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Host immune response against Mycobacterium tuberculosis is mediated by cellular immunity, in which cytokines and Th1 cells play
a critical role. In the process of control of the infection by mycobacteria, TNF-alpha seems to have a primordial function. This
cytokine acts in synergy with IFN-gamma, stimulating the production of reactive nitrogen intermediates (RNIs), thus mediating
the tuberculostatic function of macrophages, and also stimulating the migration of immune cells to the infection site, contributing
to granuloma formation, which controls the disease progression. IFN-gamma is the main cytokine involved in the immune
response against mycobacteria, and its major function is the activation of macrophages, allowing them to exert its microbicidal
role functions. Different from TNF-alpha and IFN-gamma, IL-10 is considered primarily an inhibitory cytokine, important to
an adequate balance between inflammatory and immunopathologic responses. The increase in IL-10 levels seems to support the
survival of mycobacteria in the host. Although there is not yet conclusive studies concerning a clear dichotomy between Th1 and
Th2 responses, involving protective immunity and susceptibility to the disease, respectively, we can suggest that the knowledge
about this responses based on the prevailing cytokine profile can help to elucidate the immune response related to the protection
against M. tuberculosis.

1. Introduction

The genus Mycobacterium displays more than 100 known
species, with a broad geographic distribution, habitat diver-
sity, and diverse relations with other organisms, includ-
ing more than 20 species presenting different degrees of
pathogenicity to humans [1]. Mycobacterium tuberculosis (M.
tuberculosis) (MTB), an intracellular facultative bacillus, is
the most frequent species isolated in human tuberculosis
(TB) cases.

Pulmonary tuberculosis is a global public health prob-
lem, presenting high incidence in Brazil. It is still the world’s
leading cause of death from a single infectious agent. Most

infections are asymptomatic and latent however around
5% to 10% of infected people progress to the disease
development at each year, pulmonary tuberculosis being
found in most cases. Each second a person is infected with
M. tuberculosis in the world. From the lungs, the organism is
efficiently transmissible through aerosol. It is estimated that,
on average, a person with active TB can infect between 10 and
15 individuals per year [2]. The World Health Organization
(WHO) works intensively to significantly reduce the TB
cases and halve this disease death number until 2015 [3];
however, the number of multidrug-resistant TB cases is
rising, and this increasingly compromises the disease control
[4, 5].
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Latent TB is defined as an infection with M. tuberculosis
that remains within macrophages without replicate, but that
retains the ability to exit latency and cause active disease
when there is an interruption of the protective immune
response. The reactivation of a latent infection requires the
activation of the quiescent bacilli. Several factors can trigger
the development of active disease from reactivation of latent
infection, which usually involves the decline of the immune
response. HIV infection is the most important risk factor for
progression to active disease due to depletion of CD4+ T cells
[6]. Advanced age, malnutrition, and medical conditions that
compromise the immune system are also risk factors for the
reactivation [7, 8].

Tuberculosis progression is associated with the immune
status. It is known that host protective immune response
against this pathogen is mediated by cellular immunity,
in which certain cytokines and Th1 cells have a critical
role [9]. Understanding the mechanisms involved in this
response, and in particular the function of the cytokine
network involved in this disease, is of significant relevance to
reach advances in the development of effective control and
prevention [10].

2. Cytokines

Cytokines are molecules that mediate mainly the intercellular
communication in the immune system, being produced
by different cell types. Cytokines have pleiotropic and
regulatory effects and participate in the host defense and in
inflammatory and tissue reparation processes [11].

In tuberculosis, an effective and coordinated partici-
pation of different cytokines was already identified, such
as interleukin-12 (IL-12), IL-23, IL-27, IL-18, IL-1, IL-7,
and IL-15 [5]. An important aspect associated with the
production of cytokines in MTB infections is the activation
of macrophages in response to IFN-γ and TNF-α signal-
ing [12]. Nonactivated macrophages are the usual habitat
of MTB, which resists in the intracellular environment,
blocking the phagosome fusion with the lysosome, thus
avoiding its exposure to low pH and to reactive nitrogen
intermediates (RNIs), important to its destruction [12].
IFN-γ activated macrophages transpose this blockage and
form phagolysosomes expressing RNIs able to eliminate
MTB in the infection sites [13]. The cord factor, the
19KDa lipoprotein, and other MTB components induce the
production of IL-12 by macrophages, thereby mobilizing the
Th1 cytokine pathway. Figure 1 shows the initial immune
protection to M. tuberculosis.

Several cytokines, including interleukin IL-12, IL-17,
and IL-23, contribute to the host response to mycobacteria,
improving the development of Th1 cells [14]. Among Th1
cytokines, IFN-γ and TNF-α were identified as the most
important agents of the antimycobacterial cytokine cascade.
This is due to the formation as well as the maintenance
of the granuloma, which is mediated by TNF-α acting
synergistically with IFN-γ in the activation of macrophages
to produce effector molecules [15].

Recently, a new population of cells was identified and
named Th17. These cells produce IL-17, IL-21, and IL-22 as

signature cytokines [16, 17]. The IL-17 receptor is expressed
in different organs including the liver, lung, and spleen, and
different cell types are able to respond to IL-17, such as
dendritic cells, macrophages, lymphocytes, epithelial cells,
and fibroblasts. The responses induced by the IL-17 gene
include expression of proinflammatory genes, chemokines,
IL-6, IL-8, and antimicrobial proteins. Recent data suggest
a superior and more complex role for these cells and
their cytokines in different intracellular infections, including
bacteria, fungi, and viruses in different mucosal surfaces
[18]. Therefore, the balance between protection and Th17
cell-mediated pathology is the key in the definition of
consequences in mucosal infections [19].

Th17 cells also participate in the inflammatory response
at an early mycobacterial infection; however, the production
of IL-17 in the lungs is mainly immunosuppressive of IFN-γ.
The protective potential role of Th17 cells during the early
phase of infection with M. tuberculosis is unknown [20].
There are evidences on the role of IL-17 during mycobacterial
infections. Pulmonary infection with BCG or M. tuberculosis
stimulated the early secretion of IL-17 from the day 1 to 14
and sequentially the development of T cells secreting IFN-γ.
Pulmonary infected IL-17 deficient mice with BCG showed
a reduction in the delayed hypersensitivity responses, with a
deficiency in granuloma formation in the lungs, suggesting
that IL-17 is required for an efficient development of Th1
responses [20].

The secretion of IL-23 is essential for the secretion of IL-
17, and people with deficiency in the IL-12Rβ1 gene have low
capacity to produce IL-23, and they have a lower production
of IFN-γ. IL-12 is a cytokine that reduces the expression
of IL-17, and this appears to show a self-regulation on
inflammation. The balance between the secretions of IL-
23/IL-17 and IL-12/IFN-γ appears to be essential for the
regulation of inflammation in response to M. tuberculosis and
other mycobacteria [21].

Among the cytokines that are being studied in response
to M. tuberculosis, we can also emphasize interleukin-1.
Interleukin-1 is necessary for the control of infection with
M. tuberculosis, but the role of its two ligands, IL-1α and
IL-1β, and its regulation in vivo are poorly understood. An
important feature of IL-1 is its control on transcription,
arranging the levels of transcription and signal transduction,
as evidenced by the variety of immunopathologies and
autoinflammatory diseases that occur in the absence of reg-
ulation of IL-1 [22, 23]. Little is known about the expression
and processing of IL-1 in the context of infection with M.
tuberculosis in vivo. The populations of cells that produce IL-
1 during infection have not yet been characterized [24].

Guler et al. [25] investigated the role of IL-1α and IL-
1β during chronic infection with M. tuberculosis and spon-
taneous reactivation of it in mice. Blockade of IL-1α, but not
IL-1β, resulted in increased susceptibility to chronic infection
with M. tuberculosis. When they neutralized IL-1α or IL-1β
alone, they did not observe an increase in the reactivation of
latent tuberculosis. The generation of antibodies neutralizing
IL-1α and IL-1β simultaneously did not influence weight
gain during reactivation, and they observed a slight increase
in the lung bacilli count when compared to the immunized
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Figure 1: Initial protective response to M. tuberculosis-Th1 profile.

control group. Thus, their results suggested that IL-1α is
the prime mediator of the IL-1RI-dependent and protective
innate immune responses to M. tuberculosis in mice.

In a recent study the role of IL-1 in host resistance was
demonstrated by inducing antibodies against this cytokine,
which resulted in an increased mortality during chronic
infection [25].

The granuloma is a typical structure of this disease,
where we can find CD4 and CD8 T lymphocytes, B lym-
phocytes, macrophages, neutrophils, fibroblasts, and giant
multinucleated cells. IFN-γ-producing CD4 T lymphocytes
contribute to the generation of granulomas, besides being
important costimulators to the adequate activation of CD8
T lymphocytes. The importance of CD4 T lymphocytes
function is seen in patients with HIV, where the risk of TB
increases with the decrease of the cells counting [26].

Many events mediated by cytokines are important to the
establishment of immunity against MTB and the expression
of host resistance [11].

Response against M. tuberculosis. CD4+ T cells exert regu-
latory activity on macrophage function, as well as cytolytic
CD8+ lymphocytes. The effector function for the bacterial
elimination is mediated by macrophages that are activated
by cytokines derived from T lymphocytes, particularly IFN-γ
and TNF-α.

3. Tumor Necrosis Factor (TNF-α)

The tumor necrosis factor (TNF, TNF-α) was originally
characterized as a necrosis inductor in sarcomas in vivo [27].
TNF-α is a proinflammatory cytokine which exerts multiple
biological effects. TNF-α expression is strictly controlled,
since its superproduction can mediate damaging effects
found in the septic shock such as arterial hypotension,
disseminated vascular coagulation, and lethal hypoglycemia.

In the process of mycobacterial infection control, TNF-α
seems to have a primordial role, acting upon a wide variety

of cells. The main producing cells are activated macrophages,
T lymphocytes, and dendritic cells [27–29]. This cytokine
acts in synergy with IFN-γ, stimulating the production of
reactive nitrogen intermediates (RNIs), thus mediating the
tuberculostatic function of macrophages [30, 31]. TNF-α
also stimulates the migration of immune cells to the infection
site, contributing to the granuloma formation, capable of
controlling the disease progression [32].

TNF-α blocking has dramatic effects on the progression
of tuberculosis in experimental models. Neutralization of
TNF-α in murine models results in tuberculosis aggravation
or reactivation [32]. The excision of the TNF-α gene or its
receptor results in deviant granulomas or fulminant acute
tuberculosis [33, 34]. Studies have also revealed that TNF-
α is expressed in MTB-infected tissues during the whole
latent phase of infection [35], suggesting a contribution, with
other cytokines like IFN-γ, in the control of the bacillus
multiplication.

Increased levels of TNF-α are commonly detected in
culture supernatants of peripheral blood mononucleated
cells (PBMCs) from patients with pulmonary tuberculosis
stimulated with mycobacterial antigens [10, 36, 37]. Moura
[38] evaluating the immune response of patients prior to and
after treatment noticed that patients with active pulmonary
tuberculosis produced increased levels of TNF-α; however
they did not observe significant difference in these cytokine
levels after treatment, concluding that these results reinforce
this cytokine’s role at both the physiopathology and in the
protective immunity of the disease.

A recent study investigated the role played by the
nucleotide-binding oligomerization domain-containing pro-
tein 2 (NOD2) in the human alveolar macrophage innate
responses and revealed that significant levels of IL-1β,
IL-6, and TNF-α were produced after the recognition of
the ligand with the muramyl dipeptide (MDP). Alveolar
macrophage treatment with MDP has improved the control
of intracellular growth of M. tuberculosis, activity associated
with a significant production of TNF-α and IL-6 [39].
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One of the most overwhelming lines of evidence of the
protective effects of TNF-α is, perhaps, provided by the
observation that patients with rheumatoid arthritis under
treatment with TNF-α antagonists (monoclonal antibodies
against TNF-α or TNF-α soluble receptors) have a significant
increased risk of reactivating latent TB [40–42].

On the other hand, there is also evidence showing
that TNF-α may be associated with immunopathological
responses in tuberculosis, aforementioned also as the head
mediator of the destruction of the pulmonary tissue [43].
Elevated levels of TNF-α are related to an excessive inflam-
mation with necrosis and cachexy [44, 45].

Tumor necrosis factor (TNF-α) relative roles in MTb
have been a subject of controversy. It was described that
mycobacteria decreases the production of TNF in human
PBMCs, skill which probably contributes to its ability to
establish chronic infections [46]. Produced by macrophages,
lymphocytes, neutrophils, and some endothelial cells, TNF-
α coordinates the inflammatory response via induction of
other cytokines (IL-1 and IL-6), and the recruitment of
immune and inflammatory cells through the induction
of chemokine and supraregulation of adhesion molecules.
Experimental models have shown that TNF-α plays an
important role not only in host response against M. tubercu-
losis but also in the immunopathology of tuberculosis [47].

TNF-α increases the capacity of macrophages to phago-
cytose and kill mycobacteria and stimulates apoptosis of
macrophages, depriving bacilli of host cells and leading to
death and presentation by dendritic cells of mycobacterial
antigens [48]. In vivo TNF-α is required for the formation
and maintenance of granulomas. Neutralization of TNF-α
produced by mice chronically infected with M. tuberculosis
specific monoclonal antibodies disrupts the integrity of
granulomas, exacerbates infection, and increases mortality
[49].

M. tuberculosis evolved and has developed mechanisms
which interact and modulate the host immune response.
Mycobacterium expresses surface antigens that can induce
the production of IL-10 and IL-4, which typically have anti-
inflammatory effects [50, 51]. The high expression of IL-
4 has been implicated as a virulence factor, both for the
anti-inflammatory ability and also for its apparent capacity
to promote tissue damage in association with TNF-α [52].
These studies suggest that IL-4 (alone or jointly with TNF-
α) may play a role in tissue destruction and/or cell death
during infection by M. tuberculosis. TNF-α is one of the
most powerful controlling factors for the recruitment of
monocytes and is a potent inducer of cell death by apoptosis
[53]. Necrosis, on the other hand, is associated with the lysis
of the infected cell, the release of feasible M. tuberculosis, and
damage to the surrounding tissues [54]. TNF-α is also a key
cytokine involved in this event.

4. Interferon Gamma (IFN-γ)

Interferons (IFNs) are substances originally identified at
cellular culture supernatants infected by virus and that
appeared to interfere directly in the viral replication, hence

its denomination [55]. Divided into two major types, type
I IFNs are induced and act effectively in responses against
viruses: IFN-α is secreted mainly by leucocytes, and IFN-β is
produced by fibroblasts. Type II interferon, now referred to as
IFN-γ, is synthesized mostly by T lymphocytes and NK cells
after this cells activation with immune and inflammatory
stimuli, rather than viral infection [56]. IFN-γ is the chief
cytokine involved in the protective immune response against
mycobacterial infection. It is produced primarily by CD4
and CD8 T lymphocytes and NK cells. It is also known that
natural killer T cells (NKT) and γδ T lymphocytes, cells with
a narrow repertoire of antigen recognition, can also produce
IFN-γ in response to mycobacterial stimulation, displaying
protection against M. tuberculosis infection both in vitro and
in vivo [12].

The main function of IFN-γ is macrophage activation,
rendering them able to exert its microbicidal functions. It
operates also enhancing the antigen presentation through
the induction of the expression of molecules from the
major histocompatibility complex (MHC) class I and II and
promoting the differentiation of CD4 T lymphocytes to the
Th1 subpopulation [57–59]. IFN-γ induces the transcription
of more than 200 genes in macrophages, including those for
the production of antimicrobial molecules such as oxygen
free radicals and nitric oxide, which represent one of the best
effector mechanisms for elimination of M. tuberculosis [60].
However, some mycobacterial antigens, such as the 19 kDa
lipoprotein, have the potential to mitigate the response of
macrophages by blocking the transcription of subsets of
genes responsive for IFN-γ [61, 62].

A series of clinical and experimental studies have demon-
strated the importance of IFN-γ production in the control
of tuberculosis [63–65]. Experiments in mice revealed that
IFN-γ is an essential cytokine for macrophage activation and
mycobacteria death in the intracellular environment. Cooper
et al. [66] and Flynn et al. [67] have demonstrated that mice
deprived from the IFN-γ genes have experienced fulminant
infection by M. tuberculosis.

Individuals with a deficiency in the IFN-γ receptor gene
have shown to be extremely susceptible to mycobacterial
infections [68]. The complete deficiency of IFN-γ receptor
in humans is associated with increased severity in the course
of infection, poor formation of granulomas, multibacillary
lesions, and progressive infection [69]. Studies with individ-
uals that presented genetic mutations in the IFN-γ receptor
have also proven that they presented high susceptibility to
atypical mycobacterial infections [70].

The interleukin-12 (IL-12)/interferon-γ (IFN-γ) axis is
determinant to the generation of Th1 lymphocytes, acti-
vation of macrophages by T cells, and further elimination
of bacteria. A series of mutations associated to these
axis components were identified in humans: these include
mutation in the IL-12Rβ1, IL-12p40, IFN-γR2 genes, and the
signal transducer and activator of transcription-1 (STAT-1).
Most infections associated with these Mendelian disorders
arise from the use of BCG or environmental mycobacteria.
Nevertheless, some of the disorders are also associated with
an increased susceptibility to M. tuberculosis (IFN-γR2 and
IL-12p40) [71, 72].
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IL-12 enhances IFN-γ production by NK cells and
expands antigen specific Th1 cells. Other cytokines such as
IL-23, IL-18, and IL-27 are also important inducers of IFN-
γ. About 20 days are enough to produce IFN-γ by Th1
lymphocytes, which results in its accumulation in the lungs
and bacterial growth arrest [73]. IL-18, a cytokine produced
by monocytes, macrophages, and dendritic cells, cooperates
with IL-12 to induce IFN-γ production [61]. Studies clearly
indicate that IL-18 contributes to protect against infection by
mycobacteria [74, 75]. Moreover, IL-18 deficient mice when
infected with M. tuberculosis present reduced levels of IFN-γ
compared with normal mice, despite the standard levels of
IL-12 [76].

Morosini and colleagues [77] emphasize through data
that they found in their study the view that in humans,
at least at certain stages of pulmonary tuberculosis, there
is a differential compartmentalization of IFN-γ and of the
regulatory cytokine IL-12 and IL-10, where the protection
factor associated with the secretion of IL-12 is present in
the lungs and the component associated with immunosup-
pressive IL-10 secretion is predominant in peripheral blood.
Furthermore, their results indicate a more critical role for
IL-18 in the host response to M. tuberculosis in humans,
suggesting that IL-18 may act as a factor for induction of
IFN-γ in the lungs, whereas one can have immunoregulatory
activity on peripheral circulation [77].

Studies report that patients with less severe forms
of pulmonary tuberculosis have a predominance of Th1
cytokines such as IFN-γ, whereas the increase in IL-4 levels,
a Th2 type cytokine, is related to the disease severity [78,
79]. Torres et al. [80] studied the immune response of
patients’ PBMCs with active tuberculosis and their healthy
household contacts in response to the 30-KDa antigen from
M. tuberculosis. Their results demonstrated a defect in the
IFN-γ production by patients in response to the investigated
antigen and a strong response to this antigen by the healthy
communicants’ cells, suggesting a protective role of IFN-γ in
those individuals.

After inhalation and subsequent infection with M.
tuberculosis in the lungs, dendritic cells infected with the
bacilli migrate to the regional lymph node, which occurs,
on average, around 14 days after infection, initiating the
activation of T cells [81]. A model study used dendritic cells
infected with M. tuberculosis inoculated intratracheally in the
lung and as a result found that dendritic cells exposed to
M. tuberculosis prior to inoculation are better in migrating
to the lymph node and in T cell activation [82, 83]. These
findings, in association with information about the secretion
of cytokines and activation of the populations of CD4+ T
cells, indicate that different subtypes of CD4+ T cells involved
in protection in tuberculosis are activated in the initial phases
of infection and produce cytokines classically considered
immune protectors such as IL-2, IFN-γ and TNF-α [84, 85].

There is evidence that CD4+ T cells may contribute both
to the control of M. tuberculosis as well as of immunopathol-
ogy, contributing to morbidity and mortality in tuberculosis
disease. Reference [86] quantified the variation of IFN-γ/IL-
17 in response to specific antigens of M. tuberculosis in
patients with a positive PPD test and healthy individuals and

observed a large variation in the amounts of IL-17 and IFN-γ
secreted in response to the various antigens used.

5. Interleukin-10 (IL-10)

Due to its ability to inhibit the T lymphocyte production
of cytokines, IL-10 was originally described as a cytokine
synthesis inhibitory factor (CSIF) [86]. Subsequent studies
have demonstrated that IL-10 could also inhibit Th1 and
Th2 subpopulations in vitro [87, 88]. IL-10 acts inhibiting
the production of pro-inflammatory cytokines (IFN-γ, TNF-
α and IL-12) and the action of antigen presenting cells,
blocking the activation of T lymphocytes through the
inhibition of expression of MHC class II molecules [89, 90].
Therefore, it has an immunoregulatory function [91].

IL-10 is produced by macrophages and T lymphocytes
during M. tuberculosis infection. Unlike TNF-α and IFN-
γ, IL-10 is considered primarily an inhibitory cytokine,
important to the adequate balance between inflammatory
and immunopathological responses. However, the increase
in IL-10 levels appears to support the mycobacterial survival
in the host. Mice with defective IL-10 exhibit an increase
in the antimycobacterial immunity [92]. IL-10 reduces the
protective response to MTB in the CBA mice strain, in
which IL-10 is produced by phagocytes in the interior of the
pulmonary lesion and where a reduction in the TNF and IL-
12p40 expression can be observed [93]. IL-10 is also able to
induce the reactivation of tuberculosis in animals [94].

IL-10 is increased in samples obtained from patients
with TB, and a higher capacity of IL-10 production is
associated with an increase in the disease incidence. In
human tuberculosis, IL-10 production is higher in aner-
gic patients, suggesting that M. tuberculosis induces IL-10
production, suppressing an effective immune response [95].
Macrophages from patients suffering from tuberculosis are
suppressed in vitro, and the inhibition of IL-10 reverts
partially this suppression [90]. In another study, IL-10
was capable of directly inhibiting the responses of CD4 T
lymphocyte from donors with latent TB and also reduced the
expression of MHC class I and II, CD40, B7-1, and B7-2 of
monocytes infected with MTB [96].

Lowering the protective cellular immune response is the
M. tuberculosis aim to survive in the host. IL-10 and other
inhibitory mediators of the inflammatory response (TGF-
βRII, IL-1Rn e IDO) are detected in the sputum samples of
patients with TB, whereas 30 days after treatment their level
decreases considerably, while an increase in the Th1 response
is observed [97].

In some human populations, an increase in IL-10
expression was identified, being possible to correlate it with
an inefficiency in the BCG (Bacillus Calmette-Guérin) vacci-
nation [98]. The analysis of the IL-10 gene polymorphisms
involved in the development of infectious diseases suggests
that this polymorphism has a critical role in the immunity
and progression of inflammation. The increase in IL-10
production can, in particular, suppress the immune response
and promote progression of the disease [99].

Regarding the immunopathogeny of TB, it is unques-
tionable the immunosuppressor role presented by IL-10



6 Pulmonary Medicine

[100, 101]. Nonetheless, some studies have not detected
increased levels of this cytokine in PBMCs from patients with
active TB in response to mycobacterial antigens [102].

6. Cytokines in Household Tuberculosis
Contact Cases

The study of household contacts of TB cases is of essential
importance to the programs for combat and control of
tuberculosis, in other words, the epidemiologic surveillance
of household contacts as a means for early diagnosis of TB
cases and the decrease of the spread of the disease [103].

Some studies assessed the cytokine profile in groups of
healthy contacts individuals. From these works, it is impor-
tant to mention Demissie [104], who conducted a study
comparing the immune response of infected individuals in
the latent stage with TB patients. The results demonstrated
that TB patients presented a low production of IFN-γ and
IL-2 cytokines when compared to individuals with latent
infections. This suggests that the control of TB in the
latent stage is not only associated with increased expression
of Th1 cytokines, but also with the suppression of IL-4
activity [104]. Later, the same group [105] compared the
expression of IL-4, IL-4δ2, and IFN-γ in the peripheral blood
of household contacts of TB patients presenting positive
sputum. The results demonstrated that the expression of IL-
4 was slightly higher in household contacts when compared
to the controls from the community. However, when the
household contacts were divided into groups with or without
immunological signs of infection with M. tuberculosis, the
expression of IL-4 was clearly elevated in the positive ESAT-
6 (signal transducer and activator of transcription 6, an
MTB antigen) group and the expression of Th1 cytokines
such as IFN-γ was low. Thus, they suggest that a strong
response to the antigen ESAT-6 in individuals exposed to M.
tuberculosis correlates with a low expression of IFN-γ and
higher expression of IL-4 and that possibly this profile is
associated with a poor prognosis [105]. The results founded
by our group [106] demonstrated that individuals with or
without a previous history of tuberculosis and exposed to
M. tuberculosis showed a Th1 (TNF-α and IFN-γ) and Th2
(IL-10 and TGF-β) profile of cytokines, similar to that found
by Demissie [105], with an IFN-γ production relatively
low when compared to IL-10. These cytokines would be
involved in shifting the state of latency to the stage of clinical
tuberculosis [106].

The presence of high levels of IL-10 in the plasma of
household contacts was unexpected for the group of [107],
since they have also found high levels of IL-10 in the studied
patients. However, there are few reports in the literature on
the production of IL-10 by household contacts of patients
with tuberculosis [107]. According to [107], these levels are
due to stimulation of mycobacterial antigens that induce this
cytokine production by mononuclear cells. Moreover, we can
suggest that IL-10 was involved in the natural defense that
goes against excessive proinflammatory responses generated
by TNF-α. Therefore, the simultaneous presence of IL-10 and
TNF-α in household communicating TB patients might be

Table 1: Studies of cytokines associated to M. tuberculosis infection.

Cytokine Tuberculosis study References

TNF-α

Studies in murine models [32–35, 44]

Studies in patients with
pulmonary tuberculosis

[36–39]

IFN-γ

Studies in murine models [45, 66, 67, 76]

Clinical studies
[63–65, 77–

80, 85]

Genetic studies [68–72]

IL-10

Studies in murine models [92–94]

Studies in patients with
tuberculosis

[95–102]

Other cytokines Studies in tuberculosis
[14, 16–

21, 24, 25]

beneficial to these individuals [105]. IL-10 may be required
to modulate proinflammatory effects in patients and in
healthy household tuberculosis individuals.

Table 1 summarizes the main cytokines, associated stud-
ies, and references described in this paper.

7. Final Thoughts

The host resistance against infection with M. tuberculosis
starts with the innate immunity, involving the interaction
of the bacillus with macrophages and dendritic cells. Little
is known about the transition between the initial control of
infection and the establishment of latent infection, which is
largely due, in part, to the lack of appropriate animal models
[108].

Although there are still no conclusive studies about a
clear dichotomy between Th1 versus Th2 response, involving
protective immunity and disease susceptibility, respectively,
we can conclude that the knowledge of Th1 and Th2
responses helps to elucidate the immune protection profile
of the host against M. tuberculosis.
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