
Stem cells and their possible therapeutic applications 

currently constitute an extremely active area of research 

with the potential to revolutionize medical practice. Despite 

the apparently recent foundation of the field, its origin dates 

back to the second half of the 19th century, when the term 

“stem cell” appeared in the scientific research conducted 

by the German scientist Ernest Haeckel (1868). Thereafter, 

German zoologists Theodor Boveri and Valentin Häcker 

(1892) independently adapted this term to describe the devel-

opmental process of the sea urchin and nematode Ascaris 

[1,2], and the copepod [1,2], respectively. Later, at the end of 

the 19th century and the beginning of the 20th century, Arthur 

Pappenheim (1896) and Ernst Neumann (1912) extended the 

use of the term to designate all precursor cells in the hemato-

poietic system [1,2]. Nevertheless, for many years stem cells 

remained ambiguous and theoretical entities, characterized 

by their self-renewal and differentiation abilities. Conse-

quently, in this early period, the discussion about a tissue’s 

origin during the emergence or development of cancer mostly 

focused on embryonic cells or embryonic-like cells, and on 

changes in cell growth.

The earliest experimental evidence supporting the 

existence of stem cells was obtained in the 1960s after the 

self-renewing abilities of bone marrow cells implanted in 

irradiated mice were analyzed [3,4]. These studies established 

the first quantitative assay for stem cells, based on the ability 

of transplanted cells to form colonies, a measure that may 

reflect their proliferative potential. Subsequently, scientists 

developed assays based on criteria that must be fulfilled by 

stem cells. Among these assays, measuring proliferative 

potential either by determining colony-forming ability [5-7] 

or serial transfer in cell culture [8,9], as well as retaining 

DNA precursor analogs due to their slow cell cycling [10-14] 

became the most powerful tools for localizing and charac-

terizing stem cells. In addition, the expression of specific 

surface antigens, the lack of terminal differentiation markers 

[15,16], and higher adherence to certain substrata [17,18], led 

to methods for enriching and cultivating tissue stem cells.

After evaluating tissues that undergo continuous renewal, 

authors concluded that adult stem cells have the following 

specific characteristics: i) self-renewal ability through mitotic 

cell division, ii) unlimited proliferative potential, and iii) 

capacity to differentiate into a wide range of specialized cell 

types [19,20]. Self-renewal is crucial, since it enables stem 

cells to participate in creating new tissues and, at the same 

time, guarantees the maintenance of the stem cell compart-

ment. Asymmetric cell division is a possible mechanism 

involved in self-renewal. Asymmetric cell division maintains 
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adequate numbers of tissue stem cells and results in two 

unequal daughter cells: one that enters the differentiation 

process and another that retains stemness properties [21-24].

The following sections discuss the evidence regarding 

the existence of stem cells in ocular structures, mainly in 

the corneal epithelium. In addition, they describe the most 

important characteristics of stem cells’ residence site (the 

niche), as well as its role in corneal epithelial renewal and 

wound healing. The purpose of this article is to provide a 

comprehensive overview of the field. Since this review is 

not exhaustive, the author expresses his apologies to all the 

leaders in the stem cell field who were not included in this 

paper.

Stem cells in ocular tissues: The study of stem cells has been 

performed mainly with two kinds of stem cells: embryonic 

and adult/somatic. Embryonic stem cells originate from 

preimplantation embryos. In cell cultures, embryonic stem 

cells can undergo cell division for long periods without differ-

entiating, until they develop into cells and tissues that belong 

to one of the three primary germ layers.

Adult stem cells locate in specific, protected sites in 

many organs and differentiated tissues. Most adult stem cells 

are “tissue-specific,” since they can self-renew and differen-

tiate only into the cell types found in the organ used as the 

source for the cells.

More recently, after examining the ability of 24 tran-

scription factors to induce and maintain a pluripotent state in 

mouse and human embryonic or adult fibroblasts, Yamanaka 

and colleagues found that four factors, Oct-4, Sox2, c-Myc, 

and Klf4, led to reprogramming of cells transfected with 

these factors. The cells reached a stem cell-like state [25,26]. 

This new type of stem cell, called an induced pluripotent stem 

cell (iPSC), constitutes a promising system with potential 

applications in regenerative medicine, cell-based therapy, 

disease modeling, and drug discovery.

Some authors found evidence using experimental 

approaches such as retention of DNA precursor analogs 

[11-14] that helped to identify the alleged location of adult 

stem cells in various tissues: the epidermis [13,14,27,28], 

prostate [29] and bladder epithelia [30,31], terminal bron-

chioles [32], liver [33,34], dental pulp [35], intervertebral 

cartilage [36], bone growth plate [37], and skeletal muscle 

[38], among others. Although experimental criteria are the 

basis for the alleged locations of ocular stem cells, in most eye 

tissues adult stem cells have not been characterized in-depth.

Retina—Early studies considered that the mammalian 

retina lacked stem cells because it was unable to regenerate 

[39]. Later, von Leitnher et al. proposed that retinal precursors 

resided in the periphery of the retinal pigmentary epithelium 

[40]. However, it later emerged that cells from the pigmented 

ciliary margin develop into spherical colonies, which, after 

being dissociated into a cell suspension, produced various 

differentiated retinal cell types [41]. These results supported 

the possibility that retinal stem cells could reside in the 

pigmented ciliary margin epithelium.

Lens—Based on the distribution of label-retaining cells, 

authors have proposed that lens stem cells are located at the 

anterior central region of lens [42]. Nonetheless, Yamamoto et 

al. [43] analyzed the expression and distribution of prolifera-

tion markers such as A1, B1, C, and D1 cyclins, proliferating 

Cell Nuclear Antigen (PCNA), and 5-bromo-2’-deoxyuridine 

(BrdU) labeling, and concluded that the germinative zone of 

the lens epithelium contains transient amplifying cells. In 

contrast, another author proposed that lens stem cells probably 

were located in the region immediately anterior to the germi-

native zone, due to its labeling patterns, and because their 

response in cell culture was higher than the one observed in 

cells located on the germinative zone [43]. Nevertheless, since 

a) the lens is a non-vascularized structure, b) the lens epithe-

lium does not have any protective morphology as observed 

for other stem cells, and c) the lens does not give rise to any 

type of tumor cell, Remington and Meyer proposed that lens 

stem cells reside in the ciliary body [44]. Although evidence 

from label retention experiments is stronger compared to that 

obtained from other analyses, the variability observed in the 

results obtained from different groups led to the conclusion 

that the location of lens stem cells is still controversial and 

remains to be elucidated.

Corneal endothelium, trabecular meshwork, and 
stroma—Other presumed locations for stem cells were 

described for corneal endothelial cells, the trabecular mesh-

work, and corneal stroma. In the corneal endothelium and the 

trabecular meshwork, stem cells appear to be located at the 

transition area (Schwalbe’s ring) between the periphery of 

the endothelium and the anterior non-filtering portion of the 

trabecular meshwork [45]. Finally, for the corneal stroma, the 

stem cell population seems to correspond to the limbal niche 

cells, which are located at the limbal stroma and participate 

in vascularization [46].

Conjunctiva—For many years, corneal wound healing 

after injury was explained as a consequence of conjunc-

tival epithelial cell migration and transdifferentiation into 

corneal epithelial cells [47-50]. However, the incomplete and 

reversible conversion of conjunctival cells into the corneal 

epithelium, the recurrent erosions observed in conjunctival-

ized corneas [51,52], and the discovery of the limbus as the 

supposed location of corneal epithelial stem cells (see below), 
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led to the conjunctiva being rejected as the source of cells 

for corneal epithelial healing. Subsequent studies showed 

that the conjunctival epithelium possesses its own stem cell 

niche. Label-retention analyses, expression of keratin pairs, 

and growth potential assays in cell culture suggested that 

conjunctival stem cells were located at the fornix in rabbits, 

mice, and humans [53-56]. These results were supported by 

experiments showing that fornical cells are bipotent, able to 

differentiate in epithelial and goblet cells [57], and had the 

most vigorous response to acute and chronic stimulation with 

tetradecanoyl phorbol myristate compared with palpebral or 

bulbar conjunctival cells [58]. Currently, the accumulated 

evidence shows that conjunctival and corneal epithelia consti-

tute two different but contiguous developmental lineages with 

corresponding stem cell reservoirs.

Corneal epithelial stem cells: Subsequently, the concept that 

supported conjunctival epithelium as the possible source 

by transdifferentiation of corneal epithelial cells prevailed. 

Immunostaining with monoclonal antibodies made by 

Tung-Tien Sun’s group against the corneal-specific keratin 

K3 suggested that corneal epithelial stem cells were specifi-

cally located at the basal cell layer of the limbal epithelium: 

the transition zone between the opaque sclera and the clear 

cornea [59]. This breakthrough rapidly led to a series of 

experiments that provided further evidence that supported 

the limbal epithelium as the location of corneal stem cells: 

mainly the lack of the K3/K12 keratin pair in limbal basal 

cells [59-61], the existence of label-retaining cells at this 

location [62], their higher proliferative potential compared 

with central corneal cells [63], and their ability to grow in 

colony-forming assays [64].

Various studies also detected specific molecules as 

possible markers of the basal limbal epithelial cells. p63, 

a transcription factor previously proposed as a molecular 

marker of epidermal stem cells [65,66], showed confined 

distribution to the limbal epithelium [67]. Similar results were 

observed for the typical mesenchymal intermediate filament 

vimentin [68-70], for metabolic enzymes such as α-enolase 
[71,72], and for α

9
β

1
 integrin [73], a receptor for extracellular 

matrix (ECM) components such as tenascin-C and EMILIN1, 

which are involved in corneal epithelial cell adhesion and 

migration [74].

Many authors provided evidence suggesting that stem 

cells from adult tissues were in a quiescent state or that stem 

cells progressed in a slow fashion through the cell cycle. Such 

characteristics made adult stem cells extremely difficult to 

detect, unless tissues were exposed to long periods of labeling 

with DNA precursors. After that process, cells that retained 

the label (LRC) became evident following a label-dilution 

period; these cells were considered stem cells [13,14,62]. Slow 

cycling could be a possible explanation for the enrichment 

of cell populations with stem cells after treatment with toxic 

concentrations of 5-fluorouracil [75,76], since rapid prolifer-

ating cells would be killed by 5-fluorouracil, while cells with 

slow proliferation would be less susceptible due to the low 

incorporation rate of the nucleotide analog.

Nevertheless, using the vital DNA binding dye Hoechst 

33342, Richard Mulligan’s group [77] discovered a subset 

of hematopoietic cells that excluded the DNA stain due to 

the expression of a multiresistence drug protein that pumps 

out drugs from cells. This cell population, designed as a side 

population (SP), was enriched with cells that express hema-

topoietic stem cell markers; therefore, it was proposed that 

the side population corresponded to the stem cell population. 

Later studies assigned this role to the adenosine triphosphate 

(ATP) binding cassette transporter protein ABCG2 during 

the efflux of drugs and xenobiotics [78,79] and demonstrated 

the presence of ABCG2 in most adult [80,81] and embryonic 

stem cell populations [82,83].

After the limbus was investigated, limbal epithelial stem 

cells were also observed expressing high levels of ABCG2 

[84-87]. Messenger ribonucleic acid and protein also showed 

the highest levels in the limbus [88]. In view of this, ABCG2 

could play a role in protecting corneal stem cells from photo-

toxicity and various oxidative stress-inducing conditions [89].

Despite the wide variety of molecular markers described 

for limbal epithelial cells, their use for the specific selection 

of stem cells has not been as successful as expected. This is 

explained by the persistence of stem cell markers in the early 

differentiating cells [90,91]. These cells exhibit intermediate 

features between stem and committed cells, until the expres-

sion of the differentiated phenotype leads to downregulation 

of stem cell markers [90,91]. Therefore, separating cells with 

techniques that take advantage of stem cell markers assures 

only the enrichment of stem cells [92], because the isolated 

population also includes committed cells that progress 

through the transient amplification period and generate a 

set of non-proliferative, terminally differentiated cells [93]. 

In view of such complexity and of the intrinsic difficulties 

characterizing the corneal stem cell population, authors have 

investigated this population through analyzing niches and the 

regulatory functions exerted by the environment.

Corneal epithelial stem cells and their niche: Regulation of 

cell differentiation: As soon as the limbus was assumed to 

be the location of corneal epithelial stem cells [59], various 

laboratories analyzed the limbal microenvironment, in addi-

tion to searching for molecular markers that could be useful 

for isolating and characterizing stem cells. Based on these 
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studies, authors proposed that adult corneal stem cells were 

located at a specific region within the limbus. It is believed 

that this region, the niche, possesses anatomic and functional 

dimensions that participate in maintaining “stemness.” This 

region is characterized by stromal invaginations known in 

humans as the palisades of Vogt. These papillae-like projec-

tions show a distinctive vasculature with radially oriented 

arterial and venous components [94]. Thus, the palisades of 

Vogt were suggested as the reservoir that i) protects stem 

cells from traumatic and environmental insults, ii) allows 

epithelial-mesenchymal interactions, and iii) provides access 

to chemical signals that diffuse from the rich underlying 

vascular network [95-97].

Additional studies demonstrated that the limbus contains 

a specific anatomic structure that probably provides the 

microenvironmental characteristics that correspond to the 

stem cell niche. This structure was designated the limbal 

epithelial crypt (LEC) [98] or limbal crypt (LC) [99], and 

consists of a cord or finger of cells that invaginates the limbal 

stroma from the rete ridges located between the palisades and 

extends radially the conjunctival stroma [98,99]. The expres-

sion of cytokeratin K14 in a similar way as observed for basal 

cells in the rest of the limbus and the maximal staining for 

ABCG2 [98] and p63 [99] were some of the criteria that led to 

the suggestion that corneal stem cells reside at the LEC/LC. 

Thus far, besides humans and pigs, LEC/LC have not been 

found in other species [100].

Since tissues with unique cellular properties may synthe-

size different substrates to which the cells adhere, authors 

performed the biochemical and immunological characteriza-

tion of the ECM components associated with corneal tissue. 

Before the limbus was described as the possible location of 

corneal stem cells, it was known that corneal ECM constitu-

ents changed during development until adulthood in chick, 

mouse, bovine, and human corneas. Authors described that 

corneas contained collagen types I–VI [101-104], glycos-

aminoglycans such as heparin, chondroitin, dermatan, and 

keratan sulfates [105-109], fibronectin and laminin [110], and 

hyaluronic acid [111]. These initial evaluations also showed 

that limbal epithelial cells adhere to a rougher surface, with 

a more complex arrangement of anchoring fibrils than the 

one observed in the central cornea [112]. This suggested that 

limbal cells show a different adhesion capacity compared 

with the rest of the epithelium, a fact supported by the larger 

hemidesmosomal area detected in central corneal cells [112], 

which could also lead to differences in cell motility between 

the corneal regions being proposed.

To further understand the functional differences between 

the cornea and the limbus, and therefore, the interaction 

between epithelial cells and the niche, several authors care-

fully analyzed the corneal basement membrane components. 

These studies led first to the recognition that the composi-

tion of the basal membrane (BM) between the conjunctival, 

limbal, and corneal epithelia is heterogeneous [113]. Addi-

tional characterization of corneal BM led to controversial 

results, since some authors reported that the central cornea 

BM lacks collagen IV [114]; while others reported that 

collagen IV was found in the limbus and the central cornea 

[113]. This disagreement was later explained as a conse-

quence of the shift in collagen IV chain isoforms between 

the limbus and the conjunctiva [115,116]; collagen IV α1(IV) 
and α2(IV) chains show more intense staining at the corneal 
limbal border, whereas the α3(IV) chain undergoes an abrupt 
decrease at the limbus [116,117]. In contrast, collagen types 

IV (α3-α4 chains) and XII were present in the central cornea 
[117], although collagen IV (α4 chain) was weakly expressed 
in this region [116,118].

The differential composition of the limbal BM was 

extended to other components. α2–α5, β1–β3, γ1–γ3 laminin 
chains, as well as nidogen-1 and -2, and agrin, were pref-

erentially expressed in the limbal BM [117]. In particular, 

the limbal BM shows patches of components such as agrin, 

SPARC/BM-40, tenascin-C, laminin γ3 chain, and versican, 
which colocalize with ABCG2/p63/K19-positive and K3/

Cx43/desmoglein/integrin-a2-negative cell clusters, assumed 

to be formed by stem and early progenitor cells [116,117]. 

However, researchers described that BM components such 

as type XVI collagen, fibulin-2, tenascin-C/R, vitronectin, 

bamacan, chondroitin sulfate, and versican colocalized 

with vimentin-positive cell clusters containing putative late 

progenitor cells [115-117] at the corneal–limbal transition 

zone. In contrast, type V collagen, fibrillin-1 and -2, throm-

bospondin-1, and endostatin were almost restricted to the 

corneal BM [116]; others, such as type IV collagen α5 and α6 
chains, collagen types VII, XV, XVII, and XVIII, laminin-

111, laminin-332, laminin chains α3, β3, and γ2, fibronectin, 
matrilin-2 and -4, and perlecan, were uniformly expressed 

throughout all ocular surface epithelia [116,117].

Together, these results suggested that the BM at the LEC/

LC has a specific ECM composition, different from that 

found in the peripheral and central cornea, probably creating 

a specialized environment that regulates stem cells and their 

progeny. This environment should support stemness, by 

inhibiting the expression of the differentiation process and 

preserving the proliferative abilities in limbal cells.

Currently, there is a debate about the role of stem cells 

regarding their interaction with the niche. Are they passive 

entities that respond to systemic or tissue signals by merely 
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adapting their activity to tissue demands? Alternatively, do 

stem cells affect the surrounding tissue, with more direct 

activity on the niche where they reside?

Considering the differential composition between the 

limbal and central corneal basement membranes, the micro-

environment clearly has a tremendous, dramatic effect on 

corneal epithelial stem cells. Evidence that supports the role 

of the niche, providing the best examples of the influence 

of environmental signals on epithelial differentiation, was 

obtained from recombination experiments. In these studies, 

murine vibrissae hair follicle stem cells were induced to 

differentiate into corneal epithelial cells by cultivation in a 

limbus-specific-like microenvironment [119]. Under such 

environmental conditions that comprise laminin-5 as a major 

component, and conditioned medium from limbal stromal 

fibroblasts, researchers observed that cells isolated from hair 

follicles formed stratified epithelia that expressed cornea-

specific markers such as K12 keratin and the transcription 

factor Pax6, at the messenger ribonucleic acid and protein 

levels, while the epidermal specific K10 keratin showed 

strong downregulation [119]. In other experiments, central 

corneal epithelial cells from the adult rabbit were recombined 

with mouse embryonic dermis, leading to the loss of the 

corneal-specific phenotype accompanied by downregulation 

of Pax6. The loss of expression of the corneal-specific K3/

K12 keratin pair was accompanied by the induction of basal 

keratinocyte markers such as the K5/K14 keratins and the 

differentiation into epidermal keratinocytes, including cells 

with a phenotype that belongs to the hair follicle lineage [120].

Altogether, these experiments emphasize the effects of 

the microenvironment on the programming of epithelial cells 

into specific lineages. Since specific signals arising from the 

basement membrane as well as growth factors and cytokines 

may regulate cell fate, in the cornea, the decision to leave the 

stem cell compartment could depend on the ECM composi-

tion and structure at the limbus.

Under such circumstances, corneal epithelial stem cells 

could follow one of two alternative courses. The first estab-

lishes that stem cells and their progeny proliferate through 

horizontal, symmetric division. This proliferative pattern 

would be prevalent at the basal layer of the cornea, including 

the limbus; in contrast, stratification and expression of the 

terminal phenotype would depend upon vertical asymmetric 

cell division. Such asymmetric division would result in 

daughter cells, dissimilar in morphology and proliferative 

potential; as a result of the division, cells that enter the supra-

basal compartment would be bigger and suffer severe restric-

tion in their proliferative abilities, to begin terminal differen-

tiation [121,122] (see Figure 1). In this model, the ECM would 

modulate the proliferative abilities of basal cells according 

to their position along the corneal surface (the limbus versus 

the central cornea) and would control the orientation of the 

mitotic spindle, being decisive for terminal differentiation. 

Cells that detach from the basement membrane would be 

irreversibly committed to express a differentiated pheno-

type. This possibility is supported by the observation that 

most basal cells in the corneal epithelium express proteins 

involved in spindle orientation, such as Partner of Inscuteable 

(Pins) [123].

In the other pathway, asymmetric cell division is 

restricted to the limbal stem cells, as proposed for most stem 

cells [23]. If this is true, the decision to leave the stem cell 

compartment would depend upon asymmetric division, which 

would be oriented either horizontally or vertically (Figure 

2). Consequently, symmetric cell division would be merely 

proliferative, and would not be essential for cell commitment. 

Consequently, the orientation of the mitotic spindle during 

asymmetric cell division would be defined by extrinsic 

mechanisms, i.e., the niche or microenvironment in which 

stem cells reside [124] (Figure 2). To support this proposal, 

numerous BM components [112,113,115,118,125], as well as 

growth factors and cytokines such as keratinocyte growth 

factor [126], interleukin-6 [127], epidermal growth factor, 

and, fibroblast growth factor β [128], or molecules belonging 

to the Wnt family [129], among others, show a differential 

composition or distribution at the limbal, peripheral, and 

central cornea. Together, they may be involved in establishing 

the corneal niche.

According to the second model, stem cells in the limbus 

undergo either vertical or horizontal asymmetric mitosis 

during corneal replenishment or during wound healing. 

After asymmetric cell division, one of the daughter cells 

loses contact with the limbal BM either by moving into the 

suprabasal cell layers or by moving and proliferating into 

the central cornea, and initiates the differentiation process 

[124] (Figure 2). When this event occurs, daughter cells also 

become regulated by the components of the central cornea 

basement membrane and growth factors such as insulin-like 

growth factor 1 [128], or molecules of the Wnt family such as 

Wnt3, Wnt7a, Wnt7b, and Wnt10a, which are upregulated in 

the central cornea [129].

It is still unknown how limbal stem cells influence the 

surrounding cells, tissues, and organs, and, therefore, the way 

in which they can modify their niche. Although there is some 

evidence regarding the participation of the family of Notch 

receptors and their associated signal transduction pathway 

[130-133], more knowledge is needed about how limbal cells 
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interact with the niche to regulate and enhance responses 

involved in maintaining and repairing tissue.

Corneal epithelial stem cells: Renewal and wound healing: 

Beginning with the discovery of the centripetal cell migra-

tion that occurs in the cornea, early studies on epithelial cell 

renewal led to the conclusion that the proliferative source of 

the corneal epithelium resided at its basal cell layer and at 

the corneal periphery. In these experiments, authors showed 

that two separate processes participate in renewing the 

corneal epithelial cells: i) the division of basal cells, mainly 

at the corneal periphery, with their successive movement into 

suprabasal cell layers, and ii) the progression of cells across 

the limbus toward the center of the cornea, before superficial 

cells are desquamated [134-136].

Later, as previously discussed, it was proposed that the 

presumptive location of corneal epithelial stem cells was the 

limbus. Accordingly, the corneal epithelium consists of strati-

fied tissue with a high self-renewal rate based on the regen-

erative capacities of the stem cells located at the basal layer of 

the limbus and the proliferation of basal cells from the central 

cornea [59,62]. In such well-structured tissue, suprabasal cells 

at the limbus and at the central cornea undergo terminal 

differentiation and lose their proliferative abilities. While 

basal cells located at the central cornea proliferate actively, 

basal cells at the limbus consist of a mixture of slow-cycling 

stem cells and cycling transient amplifying cells [62,93].

As stated by this hypothesis, the normal corneal epithe-

lium remains in a steady-state in which cell proliferation is 

necessary only for replacing cells lost by terminal differentia-

tion and desquamation. Stem cells located at the LECs divide 

occasionally [59,63,93,124], and subsequently, their progeny 

leaves the niche, while undergoing the transient amplification 

process, which occurs at the basal cell compartment of the 

peripheral and central cornea [59,63,93,124]. Such transient 

amplification would imply a gradient or hierarchy of cells 

with a decreasing proliferative potential along the central 

cornea [63,93], and comprises a still unknown number of 

cell divisions, mainly modulated by growth factors and cyto-

kines [137-139] before cells become post-mitotic and begin 

to stratify.

After wound damage, trauma, or exposure to tumor 

promoters such as tetradecanoyl phorbol myristate, the tissue 

response consists of a rapid 8–9-fold rise in the proliferative 

activity at the limbus, which then is reduced to pretrauma 

levels after 36–48 h as well as a prolonged twofold increase 

in proliferation at the peripheral/central cornea that returns 

to basal levels after the wound closes [58,62]. These results 

have been interpreted as a consequence of the recruitment 

and multiplication of the limbal stem cells, and the transient 

multiplication of the peripheral and central cornea basal cells, 

respectively [93,140].

This possibility is supported by several lines of evidence 

that suggest corneal stem cells reside at the limbus: i) mainly 

Figure 1. Representation of corneal 

epithelial cell renewal dependent on 

proliferative symmetric mitosis of 

stem cells and their progeny. Stem 

cells and their progeny proliferate 

by horizontal, symmetric mitosis; 

in contrast, asymmetric cell divi-

sion occurs only in cells that start 

stratifying and expressing the 

terminal phenotype. In this case, 

basal cells that initiate the expres-

sion of the terminal phenotype 

divide with a vertically oriented 

mitotic spindle. One of the daughter 

cells remains at the epithelial basal 

cell layer maintaining its prolifera-

tive abilities, and the other leaves 

the basal layer and enters the 

suprabasal compartment, becoming 

bigger, losing proliferative abilities, and becoming terminally differentiated (pink cells). In this model, the basement membrane (BM) 

modulates the self-renewal and proliferative abilities of stem cells and their progeny based on the its composition and structure. Green=limbal 

BM. Orange=peripheral and central cornea BM. Yellow=conjunctival BM. Blue arrows=stratification of terminally differentiating cells.
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the lack of adequate healing of wounds in corneas in which 

the limbus has been damaged or surgically removed [141-143], 

ii) limbal transplantation to restore wound repair [144], or 

iii) the presence of holoclone-forming cells in limbus but not 

in the central cornea [53,63], among others. So, the reader 

may ask, what is the role of the niche in corneal wound 

healing? The answer is mostly unexplored. However, results 

from various groups suggest that the niche rules stem cell 

behavior by regulating the cell division pattern, in part 

through the active role of basement membrane components 

at the limbus. Recent results that strongly support that in the 

adult corneal epithelium asymmetric divisions may occur 

only at the limbus [124], together with evidence that restricts 

the expression of specific markers and the expression of cell 

proliferation and cell fate regulators such as ΔNp63α [145] 

and Notch1 [146] to stem cells, suggest that asymmetric cell 

division is part of the differentiation program in corneal 

epithelial cells [147]. Therefore, the basement membrane 

would provide limbal stem cells with information about their 

position and fate. Thus, depending on the position of cells at 

the limbal epithelial crypt, the orientation of the mitotic axis 

during asymmetric cell division of limbal stem cells could 

be either vertical or horizontal. Consequently, an asymmetric 

dividing stem cell would give rise to another stem cell and 

either a transient amplifying basal cell located at the periph-

eral cornea (when the division occurs in the horizontal axis) 

or a limbal suprabasal differentiated cell (when the division 

takes place following the vertical axis).

Accordingly, corneal wound healing should elicit a 

tissue response in which limbal stem cells undergo a few cell 

cycles and give rise to numerous transient amplifying cells 

that constitute the migratory/proliferative edge of the wound. 

The size of the transient amplification of early precursors and 

committed cells would then be modulated by changes in the 

ECM composition and ECM receptors during corneal wound 

healing [148-150], and by changes in the expression of growth 

factors such as insulin-like growth factor 1 [128], epiregulin 

[151], or stem cell factor (c-kit ligand) [152].

Figure 2. Schematic representation 

of the limbal epithelial crypt. The 

extracellular matrix composition 

and structure may regulate limbal 

stem cell fate providing information 

about their position. Depending on 

the position of cells at the limbal 

epithelial crypt, the orientation of 

the mitotic axis during asymmetric 

cell division of limbal stem cells 

could be either vertical or hori-

zontal. An asymmetric dividing 

stem cell would give rise to another 

stem cell and a transient amplifying 

basal cell that would migrate to 

the peripheral cornea when divi-

sion occurs in the horizontal axis. 

Conversely, the stem cell could 

originate another stem cell and a 

limbal suprabasal differentiated cell 

when division takes place following 

the vertical axis; in this case, loss of 

contact between one of the daughter 

cells and the basement membrane 

would determine the initiation of 

the differentiation process. White 

arrows indicate the movement of 

cells after commitment. Differen-

tiation leads to the expression of 

the terminal phenotype.
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Since growth factors and ECM components regulate the 

migration and proliferation of the transient amplifying cells, 

with the preceding proliferation of limbal stem cells, growth 

factors and the ECM could be used alone or combined, to 

accelerate and improve repair of corneal wounds, and reduce 

consequences associated with corneal damage. Examples of 

this approach include the application of growth factors to 

promote corneal wound healing such as epidermal growth 

factor [153,154], basic fibroblast growth factor [155], tumor 

necrosis factor α and interleukin-1 [156], and ECM compo-

nents such as decorin [157].

Although some results have suggested that treating 

corneal wounds with growth factors or ECM components 

offers new opportunities for therapeutic intervention, some 

evidence implies the need for a complex set of growth 

factors and ECM components, perhaps in a specific three-

dimensional arrangement, to improve and accelerate corneal 

wound healing. This possibility is supported by the appli-

cation of cultured epidermal sheets as temporary wound 

coverings on experimental excimer laser corneal ablations. 

These epidermal sheets increase the reepithelialization rate of 

wounds by about 60%, in addition to reducing inflammation 

and scarring at the wound site [158]. Such corneal healing 

improvement has been explained through the synthesis and 

release of growth factors, cytokines, and ECM onto the 

wound bed by cultured epidermal sheets [159]. A similar 

mechanism for enhancing wound healing could occur during 

treatment of corneal wounds with amniotic membranes [160].

Conclusion: Thus far, the study of limbal stem cells and 

their regulation by environmental signals, either cytokines, 

growth factors, and their interaction with other cell popula-

tions, is almost unexplored. Researchers have identified a set 

of molecular markers that may be used for enriching stem 

cells in isolated populations; however, this analysis led to 

the conclusion that there is no specific, unique marker for 

identifying and isolating limbal stem cells. In spite of these 

difficulties, this collection of markers allowed the charac-

terization of the stem cell niche, and demonstrated that the 

limbus shows special characteristics, in composition and/

or structure, that make it different from the peripheral and 

central cornea.

This evidence, together with cell culture and clonal 

assays, suggests that the corneal epithelial cells comprise 

two different populations: stem cells and transient amplifying 

cells. The latter corresponds to the progeny of the stem cells, 

which possesses limited proliferative potential and it is prob-

ably committed to terminal differentiation. The number of 

cell cycles undergone by transient amplifying cells depends 

on stimuli from the environment.

Although numerous studies indicate that corneal epithe-

lial stem cells reside preferentially at the basal layer of the 

limbal zone rather than uniformly in the entire corneal epithe-

lium, recent results suggest that corneal stem cells may also 

be at the central cornea [161]. In spite of the controversial 

nature of these results, they bring up many questions about 

the possible function of corneal stem cells during tissue 

renewal or their migratory potential from the limbus. In either 

case, a major question involves the possible conditioning 

effect of stem cells upon the environment: Can stem cells 

modify their surroundings to form new niches? The possible 

location of epithelial stem cells in the central cornea could 

help explain the transdifferentiation of the adult corneal 

epithelium when it receives signals from embryonic dermis 

[120], unless researchers could demonstrate that expression of 

the corneal epithelial phenotype is reversible by stimulation 

of the appropriate signaling pathways. Understanding of the 

niche’s biologic activity on stem cells may lead us to develop 

new therapies for accelerating and improving corneal wound 

healing.
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