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Predictions of future species’ ranges under cli-
mate change are needed for conservation plan-
ning, for which species distribution models
(SDMs) are widely used. However, global
climate model-based (GCM) output grids can
bias the area identified as suitable when these
are used as SDM predictor variables, because
GCM outputs, typically at least 50!50 km, are
biologically coarse. We tested the assumption
that species ranges can be equally well portrayed
in SDMs operating on base data of different grid
sizes by comparing SDM performance statistics
and area selected by four SDMs run at seven
grid sizes, for nine species of contrasting range
size. Area selected was disproportionately larger
for SDMs run on larger grid sizes, indicating a
cut-off point above which model results were
less reliable. Up to 2.89 times more species
range area was selected by SDMs operating on
grids above 50!50 km, compared to SDMs
operating at 1 km2. Spatial congruence between
areas selected as range also diverged as grid size
increased, particularly for species with ranges
between 20 000 and 90 000 km2. These results
indicate the need for caution when using such
data to plan future protected areas, because an
overly large predicted range could lead to inap-
propriate reserve location selection.
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1. INTRODUCTION
Species distribution models (SDMs) are used to

estimate species ranges in conservation planning

efforts (Rodriguez et al. 2007) and in forecasts of

potential range shifts under climate change (Schwartz

et al. 2006). Uses of SDM outputs include the

selection of protected areas and identification of future

reserves that mediate extinction risk from climate

change. The practical importance of these applications
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has inspired comparative reviews of SDM modelling
techniques (e.g. Elith et al. 2006), because incorrect
species’ range predictions may promote spatially
flawed conservation efforts.

Understanding effects related to spatial grid size is
fundamental to evaluating SDM results, because SDMs
are often employed in studies using large grid sizes.
Particularly, future climate scenarios are often several
orders of magnitude more generalized than the scale at
which species experience the environment (Guisan &
Thuiller 2005). Varying the operational scale (grid size)
of SDMs was found to have negligible effects on SDM
performance as measured by the area under the receiver
operating characteristic curve (AUC) values (Guisan
et al. 2007). Evaluation of grid size effects on SDM
estimation of range size has not been examined.

This study addresses the effects of grid size on the
size and location of predicted species distributions for
SDMs run at seven grid sizes. We quantified the
degree of spatial bias introduced by using coarser
spatial grids, and identified grid size thresholds above
or below which SDMs disproportionately predict
more or less species range area. We tested four SDMs
using BIOMOD (Thuiller 2003): generalized linear
model (GLM); generalized additive model (GAM);
classification tree analysis (CTA); and artificial neural
networks (ANN). We assessed whether these effects
are different for species of contrasting range sizes by
modelling nine California endemic or near endemic
tree species, which we classed into narrow (less than
20 000 km2), intermediate (20 000–90 000 km2) or
broad range size (more than 90 000 km2) within
California’s 410 000 km2 (Viers et al. 2006).
2. MATERIAL AND METHODS
Seven model operational grid sizes were selected; 1!1, 2!2, 4!4,
8!8, 16!16, 32!32 and 64!64 km. Fine resolution predictor
variables (1 km2) and target species presence or absence (P/A) were
resampled into these grids.

State-wide species P/A data were obtained from 32 553 geo-
referenced (accurate within 50 m) vegetation plots and herbarium
records and were sampled for the nine species (authority Hickman
1993). Species not listed in a plot were labelled as absent at that
plot’s location. Recorded presences ranged from 93 to 2285,
recorded absences from 30 456 to 32 448 (see the electronic
supplementary material). Species’ P/A plot records were resampled
into each grid, and presence per cell was assigned if one or more
presence records were found, otherwise it was labelled absent.
Absence cells were randomly selected from all absence cells; the
absence to presence ratio was 2 : 1 (Kvamme 1985), except
when not enough absence cells were available within the extent
of California.

Of the 19 climate variables from WorldClim at 1 km2 (Hijmans
et al. 2005), 6 were selected by running a principal components
analysis over all the grids and selecting the least correlated: annual
temperature range; mean temperature of the driest quarter; mean
temperature of the coldest quarter; precipitation seasonality;
precipitation in the wettest quarter; and precipitation of the
warmest quarter. Predictor variables were resampled to each of the
six other grid sizes using the mean values of the nested 1 km2

predictor variables.
The SDMs were run at each grid size in BIOMOD for each

species, and each probability distribution was predicted across
California. A total of 252 SDMs were produced (nine species by
four models by seven grid sizes). The area predicted as range for
each species using a cut-off threshold determined by maximizing
the percentage of presence and absence correctly predicted was
recorded for each model run, and used to create binary range maps
from SDM probability surfaces.

We evaluated SDM outputs in three ways: (i) area selected as
habitat by each model was compared across grid sizes, (ii) a spatial
congruence analysis between operational scales, and (iii) model
performance at each grid size was assessed with AUC and Kappa
statistics using a fivefold cross-validation (Guisan et al. 2006).
This journal is q 2008 The Royal Society
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Figure 1. Range maps for Pinus coulteri. (a) The GAM SDM probability outputs run at grid sizes from 1!1 km to 64!64 km;
(b) range selected using the AUC cut-off value for each grid size (grey, absence; green, presence). (i) 1!1 km, (ii) 2!2 km,
(iii) 4!4 km, (iv) 8!8 km, (v) 16!16 km, (vi) 32!32 km, and (vii) 64!64 km.
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Figure 2. (a) Ratios of area selected as range between the 1!1 km grid size SDMs and each other grid size. Intermediate
range size species show the greatest divergence in predicted range area as grid size increases. B, broad range size (diamonds);
I, intermediate range size (black squares); N, narrow range size (triangles); A, all range sizes combined (grey squares). (b) The
AUC values of SDM probability maps from each grid size, calculated using the 1!1 km presence/absence data. The decline in
AUC values represents spatial bias. The 8!8 km operational scale is an optimal threshold that permits coarser grid modelling,
while maintaining most of the accuracy of the finer operational scales. (i) GAM, (ii) GLM, (iii) CTA, and (iv) ANN.
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Ratios of species’ binary range extents across grid sizes were

calculated using the 1!1 km extent as denominator. This per-
mitted viewing of normalized differences of area selected by SDMs
operating on different grid sizes. We assessed the results for species
Biol. Lett. (2009)
with different range size classes to see whether the range size itself

might have an impact on optimal SDM operational scale.
To assess spatial congruence (agreement on predicted range

locations) between different grid size SDMs, we developed AUC
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42 C. Seo et al. Scale effects on SDMs
values that compared probability maps, computed at every grid
size, with the baseline 1!1 km P/A records. For example, a
species’ 1!1 km P/A grid was overlaid with its 4!4 km prob-
ability surface, and an AUC value was computed. The difference
between these AUC values from those derived from the 1!1 km
SDM outputs represents the possible spatial bias introduced by
using scaled-up P/A data and predictor variables. This approach
tested the assumption that high SDM AUC values across grid
sizes mean high spatial agreement.

Cross-validated AUC values were summarized to present overall
model performance by taking the mean AUC values of all model
accuracies, and of the species in each range size class. The same
was done with the Kappa statistics that indicate what proportion of
model performance is attributable to correct model selection.
3. RESULTS
Operational scale affected all SDM runs, causing
selection of approximately three times more area
when models were run on 64!64 km grids than
when they were run at 1!1 km. The SDM spatial
outputs of both probability (figure 1a) and binary
range maps (figure 1b) differed increasingly as grids
became coarser. Bias in area selected was most
pronounced in species with intermediate-sized ranges,
for which coarse resolution models selected four
times more area. Area for narrowly distributed species
also increased 2.5–3.0 times under the coarsest grids.
Broadly distributed species showed the lowest change,
with area selected increasing approximately 1.5 times.

The ratio analysis of range size (figure 2a) showed
that the bias due to grid size occurred in all model
types, particularly for intermediate range size species.
From 16!16 km to 64!64 km grid sizes, all SDMs
selected on average 1.42–2.89 times more area than
the 1 km2 model outputs. Model agreement on range
size (area selected) was good for broad, but diverged
for narrow and intermediate range size species as
operational scale increased. At spatial grid size below
16!16 km, there was good agreement among model
area estimates for species of all range sizes.

Fivefold AUC cross-validation values declined as
grid size increased (table 1): combined model values
were 0.92, 0.88 and 0.85 for intermediate, broad and
narrow range size species, respectively. Decline
between 1!1 and 64!64 km AUC values on average
was 0.05, 0.08 and 0.31 for intermediate, broad and
narrow range size species, respectively. Kappa values
correspondingly declined by on average 0.05, 0.17
and 0.52 for broad, intermediate and narrow range
size species, respectively.

The spatial congruence AUC values also declined
with increasing grid size (figure 2b). For the 1!1 km
P/A grid to 1!1 probability surfaces, average AUC
values were GAM 0.96, GLM 0.91, CTA 0.94 and
ANN 0.96. For the 1!1 km to 64!64 km compari-
son, the values were GAM 0.82, GLM 0.77, CTA
0.74 and ANN 0.76. This decline indicates a diver-
gence in area identified as range between the finer
and coarser grid sizes.
4. DISCUSSION
Landscape ecologists and geographers have called for
multiple tests to evaluate the impact of scale on
analyses of landscape studies (Qi & Wu 1996). Because
we tested the spatial outputs from SDMs, as well as
measures of SDM performance, our approach differed
Biol. Lett. (2009)
from other studies assessing SDM performance.
Previous work has focused on identifying what model
produced the highest performance statistics (Elith et al.
2006; Lawler et al. 2006), and when scale was used as
a test factor the response variable was model per-
formance rather than model spatial output. In a study
of scale effects on SDMs using model performance
statistics, Guisan et al. (2007) found that SDMs were
not greatly affected by a 10-fold change of grid size.
This study examined SDM dynamics across a 64-fold
change in scale, and found that SDM model accuracy
and spatial output agreement declined when grid size
increased, with the decline generally accelerating
between 8 and 16 times the initial grid size.

We also found that species’ SDM-derived spatial
distributions were not equivalent across grid sizes,
between model types or between species with different
distribution characteristics. Model divergence suggests
that for best range size representation from SDMs,
operational grid size should be limited, with cut-offs for
narrow range size species at 4!4 km, between 4!4 and
8!8 km for intermediate range size species and between
8!8 and 16!16 km for broad range size species.

SDMs run on large size grids are being used in
many biological forecasts of species’ response to
climate change (e.g. Bakkenes et al. 2006). Conserva-
tion planners need to assess the scale of such SDM
outputs when developing conservation landscape
designs to enhance protection of future suitable
habitats and dispersal corridors. Particularly for
species with ranges under 90 000 km2, there is a
chance of identifying inappropriate regions if predic-
tor data used are at or greater than 50!50 km
(approx. 0.488 latitude). These findings are relevant
for climate change studies, since global and regional
climate model (RCM) outputs are generally at scales
greater than 100 km and 30–70 km, respectively.
Thus, while both global climate model (GCMs) and
RCMs may be suitable for SDM examination of
biodiversity trends at ecoregional or continental
scales, the use of these data in identifying suitable
reserves to shelter species under future climate
change risks the misidentification of such locations.
Statistical downscaling of GCMs for use in SDM
conservation planning may provide a solution to this
scale problem. For current SDM simulations, these
results suggest the use of 1 km2 grid sizes, since
1 km2 climatologies are available globally.
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