of the GRU. Wz, Uz and bz are forward matrices, 
recurrent matrices and biases for update gate, respectively.

Similarly to the update gate, the reset gate is computed by67

= + +−r sigmoid W x U h b( ) (7)t r t r t r1

where the parameters are as above.
And then, the candidate memory state mt is computed by67

= + ∗ +−m W x U r h btanh( ( ) ) (8)t h t h t t h1

where σh is the hyperbolic tangent function. * is an element-wise multiplication.
Finally, the memory state ht of the GRU is computed by67

= − +−h z h z m(1 ) (9)t t t t t1

To make our model have a �exible input data format and can reach future input information from the current 
state, we used Bidirectional RNN (BiRNN). �e basic idea of BiRNN is that all neurons in regular RNN are split 
into forward layer and backward layer, which represent the positive time direction and negative time direction, 
respectively. By using this structure, it is easy to capture the e�ect of input information from the past and future 
on current state. �e output of BiRNN is computed by merging forward layer out and backward layer out with 
speci�c mode, like concatenate, sum, average and multiplication.

In our model, standard RNN unit is replaced by GRU. �e output of BiGRU is calculated by

=output merge fout bout( , ) (10)

where fout is the output of forward layer. bout is the output of backward layer.

Data Availability Statement
�e datasets generated during and analyzed during the current study are available from the corresponding author 
on reasonable request.
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