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growth before weanling
Chang Cui1, Caichi Wu1, Jun Wang1, Ziwei Ma1, Xiaoyu Zheng1, Pengwei Zhu1, Nuan Wang1, Yuhua Zhu2,3,4, 
Wutai Guan1,5,6* and Fang Chen1,5,6* 

Abstract 

Background: Intrauterine growth restriction (IUGR) is a major inducer of higher morbidity and mortality in the pig 
industry and catch-up growth (CUG) before weanling could significantly restore this negative influence. But there was 
limited knowledge about the underlying mechanism of CUG occurrence.

Methods: Eighty litters of newborn piglets were divided into normal birth weight (NBW) and IUGR groups accord-
ing to birth weight. At 26 d, those piglets with IUGR but over average body weight of eighty litters of weaned piglets 
were considered as CUG, and the piglets with IUGR still below average body weight were considered as NCUG. This 
study was conducted to systemically compare the intestinal difference among NBW, CUG and NCUG weaned piglets 
considering the crucial role of the intestine for piglet growth.

Results: The results indicated that the mRNA expression of nutrients (amino acids, glucose, and fatty acids) transport-
ers, and mitochondrial electron transport chain (ETC) I were upregulated in CUG piglets’ gut with improved morphol-
ogy compared with those NCUG, as well as the ratio of P-AMPK/AMPK protein expression which is the indicator of 
energy metabolism. Meanwhile, CUG piglet’s gut showed higher antioxidative capacity with increased SOD and GSH-
Px activity, decreased MDA levels, as well as higher mRNA expressions of Nrf2, Keap1, SOD, and GSH-Px. Furthermore, 
inflammatory parameters including TNF-α, IL-1β, IL-6, and IL-12 factors, and the activation of MAPK and NF-κB signaling 
pathways were significantly elevated in the NCUG intestine, while the protein expression of ZO-1, Occludin and Clau-
din-1 was reduced. The alpha diversity of fecal microbiota was higher in CUG piglets in contrast with NCUG piglets, 
and the increased beneficial bacteria and decreased pathogenic bacteria was also observed in CUG piglets.

Conclusions: CUG piglet’s intestine showed comprehensive restoration including higher nutrients transport, energy 
metabolism, antioxidant capacity, and intestinal physical barrier, while lower oxidative stress, inflammatory response, 
and pathogenic microbiota.
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Background
Intrauterine growth restriction (IUGR) is defined as the 
limited growth and development of mammalian fetus 
and organs during pregnancy and born with smaller 
body weight [1]. It has been well established that IUGR 
fetus are usually accompanied by comprehensive nega-
tive postnatal outcomes and metabolic disorders in vari-
ous species [1–3]. As multiparous animals, pigs are most 
prone to IUGR and its occurrence has been reported 
up to 15%–20%, which might continue to raise due to 
the bigger litter size attributed to the improvement of 
breeding science nowadays [1]. The weaning morbidity 
of piglets with IUGR was about 11%, which was signifi-
cantly higher than that of piglets without IUGR, causing 
huge economic loss to animal husbandry [1, 4]. Catch-up 
growth (CUG) refers to the body’s rapid growth after a 
period of growth inhibition, which has been observed in 
a portion of IUGR newborns in their early postnatal life 
[5, 6]. Previous studies have shown that CUG infants are 
65% less likely to be hospitalized in the first 20 months of 
birth and 75% less likely to die at age 6 than those infants 
still with smaller body weight at that time, which was a 
considerable benefit for human health [7]. Limited results 
in pigs also showed that early postnatal CUG has similar 
morbidity and growth potential as normal birth weight 
(NBW) piglets at birth during growth and fattening 
period [8], suggesting that the importance of CUG in pigs 
should be addressed especially before weanling to reduce 
economic loss caused by IUGR in swine production.

Gut plays a crucial role in nutrient digestion and 
absorption directly contributing to piglet growth, and 
its abnormal development is closely associated with high 
diarrhea and mortality rates in weaned piglets, as well as 
impaired overall health and productive performance [9]. 
It has been reported that newborn IUGR pigs have sig-
nificantly lower intestinal weight compared with that of 
NBW piglets [10], and this stunned intestinal develop-
ment subsequently continued during the whole later life 
in the absence of CUG [11–13]. Besides, IUGR has shown 
negative effects on the expression of proteins involved in 
the absorption, digestion, and transportation of nutrients 
and is continuously impaired during lactation [14, 15]. To 
date, a large number of studies explored the mechanism 
of impaired intestinal development in IUGR pigs from 
abroad aspects, including immune and inflammatory 
system, cellular apoptosis signal transduction, protein 
synthesis, as well as microbial diversity [1, 15, 16], which 
provide great help to understand the difference between 
NBW and IUGR piglets and better take care of IUGR 

piglets to reduce their mortality and morbidity. However, 
to our knowledge, there were very limited investigations 
focusing on the underlying mechanisms about CUG of 
piglets, which is of importance and significance for pig 
industry to explore new strategies to improve productive 
performance by increasing the occurrence rate of this 
beneficial phenomenon.

Hence, we used different growth patterns IUGR (CUG 
and NCUG before weaning) and NBW piglets as animal 
models in the present study to systematically compare 
the intestinal difference in morphology, barrier func-
tion, antioxidant status, inflammation levels, nutrient 
transport, energy metabolism, and fecal microbiome. 
Moreover, considering that most previous studies mainly 
focused on duodenum and jejunum function in IUGR 
piglets [2, 17, 18], but paid little attention in the ileum. 
The ileum has recently been reported closely related to 
viral intestinal diseases and has attracted more and more 
attention. Therefore, three segments of intestine includ-
ing duodenum, jejunum and ileum were all collected in 
current study for analysis due to their different physi-
ological function. This study may also shed light on the 
detailed understanding of gut development and adaption 
for CUG infants.

Materials and methods
Animals and experimental design
All animal procedures were carried out in accord-
ance with the Guidelines for Care and Use of Labora-
tory Animals of South China Agricultural University 
and approved by the Animal Ethics Committee of South 
China Agricultural University (No. 20110107–1, Guang-
zhou, China). During gestation, 80 healthy pregnant sows 
(Landrace × Yorkshire) were preselected according to 
similar due dates and parity (2–3). The newborn piglets 
were weighed immediately after delivery. IUGR piglets 
were defined as the average birth weight was 2 standard 
deviations below the average birth weight of the total 
population, and NBW piglets are defined as the birth 
within 0.5 standard deviations of the average birth weight 
of the total population. According to the birth weight, 55 
IUGR piglets and 28 NBW piglets weighing more than 
1.2 kg were selected to participate in this study. 55 IUGR 
piglets were separated from NBW piglets and fostered 
to 6 sows with similar body conditions during lacta-
tion. All the piglets were weighed and measured weekly 
to track their growth pattern. On the weaning day (26 
d), 14 IUGR piglets with weaning weight exceeding the 
average body weight of 80 litters of weaned piglets were 
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divided into the CUG group, and 33 IUGR piglets with 
weaning weight not exceeding the average body weight of 
80 litters of weaned piglets were divided into the NCUG 
group (Fig. 1A).

Sample collection
At age of 7 days, all IUGR piglets were included in this 
study to collect feces by separating them one by one into 
a clean crate, then administered rectal stimulation with a 
sterile swab, and collected feces at least 5 g directly into 
a sterile centrifuge tube. After weaning, 3 weaned pig-
lets were randomly selected from CUG and NCUG pig-
lets to perform 16S rRNA sequencing analysis for their 
feces samples collected at the age of 7 days. At age of 26 
days, 6 weaned piglets were randomly selected from each 
group of NBW, CUG, and NCUG groups for the slaugh-
ter experiment. After intravenous injection of 100 mg/kg 
lethal dose of sodium pentobarbital, the abdominal cav-
ity was opened. The duodenum was considered as 10 cm 
away from the gastric pylorus, the jejunum was consid-
ered as 40 cm away from the cecum, and the ileum was 
considered as 10  cm away from the cecum [19]. About 
1  cm long samples were collected at the middle part of 
the duodenum, jejunum, and ileum and then fast stored 
in 4% paraformaldehyde fix solution for subsequent mor-
phological observation. The active component of 4% par-
aformaldehyde, using 0.1  mol/L phosphoric acid buffer 
as solvent, pH 7.0–7.5 at 25  °C. At the same time, each 
intestinal segment about 2 cm was opened longitudinally, 
and the intestinal contents were rinsed three times using 
cold normal saline, then quickly frozen in liquid nitro-
gen for mRNA and protein expression analysis. The time 
from euthanasia to complete sampling was controlled at 
about 30 min for each piglet.

Intestinal morphology
Duodenum, jejunum, and ileum samples were stored 
in 4% paraformaldehyde fix solution for morphological 
analysis. Standard paraffin embedding procedures and 
standard hematoxylin and eosin staining protocols were 
used. In simple terms, intestinal tissues were dehydrated 
in a series of ethanol diluents, washed with xylene, and 
then embedded in paraffin wax. Paraffin samples were 
cut into 5 μm sections and stained with hematoxylin and 
eosin. Two discontinuous sections were selected from 
each tissue, and 5 representative villi and their associated 
crypt were selected from each section. Villi height (VH) 
and crypt depth (CD) were viewed on the light micro-
scope and measured using an image processing and anal-
ysis system (NIS-Elements Viewer, Tokyo, Japan).

Real time quantitative PCR
The total RNA was isolated from duodenum, jejunum 
and ileum using the Tissue RNA Purification kit PLUS 
(EZB-RN001-plus, EZBioscience, Roseville, MN, USA) 
followed the manufacturer’s instruction. The extracted 
RNA quality and concentration were evaluated with 
1.0% agarose gel electrophoresis (130 V, 18 min), and the 
absorption ratio of RNA  (A260/A280) for all RNA samples 
was greater than 1.8 and less than 2.3 by using a spec-
trophotometer. The cDNA synthesis was performed by 
the RNA reverse transcription reaction with the Color 
Reverse Transcription Kit (A0010CGQ, EZBioscience, 
Roseville, MN, USA), according to the manufacturer’s 
protocol. Real time PCR was conducted using ABI Prism 
7500 sequence detection system (Applied Biosystems, 
Carlsbad, CA, USA) with a reaction volume of 20 μL. 
The PCR reaction scheme includes initial denaturation 
one cycle at 95  °C for 2  min, amplification forty cycles 

Fig. 1 Experiment design and the establishment of CUG model. A Schematic representation of the experimental design. B Body weight from birth 
to postnatal 26 d of NBW, CUG and NCUG piglets. NBW, normal birth weight. IUGR, intrauterine growth retardation. CUG, catch-up growth. NCUG, 
not catch-up growth. P < 0.05, *NBW vs. CUG-IUGR. P < 0.01, **NBW vs. CUG, ##NBW vs. NCUG, $$CUG vs. NCUG 
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at 95 °C for 15 s, 60 °C for 30 s. The relative target gene 
expression levels were determined based on the quanti-
fication approach  (2−ΔΔCt method), with β-actin acting 
as the housekeeping gene to normalize all mRNA levels. 
The total primers used are presented in Table 1 [20–22].

Western blot
Total protein was extracted from the duodenal, jeju-
nal and ileal tissues and homogenized by adding a mix-
ture of RIPA lysis buffer (P0013B, Beyotime, Shanghai, 
China) containing protease inhibitor PMSF (ST506, 
Beyotime, Shanghai, China). The protein concentration 
in supernatant was measured using a BCA Protein Assay 
Kit (P0010, Beyotime, Shanghai, China) after the centri-
fuge. Thereafter, the equal quantities of protein (25  μg) 
were separated by 10% SDS-PAGE gels and electri-
cally transferred onto polyvinylidene difluoride (PVDF) 
membranes. After that, the membranes were blocked 
with 5% skimmed milk for 2  h at room temperature 
and then incubated with the primary antibody against 
Claudin-1 (1:1000, ab129119, Abcam, Cambridge, UK), 
ZO-1(1:1000, 21773–1-AP, Proteintech, Wuhan, China), 
Occludin (1:1000, 27260–1-AP, Proteintech, Wuhan, 

China), P-JNK (1:1000, 4688S, Cell Signaling Technology, 
Boston, MA, USA), JNK (1:1000, 9252S, Cell Signaling 
Technology, Boston, MA, USA), P-NF-κB (1:1000, 3033S, 
Cell Signaling Technology, Boston, MA, USA), NF-κB 
(1:1000, 10745–1-AP, Proteintech, Wuhan, China), 
P-AMPK(1:1000, 2535S, Cell Signaling Technology, Bos-
ton, MA, USA), AMPK (1:1000, 2432S, Cell Signaling 
Technology, Boston, MA, USA) and β-actin (1:2000, bs-
0061R, Bioss, Beijing, China) overnight at 4 °C. Then, the 
membranes were washed by Tris buffered saline Tween 
and incubated with a corresponding secondary antibody 
(1:50,000, 511203, ZenBio, Chengdu, China) for 1.5  h 
at room temperature, followed by visualizing the target 
bands using an enhanced chemiluminescence kit (P1020, 
Applygen, Beijing, China) using the ImageQuant LAS 
4000 mini system.

Antioxidant status
The duodenal, jejunal and ileal tissues were homogenized 
with saline solution (1:4, weight:volume) and centrifuged 
at 3000 × g for 15 min. According to the kit instructions, 
the supernatants were diluted to the optimal concentra-
tion for detecting the activities of glutathione peroxidase 

Table 1 Primer sequences used in Real-time PCR

Genes Accession Forward primer(5’ → 3’) Reverse primer (5’ → 3’)

LAT1 NM_003486 GCC CAT TGT CAC CAT CAT C GAG CCC ACA AAG AAA AGC 

CAT1 NW_003611328.1 GCC TGA GAG CAA GAC CAA AC GCC GTA GCC GAA GTA GAT GA

EAAC1 NM_001164649.1 GTT CCT GAT TGC CGG GAA GA ATG GCG AAT CGG AAA GGG TT

PepT1 AY180903.1 AGC ATC TTC TTC ATC GTG  GTCAA GTC TTG AAC TTC CCC AGC CA

SGLT1 NM_001164021 CAT CAT CGT CCT GGT CGT C CAT CAT CGT CCT GGT CGT C

GLUT2 EF140874 GTC CAG AAA GCC CAA GAT  ACC GTG ACA TCA TCA CTT CCT CTGAG 

CD36 NM_001083931.1 GGC AAC AGA CGT GAT CTA TGAC AGC GGC TGG CTG AAA ACT 

FATP4 XM_003353676.1 AGC CGC ATC CTG TCC TTT GAC ATC CTT GGC GAT CTT TT

NDUF A1 XM_003135339.4 GCT TCC GGG GAA GGA ATC AA CCG GGG AGA ATT TCG AAC CA

NDUF A6 NM_001185178.1 TCT CAG AGC CTT GCA TGT CG AAG CCA TCC AGC ATC GTA CC

NDUF A13 NM_001244646.1 ATG AAG GAT GTG CCG GAC TG CCA TAG GTG GCG CTG AGA AT

NDUF B1 XM_003482306.3 TGC CTT CCG GAA CAA GAG TC GCA ATT CAG CCA CAG CCT TT

Nrf2 NM_001114671.1 GAC AAA CCG CCT CAA CTC AG GTC TCC ACG TCG TAG CGT TC

Keap1 XM_021076667.1 CGT GGA GAC AGA AAC GTG GA CAA TCT GCT TCC GAC AGG GT

SOD NM_001190422.1 AAG GCC GTG TGT GTG CTG AA GAT CAC CTT CAG CCA GTC CTTT 

GSH-Px NM_214201.1 CCT CAA GTA CGT CCG ACC AG GTG AGC ATT TGC GCC ATT CA

TNF-α NM_214022.1 CCA CCA ACG TTT TCC TCA CT TAG TCG GGC AGG TTG ATC TC

IL-1β NM_214055.1 CCA AAG AGG GAC ATG GAG AA TTA TAT CTT GGC GGC CTT TG

IL-6 NM_001252429.1 TGG CTA CTG CCT TCC CTA CC AGA GCC TGC ATC AGC TCA GT

IL-12 NC_010458.4 CAA CCC TGT GCC TTA GCA GT AGA GCC TGC ATC AGC TCA GT

MAPK3 XM_021088019.1 CAG TCT CTG CCC TCC AAG AC GGG TAG ATC ATC CAG CTC CA

MAPK8 XM_001929166.6 TGG ATG AAA GGG AAC ACA CA ATG ATG ACG ATG GAT GCT GA

MAPK14 XM_021091323.1 CCC TGA GGT TCT AGC GAA GA TCT CAT CGT AGG GCT CTG CT

NFKB1 NM_001048232.1 CTC GCA CAA GGA GAC ATG AA ACT CAG CCG GAA GGC ATT AT

β-actin XM_021086047.1 TGC GGG ACA TCA AGG AGA AG AGT TGA AGG TGG TCT CGT G
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(GSH-PX), reduced glutathione (GSH), superoxide dis-
mutase (SOD), total antioxidant capacity (T-AOC) and 
malonaldehyde (MDA) by commercially available kits 
(Nanjing Jiancheng Bioengineering Institute, Nanjing, 
China).

16S rRNA Sequencing
Total genomic DNA was extracted from samples by 
CTAB method [23]. The concentration and purity of 
DNA were monitored on 1% agarose gels. V3-V4 variable 
regions of 16S rRNA genes were amplified with primers 
341F (5’-CCT AYG GGRBGCASCAG-3’) and 806R (5’- 
GGA CTA CNNGGG TAT CTAAT-3’). 15 μL Phusion® 
High-Fidelity PCR Master Mix (New England Biolabs, 
Beijing, China) was used for PCR reaction. The primers 
of 341F and 806R mentioned above were 2 μmol/L, and 
the template DNA was about 10 ng. The thermal cycles 
include initial denaturation at 98  °C for 1 min, denatur-
ation at 98  °C for 10  s, annealing at 50  °C for 30  s, and 
extension at 72  °C for 30 s. Finally, 72  °C for 5 min. An 
equal amount of 1× loading buffer was mixed with PCR 
products and electrophoresis was performed on 2% aga-
rose gel. PCR products were mixed at an isodensity ratio. 
The mixed PCR products were purified using the Qia-
gen Gel Extraction Kit (Qiagen, Dusseldorf, Germany). 
Sequencing libraries were generated by TruSeq® DNA 
PCR-Free Sample Preparation Kit (Illumina, San Diego, 
California, USA) according to manufacturer’s recommen-
dations and index codes were added. The library quality 
was evaluated on the Qubit@ 2.0 Fluorometer (Thermo 
Scientific, Waltham, MA, USA) and Agilent Bioana-
lyzer 2100 system. Finally, the library was sequenced on 
an Illumina Nova Seq platform to obtain 250 bp paired-
end reads. Paired-end reads were performed on samples 
based on their unique barcodes and truncated by trun-
cating barcodes and primer sequences. Paired-end reads 
were spliced using the FLASH software to obtain Raw 
Tags. Date filtration and noise reduction were performed 
on DADA2 module of QIME software (Version 1.9.1), 
then the ASVs and their feature table are obtained. The 
obtained ASVs were annotated for species, and finally the 
species information of each ASV was obtained.

Statistical analysis
All data in the experiment except microbial part were 
analyzed by one-way ANOVA using SPSS 22.0 (IBM 
Inc., Armonk, New York, USA) to determine whether 
significant differences among the groups. The data were 
expressed by means ± SEM. Correlations were evaluated 
by Pearson correlation analysis of the Euclidean distance 
using GraphPad Prism 9.0 (GraphPad Software, San 
Diego, CA, USA). P < 0.05 was considered a significant 
difference and highly significant when P < 0.01.

Alpha diversity, including Chao1, Shannon, and Simp-
son was used to analyze the complexity of species diver-
sity. All alpha diversity indices in our samples were 
calculated with QIIME (Version 1.7.0) and displayed 
with R software (Version 2.15.3). Beta diversity analysis 
was used to assess differences of samples in species com-
plexity, and beta diversity on weighted_unifrac was per-
formed using QIIME software (Version 1.9.1). Principal 
coordinate analysis (PCoA) was performed to get prin-
cipal coordinates and visualize from complex, multidi-
mensional data. T test statistical algorithm was used to 
analyze differences. Linear discriminant analysis (LDA) 
was used to identify the bacterial groups in each group 
by LEfSe.

Results
Establishment of piglet models with different growth 
patterns
The birth weight of IUGR piglets including CUG and 
NCUG piglets was significantly lower than that NBW 
piglets (P < 0.01), and there was no difference between 
CUG piglets and NBW piglets at the weanling day (26 d), 
indicating that CUG and NCUG models were success-
fully established (Fig. 1B).

Intestinal morphology
Obvious decreases in VH and VH/CD ratio in duode-
num, jejunum, and ileum of CUG and NCUG piglets 
were observed compared with the NBW (Fig. 2; P < 0.05). 
In contrast with NBW piglets, the CD was significantly 
increased in duodenum of CUG piglets, jejunum of CUG 
and NCUG piglets, and ileum of NCUG piglets (P < 0.05). 
Simultaneously, higher VH in the duodenum, jejunum 
and ileum was observed, as well as lower CD in ileum, 
but higher CD in duodenum and VH/CD ratio in ileum 
of CUG piglets compared with NCUG counterparts 
(P < 0.05). The VH/CD ratio in the duodenum and jeju-
num were similar between the CUG and NCUG groups 
(P > 0.05).

Intestinal nutrients transport mRNA expression
Gut plays a crucial role in nutrient transport, which 
processes are mainly regulated by specific amino acids 
transporters, glucose transporters and fatty acids trans-
porters located in intestine. At weaning (26 d), compared 
to NBW group, piglets with NCUG had a significantly 
lower expression of duodenal LAT1, EAAC1, PepT1 and 
FATP4, jejunal LAT1, ileal LAT1, CAT1, EAAC1, PepT1, 
SGLT1 and GLUT2 (Fig. 3A, B, C; P < 0.05). CUG piglets 
had significantly higher expression of SGLT1 in the jeju-
num, significantly lower expression of CAT1, EAAC1 in 
the ileum, and significantly higher expression of CD36 
in the ileum compared with NBW piglets (P < 0.05). 
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Specifically, CUG group showed higher mRNA expres-
sion levels of duodenal and jejunal LAT1, PepT1, GLUT2 
and FATP, ileal CAT1, GLUT2 and CD36 in contrast with 
the NCUG group (P < 0.05).

The mRNA and proteins associated with energy 
metabolism
To detect the function of mitochondria and AMPK in 
energy metabolism, the mRNA expression of mitochon-
drial electron transport chain (ETC) I and the protein 
expression of P-AMPK/AMPK were detected. The data 
indicated lower mRNA expression levels of NDUF A1, 
NDUF A13 and NDUF B1 in the duodenum, NDUF A1 in 
the jejunum, NDUF A6, and NDUF B1 in the ileum of the 
NCUG group in comparison with the NBW group (Fig. 4; 
P < 0.05).  Meantime, higher mRNA expression levels of 
NDUF A1, NDUF A6, NDUF A13, NDUF B1 in the jeju-
num, NDUF A13 in the ileum of CUG piglets than the 
NBW piglets were also observed (P < 0.05). The mRNA 
expression levels of duodenal and jejunal NDUF A1, 
NDUF A13, NDUF B1, ileal NDUF A1, NDUF A6, NDUF 

A13, NDUF B1 were higher in CUG compared with the 
NCUG group (P < 0.05). Additionally, compared to NBW 
group, CUG group has higher protein expression of 
P-AMPK/AMPK in the jejunum and ileum (P < 0.05). The 
protein expression of P-AMPK/AMPK was upregulated 
in the duodenum, jejunum, and ileum of the CUG piglets 
compared to the NCUG piglets (P < 0.05).

Intestinal redox status
The results obtained on the status of redox in the intes-
tinal mucosa are presented in Fig.  5. Compared to the 
NBW group, T-AOC and GSH activity were decreased 
in the duodenum, jejunum and ileum of both CUG and 
NCUG piglets. Meantime, in contrast with NBW pig-
lets, MDA concentration was increased in the duode-
num and ileum of CUG piglets, MDA concentration was 
also increased in the duodenum, jejunum and ileum of 
NCUG piglets, SOD activity was decreased in the duo-
denum and jejunum of NCUG piglets, GSH-Px activ-
ity was decreased in the duodenum, jejunum and ileum 
of NCUG piglets (P < 0.05). SOD and GSH-Px in CUG 

Fig. 2 Intestinal morphology of NBW, CUG and NCUG piglets on 26 d. A Duodenal morphology, villus height, crypt depth, ratio of villus height to 
crypt depth. B Jejunal morphology, villus height, crypt depth, ratio of villus height to crypt depth. C Ileal morphology, villus height, crypt depth, 
ratio of villus height to crypt depth. Dates are presented as means ± SEM (n = 6). NBW, normal birth weight. CUG, catch-up growth, NCUG, not 
catch-up growth. *P < 0.05; **P < 0.01
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group had no difference with NBW group (P > 0.05). Nev-
ertheless, compared to the NCUG group, the SOD activ-
ity and GSH-Px content were higher in the jejunum and 
ileum of CUG group (P < 0.05). MDA of jejunum in CUG 
group was lower in comparison with the NCUG group 
(P < 0.05).

To further reveal the molecular mechanism of CUG in 
regulating antioxidant capacity in the intestinal mucosa, 
mRNA expressions of Nrf2 pathway (Nrf2, Keap1, SOD 
and GSH-Px) were determined, as shown in Fig.  5F, G, 
H. Compared to the NBW group, NCUG showed lower 
mRNA expression of duodenal GSH-Px, jejunal Keap1, 
ileal SOD and GSH-Px, CUG showed higher mRNA 
expression of duodenal and jejunal Nrf2 and SOD, ileal 
Keap1 (P < 0.05). We observed a higher mRNA expres-
sion of duodenal Nrf2, Keap1, SOD, GSH-Px, jejunal 
Nrf2, SOD, GSH-Px, ileal SOD and GSH-Px in CUG com-
pared with the NCUG (P < 0.05).

Intestinal inflammation status
As shown in Fig. 6, NCUG groups exhibited significantly 
increased the mRNA expression of TNF-α, IL-1β, IL-6 
and IL-12 in duodenum, TNF-α in ileum than the NBW 
group (P < 0.05). There were no differences in TNF-α, 

IL-1β, IL-6 and IL-12 in duodenum, jejunum and ileum 
between CUG and NBW piglets (P > 0.05). Compared 
to NCUG piglets, CUG indicated lower mRNA expres-
sion of duodenal TNF-α, IL-1β, IL-6 and IL-12, jeju-
nal and ileal TNF-α (P < 0.05). In addition, western blot 
analysis revealed that the NCUG piglets showed higher 
ratio of duodenal P-JNK/JNK, jejunal and ileal P-JNK/
JNK and P-NF-κB/NF-κB compared with NBW piglets 
(Fig. 7; P < 0.05). Also, CUG piglets showed higher ratio 
of jejunal P-NF-κB/NF-κB and ileal P-JNK/JNK com-
pared with NBW piglets (P < 0.05). Meanwhile, the CUG 
piglets showed lower protein levels of duodenal P-JNK/
JNK, jejunal P-JNK/JNK and P-NF-κB/NF-κB compared 
with the NCUG piglets (P < 0.05). Similarly, in contrast to 
NBW piglets, the mRNA expression of duodenal and ileal 
MAPK3, MAPK8, MAPK14 and NFKB1, jejunal MAPK3 
and NFKB1 were upregulated in NCUG, while the 
mRNA expression of jejunal MAPK3 and MAPK14, ileal 
MAPK14 and NFKB1 were upregulated in CUG (Fig. 7; 
P < 0.05). Moreover, CUG showed markedly downregu-
lated mRNA levels of MAPK8, MAPK14, and NFKB1 
in the duodenum, MAPK3 and NFKB1 in the jejunum, 
and MAPK8 in the ileum than that in the NCUG group 
(P < 0.05).

Fig. 3 Intestinal nutrition transporters mRNA expression of NBW, CUG and NCUG piglets on 26 d. A The mRNA expression levels of LAT1, CAT1, 
EAAC1, PepT1, SGLT1, GLUT2, CD36 and FATP4 in the duodenum. B The mRNA expression levels of LAT1, CAT1, EAAC1, PepT1, SGLT1, GLUT2, CD36 
and FATP4 in the jejunum. C The mRNA expression levels of LAT1, CAT1, EAAC1, PepT1, SGLT1, GLUT2, CD36 and FATP4 in the ileum. D Heat map 
comparison of mRNA expression levels of nutrition transporters in NBW, CUG and NCUG. Dates are presented as means ± SEM (n = 4). NBW, normal 
birth weight. CUG, catch-up growth. NCUG, not catch-up growth. *P < 0.05; **P < 0.01



Page 8 of 19Cui et al. Journal of Animal Science and Biotechnology          (2022) 13:129 

Intestinal tight junction proteins levels
Western blot analysis showed that the protein levels of 
duodenal, jejunal and ileal Occludin, Claudin-1, and 
ZO-1 were decreased in NCUG piglets compared with 
the NBW piglets (Fig. 8; P < 0.05). CUG piglets decreased 
the protein levels of duodenal Occludin, Claudin-1, 
ZO-1, ileal Occludin compared with the NBW piglets 
(P < 0.05). Further, in contrast to NCUG piglets, no signif-
icant CUG action for Occludin, Claudin-1 was observed 
in the duodenum and jejunum (P > 0.05), but evident 

higher protein expression levels of ZO-1 were observed 
in the duodenum and ileum of CUG piglets (P < 0.05).

Microbiota populations
16S rRNA gene sequencing technology was used to 
compare the feces bacterial community composition of 
different pattern CUG piglets and NCUG piglets. After 
sequencing, a total of 2091 OTUs were identified from 
CUG and 424 OTUs were identified from NCUG, 202 
shared OTUs out of the total OTUs overlapped between 

Fig. 4 The intestinal mRNA and proteins expression associated with energy metabolism of NBW, CUG and NCUG piglets on 26 d. A Duodenal 
protein expression of P-AMPK/AMPK and mRNA expression of mitochondrial electron transport chain I, including NDUF A1, NDUF A6, NDUF A13 and 
NDUF B1. B Jejunal protein expression of P-AMPK/AMPK and mRNA expression of mitochondrial electron transport chain I, including NDUF A1, NDUF 
A6, NDUF A13 and NDUF B1. C Ileal protein expression of P-AMPK/AMPK and mRNA expression of mitochondrial electron transport chain I, including 
NDUF A1, NDUF A6, NDUF A13 and NDUF B1. Dates are presented as means ± SEM (n = 3 for protein expression; n = 4 for mRNA expression). NBW, 
normal birth weight. CUG, catch-up growth. NCUG, not catch-up growth. *P < 0.05; **P < 0.01
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the two groups (Fig. 9E). In this study, the alpha diversity 
of the feces microbiota expressed by Shannon, Simpson 
and Chao1 (Fig.  9A, B, C). Compared with the NCUG 
group, Shannon and Simpson were significantly higher 
in the CUG group (P < 0.05), while there were no signifi-
cant differences in Chao1 (P > 0.05). For beta diversity, 
the PCoA analyses based on weighted_unifrac distance 
showed that the microbiota there was no obvious ten-
dency to separate CUG from NCUG (Fig. 9D).

In order to further determine the changes in fecal micro-
biota composition, the dominant phylum and genus of each 
group were analyzed. At the phylum level (Fig.  10A), Fir-
micutes, Bacteroidetes, Proteobacteria and Euryarchaeota 
predominantly mainly constituted the fecal microbiota 

of piglets. Compared with the NCUG group, the relative 
abundance of Firmicutes in the CUG group decreased from 
39.30% to 36.4%, and the relative abundance of Bacteroi-
detes, Proteobacteria and Euryarchaeota decreased from 
36.9%, 11.9%, 6.57% to 22.3%, 11.1% and 1.81%, respectively. 
The ratio of Firmicutes/Bacteroidetes was increased from 
1.06% to 1.64% in CUG compared with the NCUG group. 
At the genus level, a total of 337 bacterial genera were anno-
tated, among which the top 10 were shown in Fig. 10B.

Compared with the NCUG group, the relative abun-
dance of Lactobacillus, Bacteroides, Clostridium_sensu_
stricto_1 and Escherichia_Shigella decreased from 
17.65%, 24.87%, 8.11%, 11.49% to 10.91%, 12.96%, 1.65% 
and 1.41%, respectively.

Fig. 5 Intestinal antioxidant status and the mRNA expression of Nrf2 pathway in NBW, CUG and NCUG piglets on 26 d. A–E The activities of T-AOC, 
MDA, SOD, GSH and GSH-Px of duodenum, jejunum and ileum.F The mRNA expression levels of Nrf2, Keap1, SOD, GSH-Px in the duodenum. G The 
mRNA expression levels of Nrf2, Keap1, SOD, GSH-Px in the jejunum. H The mRNA expression levels of Nrf2, Keap1, SOD, GSH-Px in the ileum. Dates 
are presented as means ± SEM (n = 4). NBW, normal birth weight. CUG, catch-up growth. NCUG, not catch-up growth. *P < 0.05; **P < 0.01
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The effect of microbial abundance of each species on 
the differential effect was evaluated by LDA (LDA thresh-
old > 3.6). The results (Fig.  11A, B) indicated that the 
fecal microbiota composition was affected by CUG. A 
higher richness of UCG_002, gut_metagenome, Akker-
mansiaceae, Verrucomicrobiota, Verrucomicrobiales, 
Verrucomicrobiae, Ruminococcaceae, Akkermansia, 
Oscillospiraceae and Oscillospriales in CUG group as well 
as  Escherichia_Shigella, Enterobacteriaceae, Tannerel-
laceae, Parabacteroides, Campylobacter and Campylo-
bacteraceae in NCUG group were observed in the feces 
of piglets.

Correlation analysis
A series of correlation analyses between gut nutrient 
transport, energy metabolism, antioxidant status, inflam-
matory responses, and gut permeability in piglets was 
revealed (Fig. 12). In duodenum, nutrient transport was 
positively correlated with NDUF A1, NDUF A13, NDUF 
B1, P-AMPK/AMPK and GSH-Px, and negatively corre-
lated with TNF-α, IL-1β, IL-6, IL-12, MAPK8, MAPK14 

and NFKB1. Energy metabolism was positively correlated 
with GSH-Px, and negatively correlated with TNF-α, 
IL-1β, IL-6, IL-12, MAPK3, MAPK8, MAPK14, NFKB1. 
Antioxidant status was positively correlated with ZO-1, 
Occludin and Claudin, and negatively correlated with 
IL-1β, IL-6, IL-12, MAPK3, MAPK8, MAPK14, NFKB1. 
Inflammatory responses were negatively correlated with 
ZO-1. In jejunum, that nutrient transport was posi-
tively correlated with NDUF A1, NDUF A13, NDUF B1, 
P-AMPK/AMPK, Nrf2, ZO-1, Occludin and Claudin-1, 
and negatively correlated with TNF-α, IL-1β, NFKB1. 
Energy metabolism was positively correlated with Nrf2. 
Antioxidant status was negatively correlated with IL-6, 
MAPK3, MAPK8, MAPK14, NFKB1 and P-JNK/JNK. 
In ileum, that nutrient transport was positively corre-
lated with NDUF A1, NDUF A6, NDUF A13, NDUF B1, 
P-AMPK/AMPK, GSH-Px, GSH, SOD, and negatively 
correlated with TNF-α, IL-6, MAPK3, MAPK8, MAPK14 
and NFKB1. Energy metabolism was positively correlated 
with, GSH-Px, SOD, Nrf2, Keap1, and negatively corre-
lated with TNF-α and MAPK8.

Fig. 6 The mRNA expression of intestinal inflammation status of NBW, CUG and NCUG piglets on 26 d. A The mRNA expression levels of TNF-α, 
IL-1β, IL-6 and IL-12 in the duodenum. B The mRNA expression levels of TNF-α, IL-1β, IL-6 and IL-12 in the jejunum. C The mRNA expression levels of 
TNF-α, IL-1β, IL-6 and IL-12 in the ileum. Dates are presented as means ± SEM (n = 4). NBW, normal birth weight. CUG, catch-up growth. NCUG, not 
catch-up growth. *P < 0.05; **P < 0.01
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Discussion
It is well known that IUGR has a permanent stunting 
effect on the postnatal growth of piglets due to accompa-
nied impaired development of momentous organs, which 
potentially further deteriorate pre-existing impaired 
growth [24]. The gut plays a vital role in postnatal devel-
opment of piglets and its abnormal development usually 
causes feeding intolerance, nutrient absorption problems 
and necrotizing enterocolitis [25–27], which negatively 
influence nutrients obtainment and lead to a poorer 
growth rate of IUGR piglets. Previous studies have shown 
that both newborn and weaned piglets with IUGR were 
characterized by damaged intestinal structure, such as 
decreased VH, increased CD and decreased VH/CD 
ratio [10, 25, 28]. In our present study, it is not surpris-
ing to find the destroyed intestinal morphology in NCUG 

weanling piglets similar to the previous study, but it is 
interesting that CUG piglets had much better intestinal 
structure, almost as good as NBW piglets. Our result 
indicated that the intestinal development from intrauter-
ine in CUG has been restored during the suckling period, 
which means the potential for improved ability to get 
necessary nutrients for growth.

The nutrients uptake is mainly facilitated by their 
corresponding transporters including amino acids 
transporters, glucose transporters, and fatty acids trans-
porters distributed aligned on the intestinal epithelium 
[29]. Nutrient uptake is not only the first step for nutri-
ent absorption, but also the main source of energy and 
nutrients for intestinal metabolism and development. 
Accumulating evidence showed that intestinal growth 
stagnation and dysfunction in piglets with IUGR are 

Fig. 7 The intestinal protein and mRNA expression of NF-κB and MAPK signaling pathways of NBW, CUG and NCUG piglets on 26 d. A Protein 
expression of P-JNK/JNK and P-NF-κB/NF-κB, mRNA expression of MAPK3, MAPK8, MAPK14 and NFKB1 in the duodenum. B Protein expression of 
P-JNK/JNK and P-NF-κB/NF-κB, mRNA expression of MAPK3, MAPK8, MAPK14 and NFKB1 in the jejunum. C Protein expression of P-JNK/JNK and 
P-NF-κB/NF-κB, mRNA expression of MAPK3, MAPK8, MAPK14 and NFKB1 in the ileum. Dates are presented as means ± SEM (n = 3 for protein 
expression; n = 4 for mRNA expression). NBW, normal birth weight. CUG, catch-up growth. NCUG, not catch-up growth. *P < 0.05; **P < 0.01
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accompanied by a series of nutrient transporter changes 
and disorders of nutrient and energy metabolism [30–
32]. It has been reported that mRNA expression of sev-
eral nutrient transporters including SLC1A1, SLC7A7, 
SLC7A9, PepT1, FABP4, SLC5A1, and GLUT2 was sig-
nificantly reduced in the jejunum of IUGR piglets [30], 
implying that inadequate nutrient uptake is strongly 
associated with impaired gut development and function. 
Glucose acts as the primary ATP producer and provides 

the most energy to intestinal epithelial cells to perform 
nutrient transportation. In current study, we found that 
the mRNA expression of GLUT2 and SGLT1, the two 
major glucose transporters in intestine were upregulated 
in CUG piglets compared with NCUG piglets, while sig-
nificantly higher mRNA expression of jejunal SGLT1 in 
CUG piglets compared with the other two groups. The 
better uptake capacity of glucose in small intestine of 
CUG piglets could provide sufficient energy to support 

Fig. 8 Intestinal tight junction proteins levels of NBW, CUG and NCUG piglets on 26 d. A The protein expression of Occludin, Claudin-1 and ZO-1 
in the duodenum. (B) The protein expression of Occludin, Claudin-1 and ZO-1 in the jejunum. (C) The protein expression of Occludin, Claudin-1 
and ZO-1 in the ileum. Dates are presented as means ± SEM (n = 3). NBW, normal birth weight. CUG, catch-up growth. NCUG, not catch-up 
growth. *P < 0.05; **P < 0.01
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intestinal development and ATP dependent nutrient 
transport, which is the foundation for intestinal func-
tion. We also found that the mRNA expression of amino 
acid transporters, including LAT1, CAT1 and PepT1 were 
significantly higher in CUG piglets than those of NCUG. 
This observation implied promoted amino acid obtain-
ing capacity in CUG piglets, which might be a reason 
for their higher growth rate during lactation since amino 
acids are precursors of protein synthesis [13]. In addition, 
the mRNA expression of fatty acid transporters FATP4 
and CD36 was also consistently found higher in CUG 
intestine in this study. Collectively, the higher mRNA 
expression of nutrient transporters in the intestine of 
CUG piglets suggested improved nutrients uptake capa-
bility potentially providing more substance for acceler-
ated growth.

Intestinal proliferation, renewal, and active transport 
of nutrients entirely depend on ATP produced by mito-
chondrial oxidative phosphorylation [33–35]. Mito-
chondrial dysfunction has been shown to limit energy 

production resulting in malabsorption and intestinal 
disorders in IUGR piglets [20, 33, 35, 36]. Mitochondrial 
complex I is the first and the most important rate-lim-
iting step in the mitochondrial ETC, providing a major 
proton-motive force that drives ATP synthesis, and its 
activity is positively correlated with ATP production [37]. 
A previous study showed complex I of ETC and ATP 
synthase activities were both decreased in intestine of 
IUGR piglets [38]. In present study, mRNA expression 
of ETC complex I was also shown to decrease in NCUG, 
while no obvious difference between CUG and NBW 
piglets, suggesting that the characterized energy lack in 
IUGR intestine has been repaired in CUG, which is also 
consistent with the enhanced nutrients transporters. 
AMPK has been widely reported as a critical sensor of 
cell energy status regulating cell metabolism to maintain 
energy homeostasis [39]. It is well known that AMPK 
activation could directly promote ATP production by 
increasing the activity or expression of proteins involved 
in catabolism, while switching off biosynthetic pathways 

Fig. 9 The shifts in feces alpha and beta diversity of CUG and NCUG piglets on 7 d. A Shannon index of microbiota. B Simpson index of microbiota. 
C Chao1 index of microbiota. D Principal component analysis (PCoA) scores plot. E Venn diagram for the OTUs. CUG, catch-up growth; NCUG, not 
catch-up growth. *P < 0.05
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to meet cellular energy requirement [30, 40]. Zhang et al. 
[41] reported that the AMPK signaling activation was 
inhibited in intestine of weaning IUGR piglets resulting 
in abnormal energy status and reduced ATP production. 
In current study, we did not find significant differences in 

the ratio of P-AMPK/AMPK protein expression between 
NCUG and NBW piglets’ intestines but observed sig-
nificant upregulation of jejunum and ileum in the CUG. 
Hence, these results suggested that activation of intes-
tinal AMPK and ETC complex I in CUG piglets repair 

Fig. 10 The relative abundance of CUG and NCUG feces microbiota community at the phylum and genus level on 7 d. A Relative abundance at the 
phylum level. B Relative abundance at the genus level. CUG, catch-up growth; NCUG, not catch-up growth

Fig. 11 Linear discriminant analysis combined effect size (LEfSe) measurement analysis of microbiota in the feces contents of CUG and NCUG 
piglets on 7 d. A Linear discriminant analysis (LDA) score from phylum to genus level of the fecal microbiota, and the score ≥ 2 means significant. 
B Cladogram of LEfSe shows taxonomic profiling from the phylum to genus level, the yellow node represents no difference, but other color nodes 
represent significant difference
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intestinal energy metabolism and ensure the supply of 
ATP required for intestinal nutrient transport, thus pro-
moting the absorption of intestinal nutrients and leading 
to body recovery in CUG piglets.

Redox imbalance in young animals causes uncon-
trolled oxidative stress with local and systemic damage, 
thus reducing the growth performance and increas-
ing the risk of metabolic syndrome in adulthood [42]. 
Previous studies have observed a deficiency of anti-
oxidative system in IUGR piglets compared with their 
normal counterparts [43–45]. It has also been pointed 
out that extensive oxidative stress might be the vital 
factor leading to intestinal injury in IUGR piglets [45]. 

In this case, we compared the redox controlling ability 
among the intestine from three groups of piglets and 
a significantly higher GSH-Px and SOD content was 
observed in both the jejunum and ileum in CUG pig-
lets than those NCUG piglets. Meanwhile, the activ-
ity of MDA was lower in jejunum of CUG piglets than 
NCUG piglets. These results illustrate that intestine of 
CUG piglets has a recovered antioxidant capacity and 
less oxidative damage. Nrf2 plays an important role in 
the antioxidant response and inflammation. Under nor-
mal conditions, Nrf2 and Keap1 bind stably in the cyto-
plasm. However, under oxidative stress, Nrf2 is isolated 
from Keap1 and translocated to the nucleus, where it 

Fig. 12 Heatmap of Pearson’s correlation coefficients between intestinal nutrition transport, energy metabolism, antioxidant status, immune status, 
inflammatory pathways and intestinal barrier function. A Heat map of duodenal correlation analysis. B Heat map of jejunal correlation analysis. C 
Heat map of ileal correlation analysis. In the panel, red with a P < 0.05 represents a significant positive correlation, blue with a P < 0.05 represents a 
significant negative correlation, and white represents no correlation. *P < 0.05; **P < 0.01
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activates antioxidant gene targets [46]. We found the 
expressions of several genes involved in Nrf2 signal-
ing pathway such as Nrf2, Keap1, SOD and GSH-Px in 
the duodenum, jejunum and ileum were significantly 
higher in CUG intestine than those of NCUG piglets, 
which may offer a further explanation for the improved 
antioxidative ability of CUG.

Increased oxidative stress in intestinal tissue can trig-
ger a series of inflammatory responses leading to the 
overexpression of inflammatory cytokines and eventually 
severe inflammatory bowel disease [47, 48]. A growing 
number of studies have shown that oxidative stress acti-
vated the NF-κB signal with other related transcription 
factors to stimulate rapid secretion and accumulation 
of IL-6, IL-1β, and TNF-α [49]. IUGR piglets have been 
reported prone to intestinal inflammatory diseases and 
this situation often involves an increase in pro-inflam-
matory cytokines and a decrease in anti-inflammatory 
cytokines [50]. Our dates found that the mRNA abun-
dances of TNF-α, IL-1β, IL-6 and IL-12 were significantly 
downregulated of CUG group compared with NCUG 
group. The MAPK subfamily, concluding three major 
subfamilies, P38, JNK, and ERK, mediate inflammatory 
induced signal transduction pathways [51]. The NF-κB 
pathway regulates genes involved in immune and inflam-
matory processes and its activation could accelerate the 
release of pro-inflammatory cytokines leading to tissue 
damage ultimately [52]. In the present study, we observed 
the expression of MAPK and NF-κB significantly down-
regulated in CUG piglets compared with NCUG piglets, 
which further indicates that CUG piglets have lower lev-
els of intestinal inflammation. The decrease of intestinal 
inflammation in CUG piglets may be due to the higher 
antioxidant capacity of the intestine, which improves 
the antiviral ability of the body, thus contributing to the 
healthy growth of CUG piglets.

The overexpression of pro-inflammatory cytokines 
could lead to intestinal epithelial cell membrane dam-
age and disruption of intestinal tight junctions, thereby 
disrupting intestinal permeability [53]. Tight junction 
structures are momentous parts of the intestinal epithe-
lial barrier system [54]. The integrity of the epithelium 
will be damaged when the tight junctions are destroyed, 
leading to entering of pathogens or toxins into the sys-
temic circulation [55]. Evidence has revealed that IUGR 
piglets have reduced intestinal tight junction protein 
expression, and intestinal permeability was nearly twice 
as high as that of NBW piglets, damaging the intestinal 
physical barrier [43, 56]. Notably, our results showed the 
decreased protein expression of Occludin, Claudin-1 
and ZO-1 in CUG and NCUG piglets. ZO-1 has been 
upregulated in CUG piglets compared to NCUG pig-
lets, especially in duodenum and ileum, with no effects 

of treatments on Occludin and Claudin-1. Occludin and 
Claudin-1 are the main cytoplasmic transmembrane 
proteins, while ZO-1 is the most important cytoplas-
mic adaptor protein [55]. Our findings suggest a recov-
ered physical intestinal barrier in CUG piglets around 
weaning, which can help protect the body from external 
pathogenic bacteria and toxins and enhance the immune 
capacity of the body, thus achieving the function of regu-
lating the intestinal health of the body and ensuring the 
normal growth of the body.

Intestinal microbiota plays an important role in regu-
lating host animal’s immune and physiological functions 
and numerous researches have shown a high correla-
tion between intestinal microbiota and intestinal barrier 
function [57]. It has been reported that IUGR alters the 
intestinal microbiome, with significantly higher levels 
of Gram-negative bacteria that cause systemic inflam-
mation [58]. Our results showed that microbial Simp-
son and Shannon indices in alpha diversity were higher 
in the CUG group. Otherwise, higher alpha diver-
sity is thought to be beneficial for maintaining host intes-
tinal  homeostasis. Further analysis by beta diversity of 
microbiota, the microbial composition in feces of piglets 
showed that there was no significant difference between 
CUG and NCUG piglets at 7  d. However, our LEfSe 
analysis showed that the CUG group had a higher popu-
lation of the Ruminococcaceae and Ruminococcaceae_
UCG_002. Previous studies have shown that the presence 
of Ruminococcaceae is associated with the maintenance 
of gut health and the presence of numerous carbohy-
drate-active enzymes [59]. In addition, the LEfSe proved 
CUG piglets had a markedly higher relative abundance of 
the Verrucomicrobiota, Verrucomicrobiales, Verrucomi-
crobiae, Akkermansiaceae and Akkermansia than NCUG 
groups. Verrucomicrobiota is regarded as potentially 
beneficial bacterium in the gut, and in previous studies 
it was found to be more abundant in the homeostasis of 
the gut [60, 61]. Akkermansiaceae is the only known spe-
cies of the phylum Verrucomicrobiota in mammals [62], 
which can improve intestinal health by adhering to intes-
tinal epithelial cells and enhancing monolayer integrity 
of intestinal epithelial cells [63]. Higher Oscillospirales 
and Oscillospiraceae levels were found in CUG piglets, 
previous research showed that the Oscillospiraceae can 
produce butyrate and inhibit the growth of pathogenic 
bacteria in gastrointestinal tract [64]. The Enterobacte-
riaceae showed a higher population in NCUG piglets in 
the LEfSe analysis, which was believed to play an impor-
tant role in developing piglet diarrhea and seriously affect 
the barrier function of the animal intestinal tract [65]. 
Meantime, in contrast to CUG piglets, the Campylobac-
teraceae, Campylobacter and Tannerellaceae were higher 
in NCUG piglets, which were one of the main causes 
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of diarrhea and can cause acute gastroenteritis [66, 67]. 
Taken together, these changes suggest that stability of 
intestinal ecosystem in CUG piglets may be attributed to 
the higher healthy beneficial bacteria and lower underly-
ing pathogenic microbiota.

Conclusion
In summary, compared with NCUG piglets, intesti-
nal nutrient transport, energy metabolism, antioxidant 
capacity and intestinal barrier function are better recov-
ered in CUG piglets, while intestinal inflammation and 
harmful microbiota were mitigated in CUG piglets. This 
study is the first to investigate the changes in intestinal 
development function of CUG piglets during weaning 
and the results also could provide a detailed under-
standing of intestinal development in infants with CUG 
due to the limitation of samples obtaining in humans 
studies.
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