
Neuroinform (2010) 8:43–60
DOI 10.1007/s12021-010-9064-z

Run-Time Interoperability Between Neuronal Network
Simulators Based on the MUSIC Framework

Mikael Djurfeldt · Johannes Hjorth · Jochen M. Eppler · Niraj Dudani ·

Moritz Helias · Tobias C. Potjans · Upinder S. Bhalla · Markus Diesmann ·

Jeanette Hellgren Kotaleski · Örjan Ekeberg

Published online: 2 March 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract MUSIC is a standard API allowing large scale
neuron simulators to exchange data within a parallel
computer during runtime. A pilot implementation of
this API has been released as open source. We provide
experiences from the implementation of MUSIC inter-
faces for two neuronal network simulators of different
kinds, NEST and MOOSE. A multi-simulation of a
cortico-striatal network model involving both simu-
lators is performed, demonstrating how MUSIC can
promote inter-operability between models written for
different simulators and how these can be re-used to
build a larger model system. Benchmarks show that the
MUSIC pilot implementation provides efficient data
transfer in a cluster computer with good scaling. We
conclude that MUSIC fulfills the design goal that it
should be simple to adapt existing simulators to use

Electronic Supplementary Material The online version of
this article (doi:10.1007/s12021-010-9064-z) contains
supplementary material, which is available to authorized users.

Johannes Hjorth and Jochen M. Eppler have contributed
equally to the contents of the article.

M. Djurfeldt (B) · J. Hjorth · J. Hellgren Kotaleski ·

Ö. Ekeberg
School of Computer Science and Communication,
Royal Institute of Technology,
100 44 Stockholm, Sweden
e-mail: mikael@djurfeldt.com

M. Djurfeldt · M. Diesmann
RIKEN Brain Science Institute, Wako-shi,
351-0198 Saitama, Japan

J. M. Eppler
Honda Research Institute Europe GmbH,
Carl-Legien-Straße 30,
63073 Offenbach, Germany

MUSIC. In addition, since the MUSIC API enforces
independence of the applications, the multi-simulation
could be built from pluggable component modules
without adaptation of the components to each other in
terms of simulation time-step or topology of connec-
tions between the modules.

Keywords MUSIC · Large-scale simulation ·

Computer simulation · Computational neuroscience ·

Neuronal network models · Inter-operability · MPI ·

Parallel processing

Introduction

Large scale neuronal network models and simulations
have become important tools in the study of the brain
and the mind (Albus et al. 2007; Djurfeldt et al. 2008a).
Such models work as platforms for integrating knowl-
edge from many sources of data. They help to eluci-
date how information processing occurs in the healthy

J. M. Eppler · M. Helias · M. Diesmann
Bernstein Center for Computational Neuroscience,
Albert-Ludwigs-Universität Freiburg, Hansastraße 9A,
79104 Freiburg, Germany

N. Dudani · U. S. Bhalla
National Centre for Biological Sciences, Bangalore, India

T. C. Potjans
Institute of Neurosciences and Medicine,
Research Center Jülich, 52425 Jülich, Germany

T. C. Potjans · M. Diesmann
RIKEN Computational Science Research Program,
Wako-shi, 351-0198 Saitama, Japan

http://dx.doi.org/10.1007/s12021-010-9064-z

44 Neuroinform (2010) 8:43–60

brain, while perturbations to the models can provide
insights into the mechanistic causes of diseases such
as Parkinson’s disease, drug addiction and epilepsy.
A better understanding of neuronal processing may
also contribute to computer science and engineering
by suggesting novel algorithms and architectures for
fault tolerant and energy efficient computing (see, e.g.,
Schemmel et al. 2008). Simulations of increasingly
larger network models are rapidly developing. In prin-
ciple, we have, already today, the computational capa-
bility to simulate significant fractions of the mammalian
cortex (Djurfeldt et al. 2008b). A great deal of effort has
been put into the development of simulation software
suites (see, e.g., Brette et al. 2007). Different software
packages, such as NEURON (Carnevale and Hines
2006), GENESIS (Bower and Beeman 1998) and NEST
(Gewaltig and Diesmann 2007) have been developed
for simulations of neuron and network models.

Depending on the scientific question asked, or on
the tradition in respective computational neuroscience
lab, models of various parts of the brain have been
formulated using different simulators. The positive side
of this diversity is that it provides a repertoire of tools
where different simulators have different strengths (see
e.g. Brette et al. 2007, for a review of software for spik-
ing neuron simulations). Diversity is also good for the
strong ongoing development of simulation technology.
On the negative side, the reuse of models is hampered
by the lack of interoperability due to the multitude of
languages and simulators used. Also, reimplementation
of one model in other software is in practice both time
consuming and error prone (personal experience, see
also Cannon et al. 2007).

Interoperability can be facilitated in several ways.
One approach is to provide a model specification in
some standardized format which can be understood by
many simulation tools. Two developments in this direc-
tion are PyNN and NeuroML. PyNN (Davison et al.
2009) is a common programming interface enabling
model scripting in the Python programming language.
PyNN already supports several simulators. The compu-
tational neuroscience community has built a growing
toolbox around this environment for simulation and
analysis of data. NeuroML is an XML-based standard
for the description of model components at various lev-
els of the nervous system which also allows models to be
described in a simulator-independent way (Crook and
Howell 2007; Crook et al. 2007). Another approach,
run-time interoperability (Cannon et al. 2007), is to al-
low different simulation tools to communicate data on-
line. MUSIC (Ekeberg and Djurfeldt 2008, 2009) is a
standard interface for on-line communication between
simulation tools. The MUSIC project was initiated by

the INCF (International Neuroinformatics Coordinat-
ing Facility, http://www.incf.org) as a result of
the 1st INCF Workshop on Large Scale Modelling of
the Nervous System (Djurfeldt and Lansner 2007). A
demonstration of MUSIC’s capability to couple models
was presented at the INCF booth at the Society for
Neuroscience Conference in Washington 2008.

Here we report on our experiences and insights from
connecting two preexisting models of very different
kinds; one cortical network model using integrate-and-
fire units and one striatal network based on biologi-
cally detailed units. The cortical network model was
implemented in NEST while the striatal network model
was developed using GENESIS, but simulated here in
MOOSE. By adding a MUSIC interface to each simu-
lator and connecting them using MUSIC, we could sim-
ulate the two systems together as one multi-simulation.
Connecting the two models was interesting in its own
right, but this would also serve as a realistic test of how
hard it is to actually achieve interoperability between
two independently developed models using the new
MUSIC framework.

MUSIC

MUSIC is a recently developed standard for run-time
exchange of data between MPI-based parallel applica-
tions in a cluster environment (Ekeberg and Djurfeldt
2009) so that any MUSIC-compliant tool may work
out-of-the-box with another. A pilot implementation
was released during 2009. The standard is designed
specifically for interconnecting large scale neuronal
network simulators, either with each-other or with
other tools. The data sent between applications can be
either event based, such as neuronal spikes, or graded
continuous values, for example membrane voltages.

The primary objective of MUSIC is to support multi-

simulations where each participating application itself
is a parallel simulator with the capacity to produce
and/or consume massive amounts of data. Figure 1
shows a typical multi-simulation where three applica-
tions, A, B, and C, are exchanging data during runtime.

MUSIC promotes interoperability by allowing mod-
els written for different simulators to be simulated
together in a larger system. It also enables reusability of
models or tools by providing a standard interface. The
fact that data is spread out over a number of processors
makes it non-trivial to coordinate the transfer of data
so that it reaches the right destination at the right time.
When applications are connected in loops, timing of
communication also becomes complex. The task for

http://www.incf.org

Neuroinform (2010) 8:43–60 45

Fig. 1 Illustration of a typical multi-simulation using MUSIC.
Three applications, A, B, and C, are exchanging data during
runtime. Each application runs in a set of MPI processes. Data
flows exit and enter ports, each spanning the set of processes of
the application

MUSIC is to relieve the applications from handling this
complexity.

The MUSIC pilot implementation consists of header
files, a library and utilities. A MUSIC-compliant ap-
plication is compiled against the MUSIC header files,
linked with the MUSIC library and launched by the
MUSIC launch utility (named music). Currently, an
application needs to be compiled in a system where
the full MUSIC implementation is installed. However,
the resulting binary may be dynamically linked against
other revisions of the MUSIC library. In a future re-
lease, standard header files can be separated so that
these can be shipped together with the application.

The pilot implementation has been designed to run
smoothly on state-of-the-art high-performance hard-
ware. The software is written in C++, which is the
de facto standard for current high-end hardware, and
has been tested on simple multi-core machines up to
massively parallel supercomputers such as the IBM
Blue Gene/L. It can be automatically configured (GNU
autotools) and compiled over the range of architectures
tested, including 32- and 64-bit Intel-/AMD-based clus-
ters and the Blue Gene/L.

At the beginning of this project, no simulators had
been adapted to use MUSIC. In a collaborative effort,
developers from the NEST and MOOSE communities
worked together with the MUSIC developers in adapt-

ing these two simulators for use in a multi-simulation
environment.

Phases of Execution

A multi-simulation, i.e. a set of interconnected parallel
applications, is described by a MUSIC conf iguration

f ile and executed in three distinct phases. From the
simulator developers’ point of view, these phases are
clearly separated through the use of two main com-
ponents of the MUSIC interface: the Setup and the
Runtime objects.

Launch is the phase where all the applications are
started on the processors. During this phase,
MUSIC is responsible for interpreting the
configuration file and launching the appli-
cation binaries on the set of MPI processes
allocated to the MUSIC job. Since MPI
can be initialized only after the applica-
tions have been launched, most of this work
needs to be performed outside of MPI.
In particular, the tasks of accessing the
command line arguments of the MUSIC
launch utility and of determining the ranks
of processes before MPI initialization there-
fore have to be handled separately for
different MPI implementations.
Technically, the launch phase begins when
mpirun launches the MUSIC launch utility
and ends when the Setup object construc-
tor returns. The Setup object is used for ini-
titialization and configuration and replaces
the call to MPI::Init. (See further descrip-
tion below.)

Setup is the phase when all applications can pub-
lish what ports they are prepared to han-
dle along with the time step they will use
and where data will be present (where
in memory and/or on what processor).
During the setup phase, applications can
read configuration parameters communi-
cated via the common configuration file. At
the end of the setup phase, MUSIC will
establish all connections.
The setup phase begins when the Setup

object has been created and ends when the
Runtime object constructor returns.

Runtime is the phase when simulation data is actually
transferred between applications. Via calls
to Runtime::tick() the simulated time of
the applications is kept in a consistent order.

46 Neuroinform (2010) 8:43–60

The runtime phase begins when the
Runtime object has been created and ends
when its finalize() method is called.

When the application initializes MUSIC at the be-
ginning of execution it receives the Setup object. This
object gives access to the functionality relevant during
the setup phase via its methods. When done with the
setup, the application program makes the transition
to the runtime phase by passing the Setup object as
an argument to the Runtime object constructor which
destroys the Setup object. The Runtime object pro-
vides methods relevant during the runtime phase of
execution.

MUSIC requires that the application uses a com-
municator handed to it from the Setup object rather
than using MPI::COMM_WORLD directly. This intra-
communicator is used by the application to communi-
cate within the group of processes allocated to it by
MUSIC during launch, while the MUSIC library will
internally use inter-communicators for communication
of data between MUSIC ports. When a MUSIC-aware
application is launched by mpirun instead of the MU-
SIC launch utility, the communicator returned from the
Setup object will be identical to MPI::COMM_WORLD.

Communicating via MUSIC

In order to communicate via MUSIC, each participat-
ing application must be interfaced to the MUSIC API.
One design goal of MUSIC has been to make it easy
to adapt existing simulators. In most cases, it should
be possible to add MUSIC library support without
invasive restructuring of the existing code. The primary
requirements on an application using MUSIC is that it
declares what data should be exported and imported
and that it repeatedly calls a function at regular inter-
vals during the simulation to allow MUSIC to make the
actual data transfer.

Ports and Indices

Communication between applications is handled by
ports. Ports are named sources (output ports) or sinks
(input ports) for the data flow. In the current MUSIC
API, there are three kinds of ports: Continuous
ports communicate multi-dimensional continuous time-
series, for example membrane voltages. Event ports
communicate time-stamped integer identifiers, for ex-
ample neuronal spikes. Message ports communicate
message strings, for example a command in a script-
ing language. The data to be communicated may be

differently organized in process memory on the re-
ceiver side compared to the sender side. The appli-
cations may run on different numbers of processes,
and, the data may be differently distributed among the
sender processes and the receiver processes, as is shown
in Fig. 2. How does MUSIC know which data to send
where?

In MUSIC, there are two views of the data to
be communicated over a connection. Data elements
are enumerated differently according to these views.
MUSIC uses shared global indices to enumerate the
entire set of data to be sent over the connection while
local indices enumerate the subset of data which is
stored in the memory of a particular MPI process. Data
does not need to be ordered in the same way according
to the two views. For example, data stored in an array
may be associated with an arbitrary subset of global
indices in an arbitrary order.

The MUSIC library is informed about the relation-
ship between global and local indices and how data is
stored in memory during the setup phase. Two abstrac-
tions are used to carry this information:

The IndexMap maps local indices to global indices.
That is, the IndexMap tells which parts of a distributed
data array are handled by the local process and how the
data elements are locally ordered.

The DataMap encapsulates how a port accesses its
data. The DataMap contains an IndexMap. While an

Sender Receiver

D
is

tr
ib

u
te

d
 s

e
n

d
e

r
d

a
ta

D
is

trib
u

te
d

 re
c
e

iv
e

r d
a

ta

Width

Fig. 2 Data transfer over a connection from an application
running in four processes to an application running in three
processes. The light gray areas in the sender and receiver rep-
resent the MUSIC port. Dashed lines divide the application into
distinct processes. The width of the port is the total number of
distinct data items being communicated from all sender processes
to the receiver processes

Neuroinform (2010) 8:43–60 47

index map is a mapping between two kinds of indices,
the data map also contains information about where in
memory data resides, how it is structured, and, the type
of the data elements. The type is used for marshalling
when running on a heterogeneous cluster.

During setup every process of the application in-
dividually provides the port with a DataMap (or an
IndexMap in the case of event ports).

Events

Since event ports don’t access data the same way as
ports for continuous data, they do not require a full
DataMap. Instead, an IndexMap is used to describe
how indices in the application should be mapped to the
shared global indices common to sender and receiver.
The application is given the choice of using local indices
or bypassing the index transformation by directly using
the shared global indices when labelling events.

An event is a pair of an index identifier, either a
shared global index or a local index, and a double-
precision floating point time-stamp. The index usually
refers to the source neuron generating a spike event.
Events are given to MUSIC by the sending applica-
tion through a call to the method insertEvent() on
the port and delivered to the receiving application by
MUSIC through an event handler. The event handler
is a C++ functor given to MUSIC by the application
before the simulation starts. The event handler is called
by MUSIC when the application calls tick(). It is
called once for every event delivered.

Some spiking neuronal network models include ax-
onal delays. The MUSIC framework assumes that han-
dling and delivery of delayed spikes occurs on the
receiver side. In such a case, the receiver may allow
MUSIC to deliver a spike event later than its time
stamp according to local time. This maximal acceptable

latency can be specified for a port during setup.

Application Responsibilities

One goal of MUSIC has been to limit the responsibil-
ities imposed on each application. Here we present a
step-by-step list of what an application must do in order
to participate in a multi-simulation.

1. Initiate MUSIC
This is done by calling the Setup constructor.

2. Publish ports
Data available to be imported and exported is iden-
tified by creating named ports.

3. Map ports
MUSIC is informed about where the actual data
is located. This includes information about which
processor owns each data element. For continuous
data it also includes information about where in
memory it is stored, while for event data it specifies
how to receive events.

4. Initiate the runtime phase
This is done by calling the Runtime constructor.
At this stage, MUSIC can build the plan for com-
munication between different processes.

5. Advance simulation time
The application must call tick() at regular inter-
vals to give MUSIC the opportunity to transfer
data.

6. Finalize MUSIC
By calling finalize(), all MUSIC communication
is terminated.

Pre- and Post-processing

The MUSIC framework provides a uniform interface
to access data from various simulators. This allows
the development of pre- and post-processing tools, for
example for data analysis or visualization, that are
independent of data sinks or sources so that they can
be re-used in different multi-simulations.

This is exemplified here by a visualizaton tool writ-
ten for INCF’s MUSIC demonstration at the Society
for Neuroscience Conference 2008 in Washington. The
tool receives events from a MUSIC event port and
displays these as changes in size and color of a set
of 3D spheres resembling the neurons of a neuronal
network. The demonstration is described in Section “A
MUSIC Multi-simulation with NEST and MOOSE”
and the graphics window of the visualization tool shown
in Fig. 13. The communication between the simulator
and the visualization tool is set up using the MUSIC
configuration file. The visualization geometry, neuron
sizes and colors are specified in a separate configuration
file. The camera position is automatically adjusted so
that all neurons are visible.

MUSIC allows simulators to run independently of
each other, in so far as one model might run ahead of
another if there is only unidirectional communication
between them. To cope with this, the visualization
maintains its own internal clock which is a scaled ver-
sion of the wall-clock time. For example, the visualiza-
tion can be configured to display the simulation 100
times slower than real time. This makes the visualiza-
tion independent of the relative execution time of the
simulators.

48 Neuroinform (2010) 8:43–60

Adapting NEST to MUSIC

NEST (Gewaltig and Diesmann 2007) is a simulator for
heterogeneous networks of point neurons or neurons
with a small number of electrical compartments. The
focus of NEST is on the investigation of phenomena
at the network level, rather than on the simulation of
detailed single neuron dynamics.

NEST is implemented in C++ and can be used on a
wide range of architectures from single- and multi-core
desktop computers to super-computers with thousands
of processors. It has a built-in simulation language in-
terpreter (SLI), but can also be used from the Python
programming language via an extension module called
PyNEST. In this article, we use the PyNEST syntax to
show the usage of the MUSIC interface in NEST. As
Python does not support MPI enabled extensions out
of the box, a small launcher script has to be used (see
Section B in the online supplementary material). For
details on PyNEST and its API, see Eppler et al. (2009).

Implementation of the NEST-MUSIC Coupling

Event sources and sinks that are located in remote
MUSIC applications are represented by proxy nodes
inside of NEST. Two separate classes of proxies are
used for inbound and outgoing connections. They are
derived from the base class Node. This means that
they are created and can be connected in the network
graph like all other nodes. See online supplementary
material, Section A, for a more detailed description of
the network representation in NEST.

To make it easier to distinguish global ids (NEST’s
identifiers for nodes) from global indices (MUSIC’s
identifiers for connections on a port, see Section “Ports
and Indices”), we use the term channel for the concept
from MUSIC in the following description and in our
implementation.

Three new classes were implemented to exchange
events with MUSIC. In addition, several of the existing
classes were extended by data structures and algorithms
for the necessary book keeping during setup and run-
time phase. The following sections contain a description
of the components that are involved in the MUSIC in-
terface. See online supplementary material, Section D,
for sequence diagrams that explain the interaction of
the components.

Sending Events from NEST to MUSIC

The class music_out_proxy represents a MUSIC
output port and all associated channels in NEST (see
Fig. 3). It forwards the events of arbitrarily many nodes

to remote MUSIC targets. One instance of this proxy is
created in each NEST process for each MUSIC output
port.

The name of the corresponding MUSIC output port
is set as parameter port_name using SetStatus():

outproxy = Create (‘ music_out_proxy ’)
SetStatus (outproxy , { ‘ port_name ’ :

‘spikes_out ’ })

The events of a node are forwarded to the MUSIC
channel that is specified by the parameter music_
channel during connection setup. It cannot be
changed, once the connection is set up. Note that it is
not allowed to connect several nodes to the same chan-
nel. The following example shows how the connections
of five neurons to a MUSIC port are set up:

neurons = Create (‘ iaf_neuron ’ , 5)
Connect ([neurons [0]] , outproxy ,

{ ‘ music_channel ’ : 0 })
Connect ([neurons [1]] , outproxy ,

{ ‘ music_channel ’ : 1 })
Connect ([neurons [2]] , outproxy ,

{ ‘ music_channel ’ : 2 })
Connect ([neurons [3]] , outproxy ,

{ ‘ music_channel ’ : 3 })
Connect ([neurons [4]] , outproxy ,

{ ‘ music_channel ’ : 4 })

During connection setup in NEST, the sender
checks its compatibility with the receiver by calling its
connect_sender() function. The first argument for
this function is an event of the type the sender wants
to send during simulation, which is only used to select
the correct variant of connect_sender(). The second

Fig. 3 The UML diagram shows the data members and the
functions of the proxy that represents MUSIC output ports in
NEST. The new class is shown in grey

Neuroinform (2010) 8:43–60 49

(a) (b)

Fig. 4 a Nodes in NEST are distributed over the processes (p =

0, 1, 2). iaf denotes an integrate and fire neuron, (iaf) denotes
a proxy. mop denotes a music_out_proxy. MUSIC channels
are indicated in square brackets for each connection (arrows).

b A sketch of the complete connectivity from the nodes (lower

squares) over the different channels (numbers in square brackets)
to MUSIC. The dashed box encloses all proxies that belong to
one MUSIC output port

argument is an integer which specifies the channel the
source wants to connect to, and is used to build the
indexmap, a list that registers all channels that have
to be mapped with MUSIC. The indexmap is built
separately by each process and therefore only contains
local channels.

Figure 4 shows the network in NEST after the above
commands were executed using three NEST processes.

Before NEST tells MUSIC to enter the runtime
phase, the port has to be mapped. This is done in
calibrate(), which is called by NEST’s scheduler
on each node before the start of the simulation. This
function executes the following steps:

1. Create a MUSIC::EventOutputPort, outport.
This will trigger an exception if the port name is
already used.

2. Create a MUSIC::PermutationIndex and initial-
ize it with the data from the indexmap. The
PermutationIndex informs MUSIC about the
channels present on a specific process.

3. Use the PermutationIndex to map all lo-
cal channels by calling the function map() on
outport.

Events that are delivered to the proxy are passed to
its handle() function with the event as argument. This
function forwards the spikes directly to the MUSIC
output port object outport.

Note that as the music_out_proxy only acts as a
proxy for nodes in NEST, it does not take into account
the delay of incoming connections. Synaptic interac-
tions have to be set up in the receiving application.

Receiving Events from MUSIC in NEST

In contrast to MUSIC output ports, which are
represented by single music_out_proxys in
NEST, inbound connections require two classes:
The MUSIC input port is represented by the
class MusicEventHandler (see Fig. 5). One
MusicEventHandler is created for each MUSIC

Fig. 5 The UML diagram
shows the data members and
the functions of the proxy
that represents a channel on a
MUSIC input port in NEST
and its relation to the class
that represents the MUSIC
input port. New classes are
shown in grey

50 Neuroinform (2010) 8:43–60

input port in each of NEST’s processes. Each
channel on the port is represented by a separate
music_in_proxy (see Fig. 5). The reason for this
is that NEST’s connection mechanism cannot handle
different signal origins, but only different target
locations on a node. This means that we cannot specify
the MUSIC channel during connection setup to a single
proxy (cf. Section “Sending Events from NEST to
MUSIC”), but we need to set it separately as a
parameter for the music_in_proxy, which should
receive the respective input.

The MusicEventHandler maintains a
channelmap, which maps the global MUSIC channel
id to the address of the corresponding proxy. The
channelmap is built incrementally during the
registration of channels by register_channel().

Spike sources in remote MUSIC applications are
represented in NEST by instances of class music_in_
proxy. Each instance listens to exactly one channel on
a MUSIC input port. This means that several proxies
listen to the same port, but to different channels.

After the creation of the proxy, the port name and
the channel are set using SetStatus(). The port name
defaults to spikes_in for all music_in_proxys.

in_proxies = Create (‘ music_in_
proxy ’ , 2)

SetStatus ([in_proxies [0]] ,
{ ‘ music_channel ’ : 0 })

SetStatus ([in_proxies [1]] ,
{ ‘ music_channel ’ : 1 })

Connections from a music_in_proxy to other
nodes can use any of NEST’s built-in connection
types. The following listing shows how connections
are established using the high-level connection routine
DivergentConnect() and the basic connection com-
mand Connect():

neurons = Create (‘ iaf_neuron ’ , 4)
DivergentConnect ([in_proxy [0]] ,

[neurons [0] , neurons [1]])
DivergentConnect ([in_proxy [1]] ,

[neurons [1] , neurons [2]])
Connect ([in_proxy [0]] , [neurons [3]] ,

model= ‘stdp_synapse ’)

Figure 6 shows the network representation after the
above commands were executed in a setup with three
NEST processes.

As the proxy itself does not know about MUSIC,
we use an indirection via the Network class to register
the proxy with the event handler for the corresponding
port.

In its calibrate() function, the proxy registers
itself with its channel index and port name with
the Network class by calling register_music_in_
proxy(). The network class maintains a mapping of
port names to MUSIC event handlers to efficiently find
the right one or create a new instance for unknown
ports if an input proxy is registrered. Before the start
of the simulation, all known input ports are mapped.

(a) (b)

Fig. 6 a Nodes in NEST are distributed over the processes (p =

0, 1, 2). iaf denotes an integrate and fire neuron, (iaf) denotes
a proxy. mip denotes a music_in_proxy. The numbers on the

left indicate the global id of the nodes. MUSIC channel ids are
indicated in square brackets for each music_in_proxy. The
STDP connection is indicated by a dashed arrow. b A sketch

of the complete connectivity from MUSIC (channels in square

brackets) to the MUSIC event handler (grey rectangles) to the
proxies (squares labeled 1 and 2) to the actual target nodes (lower

squares). The STDP connection is indicated by a dashed arrow.
The dashed box encloses all event handlers and proxies that
represent a MUSIC input port

Neuroinform (2010) 8:43–60 51

For each incoming spike, MUSIC calls operator()
on the event handler with the time of the spike and
the target channel as arguments. operator() creates
a new SpikeEvent object and passes it directly to
the handle() function of the proxy associated with the
channel. This bypasses the synapse system in NEST and
only informs the proxy about a new spike in a remote
application. Upon arrival of new events, the handle()
function immediately calls Network::send() to de-
liver the event to all local targets via the synapse
system.

Adapting MOOSE to MUSIC

MOOSE (Multiscale Object Oriented Simulation Envi-
ronment, available at http://moose.ncbs.res.in)
is a simulator which enables the development and
simulation of biologically detailed models of neuronal
and biochemical networks. It is a multiscale simulator,
as it lets a modeller build a model by coupling
components from different levels of detail—from
single molecules to whole neurons. It achieves this
by coordinating calculations between specialized
numerical engines which are suited for each level of
detail.

To discuss how MUSIC compatibility was added to
MOOSE, it will be helpful to outline how MOOSE
functions. MOOSE inherits an object-oriented frame-
work from the GENESIS simulator (Bower and
Beeman 1998) for describing models and simula-
tions. In this framework, the user sets up a simu-
lation by putting together the right building blocks
(“MOOSE objects”), which are instances of the respec-
tive MOOSE classes.

Objects in MOOSE communicate with each other
by means of “messages”. A message is a persistent
connection between two objects, which allows them to
exchange information during a simulation. An example
of messaging is shown in Fig. 7 which depicts how
one can model synaptic transmission in MOOSE. A
SpikeGen object called spike monitors the mem-
brane potential Vm of the presynaptic compartment
A, via the message labelled message 1. When this
membrane potential crosses a certain threshold, spike
interprets it as an action potential and sends the spike
time to the SynChan (short for “Synaptic Channel”)
object called syn. This triggers the opening of the
synaptic channel, and syn sends the synaptic current
to the postsynaptic compartment B, via the message
message 3.

MOOSE provides a user- and developer-friendly
framework to run parallel simulations on a cluster. It

Fig. 7 Illustration of the
MOOSE messaging structure.
Two compartments are
connected by a synapse

hides MPI-based communication behind an interface
so that sending and receiving information to and from
foreign objects looks the same to the developer as with
local objects. For the user, the design is such that a
serial simulation script can be run in parallel right away,
without any changes. In particular, for inspecting and
manipulating objects and their fields and messages, the
same script commands work in serial and in parallel op-
eration. During object creation, a load-balancer decides
which process the object should be created on.

Implementation of the MOOSE-MUSIC Coupling

New Classes

Five new MOOSE classes were created to allow
MOOSE to exchange spike times with MUSIC:

• Music—This is a singleton class with exactly one
instance automatically created at the start of a
MOOSE session.
This object is responsible for making most of the
basic MUSIC API calls in the correct order. This
includes appropriate initialization and finalization
by managing the MUSIC Setup and Runtime

objects. Also, during a simulation, this object calls
MUSIC’s tick() function periodically, separated
by a user-specified time interval.
While this Music object carries out the above with-
out user intervention, it also provides an interface
which the user can use to create new MUSIC ports
for sending and receiving spike-event information.

• InputEventPort—An instance of this class is
created when the user calls a function of the above
Music class to declare readiness to receive spike-
event information. Upon creation, this object finds
out the width of the corresponding MUSIC port
by making a MUSIC API call. A corresponding

http://moose.ncbs.res.in

52 Neuroinform (2010) 8:43–60

number of instances of the InputEventChannel
class (described next) are then created.

• InputEventChannel—Instances of this class act
as proxies within MOOSE of the spike-generating
entities in the sending application. They receive
spike-time information relayed by MUSIC and
recreate the original spike-train by emitting the
spike-times locally. Hence, within MOOSE, they
appear as bona fide spike-generating objects which
can connect to, e.g. a SynChan object, and send
spike messages just like a SpikeGen object can.

• OutputEventPort—This class is analogous to
the InputEventPort, and is instantiated by
the user when MOOSE should act as a spike-
generating application. Like before, an instance of
this class creates the same number of instances of
the following OutputEventChannel as is its own
width.

• OutputEventChannel—Objects of this class can
receive spike-time messages from other MOOSE
objects, like a SynChan object can. Upon receiving
a spike, an OutputEventChannel object passes
it on to MUSIC, which forwards it to interested
applications.

Note that if the user creates a port of width m in
a parallel simulation with n processes, then m chan-
nel objects (i.e., instances of InputEventChannel

or OutputEventChannel) will have to be distrib-
uted among the n processes. An algorithm is built
into the port classes (i.e., InputEventPort and
OutputEventPort) to carry out this distribution,
without the need for the user’s knowledge. At present,
this algorithm is simple: the list of m is divided into n

blocks of size approximately equal to m/n, and chan-
nels within each block are created on a separate node.
In the future, this algorithm can be improved by placing
the channel objects in the same process as the objects
they connect to.

Interfacing with MUSIC in MOOSE

With the above classes at hand, it is simple for a user
to incorporate MUSIC sources and sinks in a simula-
tion. The user carries out the following steps to set up
MOOSE-MUSIC communication:

• Specifying tick() rate—The user provides a time
interval which is used to call MUSIC’s tick()
function periodically. This is done by setting up a
“clock” with the desired time interval as its clock-
rate, and attaching it to the instance of the singleton
Music class. See online supplementary material,

Section E, for an example MOOSE script, which
has commands to carry out all steps mentioned
here.

• Adding ports—The user declares the ports through
which MOOSE can receive and send data via
MUSIC. One script command has to be issued for
every port added.

• Connecting MUSIC with the model—With the
above two steps done, the user has MUSIC sources
and sinks available as native MOOSE objects.
From here on, it is intuitive for a user to route
MUSIC-originating and MUSIC-destined data to-
and from desired entities in a model. This is done
by simply adding messages, in the usual MOOSE
fashion, between objects representing MUSIC, and
objects constituting the model. Note that in adding
a message, the user need not do anything special
if the source and destination objects are situated
in different processes, since MOOSE will carry

F
ro

m
 M

U
S

IC

process #0

process #1

process #2

Instance of

InputEventPort

Instances of

InputEventChannel

MOOSE messages Neuronal model

in MOOSE

Fig. 8 A model in MOOSE receiving spike-time informa-
tion from MUSIC. An object of type InputEventPort

handles spike-times relayed by MUSIC. Objects of type
InputEventChannel act as proxies for the spike-generating
entities in the foreign application. The proxies forward the spikes
to targets in the model via messages. Note that it is possible for
a message to connect a proxy and its target even if both are in
separate processes. It is most efficient, however, if they are on
the same process

Neuroinform (2010) 8:43–60 53

out the correct setup internally. This situation is
depicted in Fig. 8.

Performance and Application

The adaptation of NEST and MOOSE to MUSIC
allows us to test the performance of MUSIC and to
apply the framework to a multi-simulation connecting
two very different models. We test the performance of
MUSIC in two typical multi-simulation examples: (1)
an asymmetric multi-simulation benchmark with one
large-scale model that is connected bidirectionally to
a second program that runs on a single process (see
Fig. 9a) and (2) a symmetric multi-simulation bench-
mark with MUSIC connecting two large-scale models
each running on multiple processes (see Fig. 9b). For
simplicity, we use NEST for the benchmarks presented
here. As a complete application example, we present a
multi-simulation that connects two very different mod-
els: a cortical network model based on integrate-and-
fire units in NEST and a striatal network model based
on multi-compartmental units with Hodgkin-Huxley
formalism in MOOSE.

In Section “Benchmarking MUSIC with a Corti-
cal Network Model in NEST” we describe consecu-
tively the model definition and the performance of the
cortex model, the asymmetric multi-simulation bench-
mark and the symmetric multi-simulation benchmark.
Section “A MUSIC Multi-simulation with NEST and
MOOSE” then describes the multi-simulation connect-
ing the cortex and the striatum network and shows
simulation results.

Fig. 9 Benchmark models. a Asymmetric benchmark model
consisting of one large-scale cortex model and a single process
relay model. Inter-model communication via MUSIC is bidi-
rectional but asymmetric, mainly from the cortex model to the
relay model. b Symmetric benchmark model consisting of two
interconnected large-scale cortex models. Communication via
MUSIC is symmetric between the two models

Benchmarking MUSIC with a Cortical Network
Model in NEST

We use a layered cortical network model (Potjans
and Diesmann 2008) in NEST in order to assess the
performance of MUSIC for large-scale simulations.
It consists of 80,000 integrate-and-fire units divided
among four layers (2/3, 4, 5 and 6) and around 0.3
billion synapses. Each layer contains one excitatory
(e) and one inhibitory (i) population. Populations are
connected randomly with layer- and type-specific con-
nection probability. In all benchmark simulations, we
use static synapses. The integration step size is 0.1 ms
and the minimal delay in the network is min_delay
= 0.8 ms. The network exhibits asynchronous irregular
activity with layer- and type-specific firing rates for
stationary, homogeneous background input. The mean
firing rates range from below 1 Hz to maximally 8 Hz
(Potjans et al. 2009).

Performance of the Cortex Model

From the computational perspective, simulating this
model is a rather lightweight job on modern compute
clusters. We simulate the model with NEST on a ×86

cluster consisting of 23 nodes: each node is equipped
with two AMD Opteron 2834 Quad Core processors
with 2.7 GHz clock speed and running Ubuntu Linux.
The nodes are connected via InfiniBand; the MPI im-
plementation is OpenMPI 1.3.1. Our simulation setup
first distributes the processes to nodes, resulting in a
single process per machine and InfiniBand port up to
23 processes. Figure 10a shows the computing time
per second of biological time as a function of the
number of cores on this system: black squares show
the data for the default installation of NEST, gray
diamonds when linking NEST during compilation to
MUSIC. The overlap of the data points shows that the
performance of NEST is not impeded when using the
MUSIC communicator; the performance is the same
when NEST is compiled by default with the configure
switch −−with−music. In both cases, the simulation
time of the layered cortex model scales supralinearly
up to 20 cores and linearly up to 24 cores, yielding a
simulation time of only 8 s per second of biological
time. A further increase of the number of processors
still improves the simulation time; using 48 cores results
in a simulation time of around 5 s. The suboptimal scal-
ing when increasing the number of processes from 24 to
32 is due to limited memory bandwidth that comes into
play when multiple processes run on a single compute
node. Beyond 32 processes the scaling is again close to
optimal linear scaling. This simulation represents the

54 Neuroinform (2010) 8:43–60

Fig. 10 Performance of the layered cortical network model
and the asymmetric multi-simulation benchmark. a Computing
time per second of biological time as a function of the number
of compute cores. Gray diamonds show the performance of
the cortex model simulation when NEST is compiled without
MUSIC, black squares the performance when compiled with
MUSIC. The dotted line indicates the expectation for linear

speed-up. b Computing time per second of biological time of the
asymmetric multi-simulation benchmark. The number of cores
corresponds to the number of cores used for the cortex model
without the additional core for the relay network. The shown data
corresponds to NMUSIC = 8 (black circles) and NMUSIC = 71, 000

(gray triangles); the dotted line gives the expectation for linear
speed-up

control simulation for the asymmetric multi-simulation
benchmark.

Asymmetric Multi-simulation Benchmark

The asymmetric multi-simulation benchmark consists
of two models implemented in NEST: the cortex model
and a basic relay model (see Fig. 9a). The models are
coupled bidirectionally via MUSIC, i.e. both models
send/receive spike events to/from the other model. Ba-
sically, we record spikes from any population in the
layered network and transmit them to the relay model.
The relay model takes few of the transmitted spikes
and sends them back to the sender population. The
communication is layer- and type-specific: we transmit
the spikes to/from any population in the cortex model
separately.

The relay model is kept minimal. It consists of one
parrot_neuron for every population in the cortex
model; this neuron immediately emits a spike for every
spike it receives. The parrot_neurons receive a sub-
set of the spike trains transmitted from its population
in the cortex model from the corresponding music_
in_proxys in the relay model and sends its spikes to

the corresponding music_out_proxy. Therefore we
always have a fixed number of eight MUSIC channels
transmitting spikes from the relay model to the cortex
model.

The implementation of the benchmark requires
changes to the cortex model script and the relay script.
But as the communication with MUSIC is carried
out by nodes—music_out_proxys and music_in_
proxys—the multi-simulation NEST scripts do not
differ fundamentally from scripts describing stand-
alone simulations. We create and connect music_
out_proxys and music_in_proxys for any popula-
tion in the model as described in Sections “Sending
Events from NEST to MUSIC” and “Receiving Events
from MUSIC in NEST”, respectively. In addition,
we have to set the acceptable latency with the
SetAcceptableLatency() command. Care has to be
taken in order to arrive at consistent parameters in the
NEST scripts and the corresponding MUSIC script of
the multi-simulation. On the level of a multi-simulation,
these parameters are the number of MUSIC channels
per population going from the cortex model to the
relay model and vice versa—we call the total number of
efferent MUSIC channels of the cortex model NMUSIC.

Neuroinform (2010) 8:43–60 55

On the level of the NEST scripts, we account for the
asymmetry of a single music_out_proxy with many
music_channels per population on the one hand
and many music_in_proxys with the corresponding
music_channels on the other hand.

Altogether, the asymmetric multi-simulation bench-
mark extends the stand-alone cortex model by the fol-
lowing parameters:

• Ni,x
MUSIC: number of efferents of the cortex model

per population
(i ∈ {2/3, 4, 5, 6}, x ∈ {e, i}). NMUSIC =

∑
i,x Ni,x

MUSIC
corresponds to the number of MUSIC channels
from the cortex model to the relay model and
therefore also to the number of music_in_proxys
in the relay model

• ki,x
MUSIC: number of connections between the

Ni,x
MUSIC music_in_proxys and the corresponding

parrot_neuron in the relay model.

Figure 10b shows the performance of the asymmetric
multi-simulation benchmark for NMUSIC = 8, ki,x

MUSIC =

1 (black circles) and for NMUSIC = 71, 000, ki,x
MUSIC = 4

(gray triangles). For better comparison, we give here
the number of cores used for the cortex model, the relay
model is simulated on one additional core.

We find that the additional costs due to the MU-
SIC interfaces and due to the communication of the
two models via MUSIC are very small. The multi-
simulation scales supralinearly up to 20 cores and the
relative increase in simulation time is well below 10%
of the simulation time of the control simulation without
MUSIC. Further increasing the number of cores still
improves the simulation time below 7 s; only when
using 48 cores, the additional costs lead to an earlier
onset of the saturation of the simulation time. The ex-
cellent performance holds for the minimal case where
we only transmit the spikes of a single neuron from
every population, but also when transmitting almost all
spikes created by the cortex model: We do not observe
a dependence of the number of MUSIC channels/the
number of transmitted spikes for this benchmark.

Symmetric Multi-simulation Benchmark

The symmetric multi-simulation benchmark increases
the demands on software and hardware considerably.
It consists of two reciprocally connected cortex models
(see Fig. 9b). Each model connects, as in the asym-
metric multi-simulation benchmark, via in total NMUSIC

MUSIC channels to the other model. The incoming
spike trains project on ki,x

MUSIC neurons of the cor-
responding population. We choose very low synaptic

weights for the connections between the two models in
order to not interfere with the dynamics of the layered
network. The random connectivity of the networks re-
quires MUSIC to route events not only between single
machines but rather in an all-to-all fashion.

The implementation of this benchmark does not
require any changes to the cortex model script with
respect to the asymmetric multi-simulation benchmark.
The only changes affect the MUSIC script, configuring
two interconnected and equally sized NEST simula-
tions of the same model.

Figure 11a shows the performance of the symmet-
ric multi-simulation benchmark. The given number of
cores corresponds to the multi-simulation with both
models. The control simulation for this benchmark
(black squares) is defined by the multi-simulation of
both cortex models without any connections between
the models (NMUSIC = 0). Only the first data point (16
cores) corresponds to the situation with a single process
per InfiniBand port. Still, we observe linear scaling up
to 24 cores. Beyond this, the simulation time scales up
to 96 cores, yielding a simulation time of 6 s per second
of biological time.

The minimal benchmark (NMUSIC = 8, ki,x
MUSIC = 1,

dark gray diamonds) also exhibits excellent scaling,
but the simulation time increases by 1.3 ± 0.4 s. This
difference in simulation time, however, does not show
a clear dependence on the number of cores. Com-
municating 1,000 spike trains for every population
(NMUSIC = 8, 000, ki,x

MUSIC = 1, 000, light gray circles)
results in an additional increase of 1.3 ± 0.4 s, again
with excellent scaling and no clear dependence of the
increase in simulation time of the number of cores.

In order to understand this increase in simula-
tion time, we simulate the symmetric multi-simulation
benchmark for various values of NMUSIC (keeping
ki,x

MUSIC = 1, 000 constant) and convert the number of
MUSIC channels with the measured firing rates of
the different populations in the cortex model into the
MUSIC spike rate, the total number of spikes that is
transmitted in one biological second from one cortex
model to the other. Figure 11b shows the simulation
time per second of biological time as a function of this
MUSIC spike rate for a fixed number of cores (data
obtained with 32 cores in the multi-simulation is shown
in black, with 64 cores in dark gray). The dashed lines
indicate the control multi-simulations with two uncon-
nected cortex models (NMUSIC = 0). While the asym-
metric multi-simulation benchmark is independent of
the MUSIC spike rate (see above), the simulation time
does depend on the MUSIC spike rate for the symmet-
ric multi-simulation. Note, however, that this number
is representing the spike rate transmitted via MUSIC

56 Neuroinform (2010) 8:43–60

Fig. 11 Performance of the symmetric multi-simulation bench-
mark. a Simulation time per second of biological time as a
function of the total number of compute cores for both net-
work models. Black squares show the performance of the con-
trol (NMUSIC = 0), dark gray diamonds the benchmark’s perfor-
mance for NMUSIC = 8 and light gray circles for NMUSIC = 8, 000.
The dotted line indicates the expectation for linear speed-up of

the control. b Simulation time per second of biological time as
a function of the MUSIC spike rate. Simulations with 32 cores
are indicated in black, with 64 cores in dark gray. Dashed lines

indicate the control (NMUSIC = 0) and squares show the data for
the symmetric multi-simulation benchmark with light gray lines

showing the corresponding linear fits

in every direction and that the information has to be
routed to all processes running the corresponding cor-
tex model. We find that the simulation time increases
linearly with the MUSIC spike rate (light gray lines
indicate the linear fit). For 32 cores, the simulation time
increases by 0.56 s when increasing the MUSIC spike
rate by 10 kHz. For 64 cores, this number is only slightly
increased to 0.6 s/10 kHz in the MUSIC spike rate.

A MUSIC Multi-simulation with NEST and MOOSE

A MUSIC multi-simulation was performed by connect-
ing the layered cortical network model in NEST to a
striatal network model in MOOSE. Activity of both
simulations were visualized using the tool described in
Section “Pre- and Post-processing” (see Fig. 12).

For the live demonstration, we reduced the size of
the layered cortical network model to 8,000 neurons.
The output consisted of spike events generated in the
excitatory population of layer 5 that were exported
through a MUSIC port.

The striatal network model was built using multi-
compartmental units with Hodgkin-Huxley formalism
and consisted of ten striatal medium spiny projection

neurons with 189 compartments each (Wolf et al. 2005;
Hjorth et al. 2008) and ten fast spiking interneurons
with 127 compartments each (Hellgren Kotaleski et al.
2006). The cell models were ported from NEURON

Fig. 12 Schematic of run-time interoperability for a cortico-
striatal model. The cortical model simulated in NEST uses MU-
SIC to send spikes to the striatal model in MOOSE. In addition,
two visualization processes receive the spike information from
both NEST and MOOSE

Neuroinform (2010) 8:43–60 57

0 0.2 0.4 0.6 0.8 1

50

100

150

200

250

300

350

400

450

500

Time (s)

In
d
e
x

Cortex outputs

5 MS neurons

5 FS neurons

Fig. 13 Results from the multi-simulation described schemat-
ically in Fig. 12. To the left, two window captures from 3D
visualizations of the cortex and striatum model are shown. In the
upper half of the figure, 500 outputs from the cortex model in
NEST are visualized on a planar grid, the radii and intensity of

the color of the neurons increase when they spike. In the lower

part, 10 MS (red) and 10 FS (blue) neurons in the striatal network
are visualized in the same manner. To the right are a raster plot of
the cortical activity and voltage traces for the MS and FS neurons

and GENESIS, respectively, to MOOSE. In this re-
duced version of the striatum for the MUSIC demon-
stration, no GABAergic connections were included
between the two neuron populations. A MUSIC input
port delivered spike events to both populations.

A short MUSIC configuration file described the
multi-simulation and specified connections between the
cortex output port and the striatum input port, and

also connections from both models to one instance each
of the visualization tool. Figure 13 shows captures of
windows from the simulation tool instances together
with simulation results from each model.

Since the MUSIC API enforces independence be-
tween the applications, the multi-simulation could be
built from the cortex model and the striatum model
without changes to their simulation scripts in other

58 Neuroinform (2010) 8:43–60

respects than the creation of MUSIC ports and the ad-
dition of the cortico-striatal projection on the receiver
side. Spike events from NEST could easily be routed
to MOOSE as well as a visualization process without
further changes to the simulation scripts.

Discussion

The multi-simulation described in the previous section
is a demonstration of how MUSIC can promote inter-
operability between models written for different sim-
ulators and how these can be re-used to build larger
model systems. Alternative approaches to run-time in-
teroperability are object-oriented frameworks (as illus-
trated by MOOSE itself; see Cannon et al. 2007) and
using a common standard model description language.

Object-oriented frameworks provide APIs for ser-
vices such as solvers, scheduling of events and com-
munication, while specialized modules correspond to
entities in the neuronal model. In comparison, the
MUSIC API is slim, essentially only providing what is
necessary to support communication through MUSIC
ports. In a sense, the approach of MUSIC is orthogonal
to that of an object-oriented framework, implying that
these approaches can, in fact, be combined, as illus-
trated by the MOOSE simulation in this article. Writing
a module for an object-oriented framework usually
means a commitment to that framework. On one hand,
the object-oriented framework lifts some of the bur-
den of implementation by providing services. On the
other hand, it will only be possible for the module to
communicate with other modules in the same object-
oriented framework. In contrast, any simulator or tool
supporting the MUSIC interface can be connected to
the rest of the set of tools supporting MUSIC. In fact,
any module written for an object-oriented framework
which supports MUSIC will also be possible to connect
to such tools supporting MUSIC.

One example of a framework targeting a similar
problem domain as MUSIC is the component-based
extension framework by King et al. (2009). This frame-
work provides three APIs, one for a compute en-

gine, exemplified by a specially compiled version of
NEURON (Carnevale and Hines 2006), a message-

bus component, allowing the encapsulation of a spike
communication algorithm, and, a monitoring, analysis

and control component. This framework could, as MU-
SIC, be used to set up multi-simulations and promote
interoperability and re-use of existing components.
While both solutions are non-exclusive in the sense
that they could potentially co-exist with each other

and/or other communication frameworks, MUSIC does
not require the re-organization of an existing simu-
lator into a library providing the compute engine API
and is in this way less invasive. Also, MUSIC ab-
stracts connectivity at two levels, as ports and as shared
global indices within ports, thereby making it possible
to easily connect pluggable components into different
configurations specified by a configuration file. The
component engine API leaves the handling of the low-
est level of connectivity entirely to the user (in the
form of NEURON “gids”). This creates dependen-
cies between the configurations of components of a
multi-simulation so that the re-use of a tool requires a
different mapping of gids.

The approach of a common standard model descrip-
tion language, such as PyNN (Davison et al. 2009) or
NeuroML (Crook and Howell 2007; Crook et al. 2007),
enables the same model description to be used with
different simulators. This circumvents the difficulty
of reimplementing models when moving them from
one software to another. This approach also has the
strength that it makes the model future-proof. But
even in the presence of such a standard, we cannot
combine two models of different kinds (for example a
model based on integrate-and-fire units and a model
based on Hodgkin-Huxley formalism) if our favorite
software does not support both forms of modeling.
Ultimately, we must recognize the value in specialized
tools optimized for a particular purpose. A scripting
language environment such as Python can bind tools
together by loading them as libraries (Ray and Bhalla
2008). MUSIC is another alternative. Thus, we again
see that MUSIC should be seen as providing orthogonal
functionality.

Apart from interoperability, MUSIC also provides
efficient communication between parallel applica-
tions enabling multi-simulation of large-scale neuronal
systems.

One of the strengths of the MUSIC API design is
that it allows for establishing a deterministic communi-
cation schedule which removes the need for handshak-
ing. This has also been exploited in the implementation.
The downside of this design choice is that new MUSIC
ports cannot be added once the simulation is run, as
MUSIC cannot change back to the setup phase once
the runtime was entered. It is conceivable, though, that
a future version of the standard could allow for changes
to the communication graph during simulation without
requiring handshaking during communication.

The adaptation of NEST to MUSIC was straightfor-
ward. The changes were not extensive and fell naturally
into the existing structure of the code. MUSIC concepts

Neuroinform (2010) 8:43–60 59

such as ports were mapped to NEST proxies, MUSIC
events could be routed by the proxies into the stan-
dard spike event delivery mechanisms. In the NEST
simulator kernel, only five of the existing compilation
units were affected: the scheduler and the units for
MPI communication, network administration, scripting
language binding and error handling. New compilation
units were added for the MUSIC event handler and
the NEST representations of MUSIC ports (music_
out_proxy, music_in_proxy). The handling of the
MUSIC Setup and Runtime objects was encapsulated
in NEST’s Communicator class.

NEST implements an error handling strategy based
on C++ exceptions. Several new exception classes have
been added to be used upon errors related to MU-
SIC. Unfortunately it is not possible to recover from
errors during a MUSIC multi-simulation, as interactive
simulations are not supported. Therefore NEST uses
the function MPI_Abort() to quit the simulator upon
errors. This also quits all remote applications.

Very little had to be changed in MOOSE to adapt it
to MUSIC, and the changes here fit naturally into the
MOOSE code structure. The five classes mentioned in
Section “New Classes” were defined in fewer than 1000
lines of C++ code, and no changes were made in the
basic MOOSE infrastructure. This was possible due to
the compact MUSIC API, and was facilitated by the
modular design of MOOSE.

Where possible, MOOSE allows the user to han-
dle MUSIC related errors. For example, the user can
inspect the isConnected field on MOOSE objects
representing MUSIC ports, and choose to quit the sim-
ulation, or continue without MUSIC communication,
in case a port was found to have not been connected
successfully. At present, MPI exceptions are left unhan-
dled by MOOSE, causing MOOSE to abort in case of
errors at the MPI level.

While MUSIC supports communication of events,
continuous values and messages, currently only spike
event communication has been implemented in NEST
and MOOSE.

The asymmetric multi-simulation benchmark
(Section “Asymmetric Multi-simulation Benchmark”,
Fig. 10) shows that linking with MUSIC and using the
MUSIC communicator does not affect performance. It
also shows that normal communication loads through
MUSIC ports do not add significantly to simulation
time. In order to test performance under heavy
communication load, the symmetric multi-simulation
benchmark (Section “Symmetric Multi-simulation
Benchmark”, Fig. 11) provided a situation where every
MUSIC channel in one application communicates

spikes to neurons on every MPI process in the other
application. MUSIC adapts both the spatial and
temporal communication scheme to the topology of
the multi-simulation, but the pilot implementation
of the MUSIC library only uses pair-wise MPI
Send() and Receive(). For a uni-directional one-
to-one projection this would mean communication
in one step at longer intervals. For the symmetric
benchmark this instead implies a complete pair-
wise exchange at every min-delay (minimum axonal
delay between the applications). This partly accounts
for the difference between no connectivity (black
squares) and NMUSIC = 8 (dark grey diamonds)
in Fig. 11a. However, the linear dependence on
the number of spikes transmitted via MUSIC in
Fig. 11b can also be attributed to the additional
load due to the collection and delivery of spikes
by music_out_proxys and music_in_proxys in
NEST. While the pair-wise communication gives most
efficiency for multi-simulations that do not require
all-to-all communication, a future version of the library
could switch to the use of, for example, Allgather()
when the number of inter-process communication pairs
are of O(#processes). Another interesting development
would be to use non-blocking communication over
the MUSIC library inter-communicators between
tick() calls, during the time when the application is
computing or communicating.

We conclude that MUSIC fulfills the design goal
that it should be simple to adapt existing simulators
to use MUSIC. In addition, since the MUSIC API
enforces independence of the applications, the multi-
simulation could be built from pluggable component
modules without adaptation of the components to each
other in terms of simulation time-step or topology of
connections between the modules. Preliminary results
from benchmarks of two reciprocally connected large-
scale versions of the layered cortical network model
(one magnitude larger than the model simulated in
this article) also indicate good performance and scaling
behavior. We would like to encourage the community
to continue building on a sharable base of MUSIC-
enabled simulators and tools for the easy construction
of multi-simulations.

Acknowledgements Partially funded by DIP F1.2, BMBF
Grant 01GQ0420 to the Bernstein Center for Computational
Neuroscience Freiburg, EU Grants FP6-2004-IST-FETPI-015879
(FACETS) and FP7-HEALTH-2007-A-201716 (SELACT), the
Next-Generation Supercomputer Project of MEXT (Japan), and
the Helmholtz Alliance on Systems Biology (Germany). The
MUSIC standard and software is provided and supported by the
International Neuroinformatics Coordinating Facility (INCF).

60 Neuroinform (2010) 8:43–60

Information Sharing Statement The MUSIC software is dis-
tributed under the GPLv3 license and can be downloaded from
http://software.incf.org/software/.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.

References

Albus, J. S., Bekey, G. A., Holland, J. H., Kanwisher,
N. G., Krichmar, J. L., Mishkin, M., et al. (2007). A proposal
for a decade of the mind. Science, 317(5843), 1321.

Bower, J. M., & Beeman, D. (1998). The book of GENESIS:

Exploring realistic neural models with the GEneral NEural

SImulation System (2nd Ed.). New York: Springer.
Brette, R., Rudolph, M., Carnevale, N. T., Hines, M. L.,

Beeman, D., Bower, J. M., et al. (2007). Simulation of net-
works of spiking neurons: A review of tools and strategies.
Journal of Computational Neuroscience, 23, 349–398.

Cannon, R. C., Gewaltig, M.-O., Gleeson, P., Bhalla, U. S.,
Cornelis, H., Hines, M. L., et al. (2007). Interoperability of
neuroscience modeling software: Current status and future
directions. Neuroinformatics, 5(2), 127–138.

Carnevale, N. T., & Hines, M. L. (2006). The NEURON Book.
U.K.: Cambridge University Press.

Crook, S., Gleeson, P., Howell, F., Svitak, J., & Silver, R. A.
(2007). MorphML: Level 1 of the NeuroML standards for
neuronal morphology data and model specification. Neu-

roinformatics, 5, 96–104.
Crook, S. M., & Howell, F. W. (2007). XML for data represen-

tation and model specification in neuroscience. Methods in

Molecular Biology, 401, 53–66.
Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E.,

Pecevski, D., et al. (2009). PyNN: A common interface for
neuronal network simulators. Frontiers in Neuroinformatics,

2, 1–10.
Djurfeldt, M., Ekeberg, Ö., & Lansner, A. (2008a). Large-scale

modeling—a tool for conquering the complexity of the
brain. Frontiers in Neuroinformatics, 2, 1–4. doi:10.3389/
neuro.11/001.2008.

Djurfeldt, M., & Lansner, A (2007). Workshop report: 1st
INCF workshop on large-scale modeling of the nervous sys-
tem. Nature Precedings. Available from http://dx.doi.org/
10.1038/npre.2007.262.1.

Djurfeldt, M., Lundqvist, M., Johansson, C., Rehn, M.,
Ekeberg, Ö., & Lansner, A. (2008b). Brain-scale simulation
of the neocortex on the BlueGene/L supercomputer. IBM

Journal of Research and Development, 52, 31–42.
Ekeberg, Ö., & Djurfeldt, M. (2008). Music—multisimulation

coordinator: Request for comments. Available from Nature
Precedings http://dx.doi.org/10.1038/npre.2008.1830.1.

Ekeberg, Ö., & Djurfeldt, M. (2009). MUSIC—Multi-Simulation

Coordinator, users manual (1st Ed.). Stockholm, Sweden:
INCF, Karolinska Institutet, Nobels väg 15 A, SE-171 77,
February 2009. http://software.incf.org/software/music.

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., &
Gewaltig, M. (2009). PyNEST: A convenient interface to
the NEST simulator. Frontiers in Neuroinformatics, 2, 12.
doi:10.3389/neuro.11.012.2008.

Gewaltig, M.-O., & Diesmann, M. (2007). NEST (Neural Simu-
lation Tool). Scholarpedia, 2(4), 1430.

Hellgren Kotaleski, J., Plenz, D., & Blackwell, K. T. (2006). Us-
ing potassium currents to solve signal to noise problems in
inhibitory feedforward networks of the striatum. Journal of

Neurophysiology, 95(1), 331–341.
Hjorth, J., Zilberter, M., Oliveira, R. F., Blackwell, K. T.,

& Hellgren Kotaleski, J. (2008). Gabaergic control of
backpropagating action potentials in striatal medium
spiny neurons. BMC Neuroscience, 9(Suppl 1), P105.
doi:10.1186/1471-2202-9-S1-P105.

King, J. G., Hines, M., Hill, S., Godman, P. H., Markram, H., &
Schürmann, F. (2009). A component-based extension frame-
work for large-scale parallel simulations in NEURON. Fron-

tiers in Neuroinformatics, 3, 1–11.
Potjans, T. C., & Diesmann, M. (2008). Consistency of in vitro

and in vivo connectivity estimates: Statistical assessment and
application to cortical network modeling. In Soc. Neurosci.
Abstr. (Vol. 38, pp. 16.1). Washington, DC, U.S.A.

Potjans, T. C., Fukai, T., & Diesmann, M. (2009). Implications
of the specific cortical circuitry for the network dynamics
of a layered cortical network model. BMC Neuroscience,

10(Suppl 1), P159.
Ray, S., & Bhalla, U. S. (2008). PyMOOSE: Interoperable

scripting in python for MOOSE. Frontiers in Neuroinfor-

matics, 2, 6. ISSN 1662-5196, URL: http://www.ncbi.nlm.
nih.gov/pubmed/19129924, PMID: 19129924. doi:10.3389/
neuro.11.006.2008.

Schemmel, J., Fieres, J., & Meier, K. (2008). Wafer-scale integra-
tion of analog neural networks. In Neural Networks, 2008.

IJCNN 2008 (pp. 431–438).
Wolf, J. A., Moyer, J. T., Lazarewicz, M. T., Contreras, D.,

Benoit-Marand, M., O’Donnel, P., et al. (2005). NMDA/
AMPA ratio impacts state transitions and entrainment to os-
cillations in computational model of the nucleus accumbens
medium spiny projection neuron. Journal of Neuroscience,

25(40), 9080–9095.

http://software.incf.org/software/
http://dx.doi.org/10.3389/neuro.11/001.2008
http://dx.doi.org/10.3389/neuro.11/001.2008
http://dx.doi.org/10.1038/npre.2007.262.1
http://dx.doi.org/10.1038/npre.2007.262.1
http://dx.doi.org/10.1038/npre.2008.1830.1
http://software.incf.org/software/music
http://dx.doi.org/10.3389/neuro.11.012.2008
http://dx.doi.org/10.1186/1471-2202-9-S1-P105
http://www.ncbi.nlm.nih.gov/pubmed/19129924
http://www.ncbi.nlm.nih.gov/pubmed/19129924
http://dx.doi.org/10.3389/neuro.11.006.2008
http://dx.doi.org/10.3389/neuro.11.006.2008

	Run-Time Interoperability Between Neuronal Network Simulators Based on the MUSIC Framework
	Abstract
	Introduction
	MUSIC
	Phases of Execution
	Communicating via MUSIC
	Ports and Indices
	Events

	Application Responsibilities
	Pre- and Post-processing

	Adapting NEST to MUSIC
	Implementation of the NEST-MUSIC Coupling
	Sending Events from NEST to MUSIC
	Receiving Events from MUSIC in NEST

	Adapting MOOSE to MUSIC
	Implementation of the MOOSE-MUSIC Coupling
	New Classes
	Interfacing with MUSIC in MOOSE

	Performance and Application
	Benchmarking MUSIC with a Cortical Network Model in NEST
	Performance of the Cortex Model
	Asymmetric Multi-simulation Benchmark
	Symmetric Multi-simulation Benchmark

	A MUSIC Multi-simulation with NEST and MOOSE

	Discussion
	References

