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Titania modi	ed nanoparticles have been prepared by the photodeposition method employing platinum particles on the
commercially available titanium dioxide (Hombikat UV 100). �e properties of the prepared photocatalysts were investigated by
means of the Fourier transform infrared spectroscopy (FTIR), X-ray di
raction (XRD), atomic force microscopy (AFM), and UV-
visible di
use spectrophotometry (UV-Vis). XRD was employed to determine the crystallographic phase and particle size of both
bare and platinised titanium dioxide. �e results indicated that the particle size was decreased with the increasing of platinum
loading. AFM analysis showed that one particle consists of about 9 to 11 crystals. UV-vis absorbance analysis showed that the
absorption edge shi�ed to longer wavelength for 0.5% Pt loading compared with bare titanium dioxide. �e photocatalytic activity
of pure and Pt-loaded TiO2 was investigated employing the photocatalytic oxidation and dehydrogenation of methanol.�e results
of the photocatalytic activity indicate that the platinized titanium dioxide samples are always more active than the corresponding
bare TiO2 for both methanol oxidation and dehydrogenation processes. �e loading with various platinum amounts resulted in a
signi	cant improvement of the photocatalytic activity of TiO2. �is bene	cial e
ect was attributed to an increased separation of
the photogenerated electron-hole charge carriers.

1. Introduction

Titanium dioxide is regarded to be one of the most common
photocatalysts, having a wide range of properties, such as
a strong resistance to chemical and photocorrosion, strong
oxidation capability, low operational temperature, low-cost,
being and nontoxic [1]. �ese properties make TiO2 an
attractive candidate for its utilization as a photocatalyst in the
photocatalytic processes. TiO2 has been extensively studied
and demonstrated to be suitable for numerous applications
such as, destruction of microorganisms [2–5], inactivation of
cancer cells [6, 7], protection of the skin from the sun [8–11],
photocatalytic water splitting to produce hydrogen gas [12–
14], manufacture of some drug types [15–17], degradation of
toxic organic pollutants in water [18–20], and self-cleaning

of glass and ceramic surfaces [21]. Even though TiO2 is the
most used semiconductor material, it exhibits some disad-
vantages, such as low surface area and fast recombination
rate between the photogenerated charge carriers and the
maximum absorption in the ultraviolet light region.

Di
erent attempts have been performed to improve the
e�ciency of TiO2 depressing the recombination process of
the photoelectron-hole pairs. Some of them include the
modi	cation of TiO2 surface with other semiconductors to
alter the charge-transfer properties between TiO2 and the
surrounding environment [22, 23], sensitizing TiO2 with col-
ored inorganic or organic compounds improving its optical
absorption in the visible light region [24–28], bulk modi	-
cation by cation and anion doping [29–38], and fabrication
of TiO2 surface from polyhedral to produce hallow TiO2
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[39, 40]. TiO2 nanoparticles are considered to be more active
photocatalysts as compared with the bulk powder. �e ratio
of surface area to volume of nanoparticles has a signi	cant
e
ect on nanoparticles properties. �is leads to a higher
chemical activity and loss of magnetism and dispersibility
[41].

�is work was focused on the characterization of the
prepared Pt-loaded TiO2 (Hombikat UV 100) samples.More-
over, the photocatalytic oxidation and photocatalytic dehy-
drogenation of methanol have been studied employing both
the bare and Pt-loaded TiO2 in the O2 and N2 atmosphere.
�emethanal formation was determined using Nashmethod
at a wavelength of 412 nm.

2. Materials and Methods

Aknownweight (2 g) of TiO2 (HombikatUV 100, Sachtleben,
Germany) was suspended under continuous stirring at

250 rpm in a solution containing 40 cm3 of 40% aqueous

methanal (Chemanol), 10 cm3 of methanol (Hayman), and
the appropriate volume of hexachloroplatinic acid (Riedel-
De-Haen AG) dissolved in HCl. �e reaction mixture was
maintained at 303K, purged with nitrogen gas (20 cm3/min)
and irradiated by UV-A light employing Philips Hg lamp

(90W) with the light intensity of 3.49mW/cm2 (E�e-
Schon 6 lamps) for 4 h. �is period of irradiation time
was found to be the most su�cient time for the com-
plete photodeposition process of metallic platinum. �e
concentration of platinum was monitoring by the atomic
absorption spectroscopy (Shimadzu-AA-6300, Japan). �e
milky white suspension turns to the pale grey colour
with the deposition of Pt. �e suspension solution was
	ltered and washed by absolute methanol, throwing in a
desecrater overnight. At the end the product was dried
in an oven at 100∘C for 2 h [31, 32]. Band gap ener-
gies of bare and Pt (0.5)-loaded on TiO2 surface were
determined, via the measurement of re�ectance data R by
(Cary 100 Scan) UV-visible spectrophotometer system. It is
equipped, with using a Labsphere integrating sphere di
use
re�ectance accessory for di
use re�ectance spectra over
a range of 300–500 nm by employing BaSO4 as reference
material.

In all photocatalytic experiments, 100 cm3 of 40mM
aqueous methanol solution (HPLC grade, Sd 	ne-CHEM
limited) was mixed with certain weight of bare TiO2 or
platinized TiO2 and was suspended using a magnetic stirrer

at 500 rpm. At di
erent time of intervals 2.5 cm3 of reaction
mixture was collected in a plastic test tube and centrifuged
(4000 rpm, 15 minutes) in an 800 B centrifuge. �e super-
natant solution was carefully removed by a syringe to a new
plastic test tube and centrifuged again to remove the 	ne
particles of bare TiO2 or platinized TiO2. �e concentration
of formed methanal was determined spectrophotometrically
at 412 nm following Nash method [42, 43] using UV-visible
spectrophotometer (T80+, PG Instruments Limited, Eng-
land).

40
00 80

0

10
00

12
00

14
00

16
00

18
00

20
00

24
00

28
00

32
00

35
00 60

0

40
0

In
te

n
si

ty

a

b

c
d

e

Wave number (cm−1)

Figure 1: FT-IR spectra for bare and di
erent percentages of
Pt-loaded on TiO2, at (a) bare TiO2, (b) Pt (0.25)/TiO2, (c) Pt
(0.50)/TiO2, (d) Pt (0.75)/TiO2, and (e) Pt (1.00)/TiO2.

3. Results and Discussion

3.1. Characterisation of Bare and Platinized TiO2

3.1.1. FTIR Analysis. �e Fourier transform infrared spectra
of bare and platinized TiO2 are depicted in Figure 1.�e illus-

trated peaks at 3350–3450 cm−1 correspond to the stretching
vibration mode of O–H bonds of free water molecules and at
1620–1630 cm−1 correspond to the bending vibrationmode of
O–H bond of chemisorbed water molecules. �e absorption
intensity of surfaceO–Hgroups in TiO2 is regularly increased
with the increasing of the percentage ofmetals content.�ese
	ndings are in a good agreement with the literature data

[44–46]. �e broad intense band below 1200 cm−1 is due
to Ti–O–Ti bridging stretching mode in the crystal. �is
peak appeared as unsymmetrical valley with the increasing
of metal loading (or content) on TiO2 exhibiting a maximum

at 580 cm−1. �is change is related to the formation of
Ti–O–M vibrations [47, 48]. �e intense bands at 3621,
3645, and 3696 cm−1 in all spectra are attributed to the
characteristic tetrahedral coordinated vacancies of 4Ti4+–OH
besides two bands at 3765 and 3840 cm−1.�ese revealed that
the octahedral vacancies designated as 6Ti3+–OH are found.

In the presence of metal loaded on TiO2 the peaks of 6Ti3+–
OH are not observed. �is is because the metal acts as an
electron trapper, mainly preventing the formation of Ti3+–
OH species [49]:

Ti4+–OH + e− �→ Ti3+–OH (1)

M + e− �→ M− (2)

3.1.2. XRD Analysis. �e XRD patterns of di
erent TiO2
samples (bare and platinum loaded) are shown in Figure 2.
�e mean crystallite size (�) of samples was calculated by
Scherrer’s equation (3) and the crystallite size (Ĺ) of samples
can be estimated from plotting the modi	ed Scherrer’s
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Figure 2: XRDpatterns of bare and di
erent percentage of Pt loaded
on TiO2 surface.

formula (4) [50] as shown in Figure 3. �e corresponding
values are listed in Table 1:

� = ��� cos � , (3)

ln� = ln(���́ ) + ln(
1

cos �) . (4)

In (3) and (4), � is Scherer’s constant depending on shape of
particles (0.94), � is the wavelength of the X-ray radiation
(0.15418 nm for CuK�), � is the full width of half maximum
(FWHM) intensity (in degree which converted to radian),
and � is the di
raction (Bragg) angle [50, 51].

No peak was observed for Pt (0.25 wt%)/TiO2 sample
at � = 46.5∘. �is result is in good agreement with the
previous 	ndings [52]. However, � = 46.6∘ which is related
to Pt appeared very weak band with Pt (0.5%) loading and
increased for Pt (1.0%) as shown in Figure 2. �e mean
crystallite size of both bare and platinized TiO2 decreased
from 11.487 nm to 9.355 nm, respectively. �e crystallite size
of bare TiO2 was found to be equal to 10.132 nm. �is value
was decreased with the increasing of Pt content on TiO2.
�e decreasing of the mean particle size of platinized TiO2
is attributed to the location and incorporation of Pt(IV) with
Ti(III) in TiO2 lattice. Moreover, the ionic radius of Pt(IV)
(0.63 Å) is relatively smaller than that of Ti(III) (0.67 Å)
[53, 54].

3.1.3. AFM Analysis. Figure 4 shows the three-dimensional
AFM images of bare and Pt-loaded TiO2 surface which were
used to measure the particle sizes. AFM images indicate that
the shapes of both bare and platinized TiO2 are spherical.
�e results summarized in Tables 1 and 2 indicate that the
particle sizes for all samples are found to be bigger than
the values found for crystallite size. �is indicates that each
particle consists of several crystals (polycrystals) [55]. �e
values of crystal size and particle size for bare TiO2 are more
than those values for metalized TiO2. �is is related to the

Table 1: Mean crystallite sizes and crystallite sizes of bare TiO2 and
Pt-loaded on TiO2.

Crystal components Pt %
Mean crystallite
sizes (�)/nm

Crystallite
sizes (Ĺ)/nm

TiO2 Hombikat
(UV 100)

0.000 11.487 10.132

Pt-TiO2 0.250 10.799 10.021

Pt-TiO2 0.500 9.355 9.503

Pt-TiO2 0.750 10.221 9.589

Pt-TiO2 1.000 10.475 8.262

increasing of the number of located of Pt4+ ions in TiO2
lattice, which depresses the growth of TiO2 Hombikate (UV
100) nanocrystals [54]. �e results show that each particle
consists of about 9 to 11 crystals, according to the results
obtained from the calculation of Crystallinity Index values by
employing the following equation [56]:

Crystallinity Index = ��� or (�́ ) , (5)

where�� is the particle size which is measured by AFM anal-

ysis and � and �́ are the corresponding mean crystallite size
and the crystallite size calculated by the Scherrer equation
and the modi	ed Scherrer equation employing XRD data,
respectively.

�e maximum value of average Crystallinity index for
Pt (0.5)/TiO2 is found to be 8.168. �at referred to the
suppression of the crystal defects number through decreasing
the amorphous phase present in TiO2 and overall enhancing
the photocatalytic activity of TiO2 [57].

3.1.4. UV-Visible Di
use Re�ectance Spectra. �e UV-vis
absorbance spectra of the bare TiO2 and platinized TiO2
(0.5% Pt) powders were also measured to con	rm the Pt-
loading trend and to measure the e
ect of Pt loading. �e
results from UV-visible re�ectance spectra as plotted in
Figure 5 clearly show the shi� of absorption edge towards
longer wavelength for platinized TiO2. �ese results indicate
that the excitation of metalized TiO2 occurs with the narrow-
ing and red shi� of the band gap energy (��) peak [58].�ese
results were subsequently agreed with the increasing of the
average Crystallinity Index [57].

3.2. E
ect of the Metal Loading on Photocatalytic Activity
of Methanol Solution. �e photocatalytic activity of the
platinized titanium dioxide was 	rst increased with the
increasing of themetal loading until amaximumwas reached
with the following decrease in the activity. Figures 6 and
7 show the results obtained with the samples containing
di
erent amount of platinum. �e highest photocatalytic
activity was observed with the Pt loading of 0.5 wt%. �is
loading percentage may give the most e�cient separation of
photogenerated electron-hole pairs [59]. �e presence of Pt
on the TiO2 surface leads to an increase of the surface barrier
and the space charge region becomes narrower. As a result of
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Figure 3: Modi	ed Scherrer equation plot of (a) bare TiO2, (b) 0.25% Pt loaded on TiO2, (c) 0.50% Pt loaded on TiO2, (d) 0.75% Pt loaded
on TiO2, and (e) 1.00% Pt loaded on TiO2.

Table 2: Particle size measured by AFM and Crystallinity values of bare TiO2 and platinized TiO2.

Samples Particle size/nm ∗Crystallinity Index ∗∗Crystallinity Index Average Crystallinity Index

TiO2 80.940 7.046 7.988 7.517

Pt(0.25)/TiO2 63.600 5.889 6.346 6.117

Pt(0.50)/TiO2 77.020 8.233 8.104 8.168

Pt(0.75)/TiO2 54.890 5.370 5.724 5.547

Pt(1.00)/TiO2 73.130 6.981 8.851 7.916
∗Crystallinity Index calculated by divided particle size on mean crystallite size and ∗∗Crystallinity Index calculated by divided particle size on crystallite size.
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Figure 4: �ree-dimensional AFM image of (a) bare TiO2, (b) 0.25% Pt loaded on TiO2, (c) 0.50% Pt loaded on TiO2, (d) 0.75% Pt loaded
on TiO2, and (e) 1.00% Pt-loaded on TiO2.

the metal loading the space charge region becomes narrower
leading to an increase of the e�ciency of the electron-hole
separation [60] and formation of the Schottky barrier by the
electron transfer from the conduction band of TiO2 to the
conduction band of Pt. �ereby the recombination process is
suppressed according to the following equations [31, 32, 61]:

Pt/TiO2 + ℎ] �→ h+VB + e−CB (6)

Pt� + e−CB �→ Pt−� (7)

O2 + Pt−� �→ O2
−∙ + Pt�. (8)

Platinum acts as electron scavenger hindering the recombi-
nation of the charge carriers and ultimately exhibiting the
enhancement of the photoreactivity as shown in the following
equation [31, 32, 62, 63]:

Pt−� + h+VB �→ Pt�. (9)

However, when the percentage of the metal reached max-
imum, the additional amount leads to making the space

charge layer very narrow. As a result the penetration depth of
light exceeds the space charge layer.�e recombination of the
electron-hole pairs will be favorable and the photocatalytic
activity will be reduced [60]. Moreover, the presence of
metal on the TiO2 surface reduces the number of the surface
hydroxyl groups leading to the reduction of the photoreac-
tivity [64]. �is means that the metal on the TiO2 surface
acts both as an e�cient trap site and as a recombination
center at the same time [65]. Hence the rate of the methanal
(HCHO) formation will be slower while the conversion of
methanal to formic acid (HCOOH) is a faster process. On the
other hand, with the increasing of the metal amount, TiO2
samples will become more grey in color. �us, the changed
optical properties of the samples could lead to the screening
of the light towards the TiO2 and suppression of the electrons
excitation to the conduction band [31, 66].

Two mechanisms for the photocatalytic oxidation (in the
presence of O2) and photocatalytic dehydrogenation (in the
presence of N2) of methanol with Pt (0.5)/TiO2 are suggested
as shown in Scheme 1. �e scheme shows the di
erences
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0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.25 0.5 0.75 1

10
5
×

ra
te

 o
f 

re
ac

ti
o

n
 (

M
m
in

−
1
)

Pt % -loaded on TiO2 surface

Figure 6: Rate of methanal formation as function of bare and
di
erent percentage of Pt on TiO2 surface, under purged O2.

between the mechanism of photooxidation and photodehy-
drogenation of methanol on platinized titanium dioxide. �e
formation of CaCO3 in photooxidation process was indicated
by passing the outlet gas in Ca(OH)2 solution. However, no
CO2 formation was indicated in photodehydrogenation of
methanol.

Di
erences in experimental conditions, such as, exper-
imental equipment, type of photocatalyst, position of band
edges of semiconductor compared to redox potential of
O2/O2

−∙ and −OH/∙OH, and type and concentration of
organic pollutant, cause di�culties in the comparison of
photocatalytic activity of di
erent materials. Xiang et al. [67]
measured the formation rates of hydroxyl free radical for var-
ious semiconductor photocatalysts at the same experimental
conditions. �ey discussed the di
erence of rates formation
of hydroxyl free radical on various semiconductors. In
another study Xiang et al. [68] showed that hydroxyl radicals
are one of active species and indeed participate in photo-
catalytic reactions. �ey also found that the photocatalytic
activity of Ag-TiO2 exceeds that of P25 by a factor of more
than 2. Our results are in good agreement with these 	ndings.
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�e di
erent yields that are suggested in the two mecha-
nisms are HCOH and H2O in the absence of oxygen (photo-
catalytic dehydrogenation of methanol) and HCOOH in the
presence of oxygen (photocatalytic oxidation of methanol).
�e pH of the reaction suspension a�er one hour of irra-
diation was found 6.93 in dehydrogenation process while it
was 4.82 in photooxidation process.�is indicates the further
oxidation of the formed formaldehyde to formic acid.

4. Conclusions

�is study is focused on the elucidation of the mechanism
of the methanol formation by the photocatalytic oxidation
and/or photocatalytic dehydrogenation of aqueous methanol
solutionwith bare and platinized TiO2.�emain conclusions
can be summarized as follows.

(1) �e FT-IR spectra show that the peaks at 3450 cm−1

and 1630 cm−1 related to the surface O–H groups of
TiO2 are increasedwith the increasing of the platinum
amount loaded on TiO2 surface. �e intense bands
at 3621, 3645, and 3696 cm−1 have been observed
in all spectra which are characteristics for the tetra-
hedral coordinated vacancies designated as 4Ti4+–
OH. Additionally, a disappearance of two bands at

3765 and 3840 cm−1 attributed to 6Ti3+–OH has been
observed as well.

(2) �e XRD data have been used to calculate the
crystallite size of the bare and Pt-loaded TiO2. �e
values obtained for the crystallite size of the bare
TiO2showed a decrease with the increasing of plat-
inum amount on TiO2.

(3) AFM images indicate that the shapes of both bare and
platinized TiO2 are spherical.

(4) One particle consists of about 9 to 11 crystals.

(5) In photoreaction, no reaction occurred with using
bare TiO2 under inert gas (N2); however, in the
presence of metal, the photoreaction occurred; that
is, the existence of the metal substituted the needed
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for the O2. In the existence of O2 the reaction was
carried on to form formic acid as a result of further
oxidation of methanol while, in the absence of the
O2, dehydrogenation of methanol occurred, and no
further photooxidation occurred.
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[2] J. A. Ibáñez, M. I. Litter, and R. A. Pizarro, “Photocatalytic
bactericidal e
ect of TiO2 onEnterobacter cloacae. Comparative
study with other Gram (−) bacteria,” Journal of Photochemistry
and Photobiology A, vol. 157, no. 1, pp. 81–85, 2003.

[3] M. Haghi, M. Hekmatafshar, B. Mohammad Janipour et al.,
“Antibacterial e
ect of TiO2 nanoparticles on pathogenic strain
of E. coli,” International Journal of Advanced Biotechnology and
Research, vol. 3, no. 3, pp. 621–624, 2012.

[4] L. Zhang, J. Yan, M. Zhou, and Y. Liu, “Photocatalytic inacti-
vation of bacteria by TiO2-based compounds under simulated
sunlight irradiation,” International Journal of Material Science,
vol. 2, no. 2, pp. 43–46, 2012.

[5] R. Liu, H. Wu, R. Yeh, C. Lee, and Y. Hung, “Synthesis
and bactericidal ability of TiO2 and Ag-TiO2 prepared by
coprecipitation method,” International Journal of Photoenergy,
vol. 2012, Article ID 640487, 7 pages, 2012.

[6] A.-P. Zhang and Y.-P. Sun, “Photocatalytic killing e
ect of TiO2
nanoparticles on Ls-174-t human colon carcinoma cells,”World
Journal of Gastroenterology, vol. 10, no. 21, pp. 3191–3193, 2004.

[7] T. Sungkaworn, W. Triampo, P. Nalakarn, I. Tang, Y. Lenburg,
and P. Picha, “�e E
ects of TiO2 nanoparticales on tumor
cell colonies: fractal dimension and morphological properties,”
International Journal of Biological and Life Sciences, vol. 2, no. 1,
pp. 67–74, 2007.

[8] A. Popov, TiO2 Nanoparticles as Uv Protectors in Skin, Oulun
Yliopisto, Oulu, Finland, 2008.

[9] C.-C. Lin and W.-J. Lin, “Sun protection factor analysis of
sunscreens containing titanium dioxide nanoparticles,” Journal
of Food and Drug Analysis, vol. 19, no. 1, pp. 1–8, 2011.

[10] S. Singh and A. pal, “Review: emergence of novel nanoparticles
asUv absorber in sunscreen and their application,” International
Journal of Pharmaceutical Research&Development, vol. 4, no. 3,
pp. 207–216, 2012.

[11] A. P. Popov, A. V. Zvyagin, J. Lademann et al., “Designing inor-
ganic light-protective skin nanotechnology products,” Journal
of Biomedical Nanotechnology, vol. 6, no. 5, pp. 432–451, 2010.

[12] E. Selli, G. L. Chiarello, E. Quartarone, P. Mustarelli, I. Rossetti,
and L. Forni, “A photocatalytic water splitting device for
separate hydrogen and oxygen evolution,” Chemical Communi-
cations, no. 47, pp. 5022–5024, 2007.



8 International Journal of Photoenergy

[13] J. Oudenhoven, F. Scheijen, and M. Wollfs, “Fundamental of
photocatalytic water splitting by visible light,” Chemistry of
Catalytic System 2: Photocatalysis, pp. 1–22, 2004.

[14] A. Fujishima and K. Honda, “Electrochemical photolysis of
water at a semiconductor electrode,” Nature, vol. 238, no. 5358,
pp. 37–38, 1972.

[15] M. Del Arco, S. Gutiérrez, C. Mart́ın, V. Rives, and J. Rocha,
“Synthesis and characterization of layered double hydroxides
(LDH) intercalatedwith non-steroidal anti-in�ammatory drugs
(NSAID),” Journal of Solid State Chemistry, vol. 177, no. 11, pp.
3954–3962, 2004.

[16] H. Zhang, K. Zou, S. Guo, and X. Duan, “Nanostructural drug-
inorganic clay composites: structure, thermal property and in
vitro release of captopril-intercalated Mg-Al-layered double
hydroxides,” Journal of Solid State Chemistry, vol. 179, no. 6, pp.
1792–1801, 2006.

[17] S.-J. Xia, Z.-M. Ni, Q. Xu, B.-X. Hu, and J. Hu, “Layered double
hydroxides as supports for intercalation and sustained release
of antihypertensive drugs,” Journal of Solid State Chemistry, vol.
181, no. 10, pp. 2610–2619, 2008.

[18] F. Hussein, “Comparison between solar and arti	cial photocat-
alytic decolorization of textile industrial wastewater,” Interna-
tional Journal of Photoenergy, vol. 2012, Article ID 793648, 10
pages, 2012.

[19] S. Devipriya, S. Yesodharan, and E. Yesodharan, “Solar pho-
tocatalytic removal of chemical and bacterial pollutants from
water using Pt/TiO2-coated ceramic tiles,” Journal of Photoen-
ergy, vol. 2012, Article ID 970474, 8 pages, 2012.

[20] Y. Tan, C. Wong, and A. Mohamed, “An overview on the
photocatalytic activity of nano-doped-TiO2 in the degradation
of organic pollutants,” Materials Science, vol. 2011, Article ID
261219, 18 pages, 2011.
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