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ABSTRACT

The sca~ttin of Plane compressional waves by a spherical obstacle in an
elastic solid, which was investigated bY Ylng and Truell is examined further. ForJ a rigid inclusicn, the boundary conditions are redefined to take into consideration

the motion of the Inclusion Inside the solid. By a proper limitin process, it is
I shown that the solutions for a rigid insert, a fluid sphere, a cavity, or an obstacle

in a fluid, are all derivable from the general results of an elastic inclusion. In[ each ase, the rates of energy soattering de to a small obstacle are found to be

inversely proportional to the fourth power of wave length.
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I ABSTRACT

The scattering of plane compressional waves by a spherical obstacle in an

elastic solid, which was investigated by Ying and Truell is examined further. For

a rigid inclusion, the boundary conditions are redefined to take into consideration

the motion of the inclusion inside the solid. By a proper limiting process, it is

shown that the solutions for a rigid insert, a fluid sphere, a cavity, or an obstacle

in a fluid, are all derivable from the general results of an elastic inclusion. In

each case, the rates of energy scattering due to a small obstacle are found to be

inversely proportional to the fourth power of wave length.
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I. INTRODUCTION

The scattering of a plane compressional wave by a spherical obstacle in

an elastic solid infinite in extent has been investigated by Ying and Truell. 1

Three types of obstacles, an elastic sphere, a rigid sphere, and a cavity are

discussed; detailed results being given for the case of Rayleigh scattering, i. e.,

when the size of the obstacle is much smaller than the incident wave length. The

solution of the elastic sphere is quite general in the sense that it applies for

various values of material constants (Lame"' s constants, density etc.) character-

izing the scatterer and the surrounding medium. However, Ying & Truell

studied the problems of the rigid sphere and a cavity separately because some terms

in the general solution are ambiguous when the limiting values of the density

of the inclusion are taken. For the same reason, the fourth type of obstacle, a
2

cavity filled with an inviscid fluid, was also treated independently.

Moreover, the scattering by a rigid sphere was calculated with the assumed

boundary condition that the displacement due to the combined incident and re-

flected waves vanishes at the surface of the sphere. This led to the conclusion

that the energy scattered by a small rigid sphere per unit time is independent

of the incident wave length; this result being quite different from other well

known scattering phenomena, i. e., the rate of energy scattering is inversely

proportional to the fourth power of wave length.

The same boundary conditions for a rigid obstacle have been applied in
3,4,5

many related investigations. In a recent study on the dynamical stress

concentration in an elastic plate with a circular rigid insert, 6 the authors find

that if the zero displacement boundary conditions are used, stresses will become

infinitely large at certain points in the plate, a conclusion even more drastic

than the unusual rate of energy propagation mentioned above.

V
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In a fluid medium, the disturbance of plane waves (sound waves) due to a

rigid sphere was first treated by Rayleigh. 7 He showed that for a fixed sphere,

there was a net unbalanced force acting on the surface of the sphere, i. e., if

the sphere were not held fixed by some external constraint, it would move. A

modified solution for an unconstrained rigid sphere was given by Lamb. 8

However, in either case, the rate of energy scattering is inversely proportional

to the fourth power of wavelength.

There is, however, a major difference between a movable and a fixed

obstacle in an elastic solid. With the view of obtaining a mechanical illustration

of the selective absorption of light by a gas. Lamb also investigated the
10

scattering of shear waves in an incompressible solid. If the boundary of the

sphere is absolutely fixed, the rate of energy scattering, called by Lamb the

"dissipation ratio," is independent of wavelength. Lamb explained that this was

accounted for by the abnormal degree of constraint imposed on both radial and

tangential displacements of the surrounding medium, whereas in the corresponding

fluid problem, there was complete freedom of lateral motion at the surface of

the rigid sphere. When the sphere is allowed to move with the surrounding medium,

the dissipation ratio conforms with the general rule. Later, Sezawa 9 investigated

the problem of scattering of elastic waves.

Nishimura and Jimbo1 1 also investigated the diffraction of plane com-

pressional waves by three types of scatterer, i.e., elastic, rigid and cavity.

However, as a result of the assumed standing waves, only even terms of series

expression for waves in polar coordinates are needed, thus no complication such

as that encountered in the case of traveling waves arises.

In this paper, the boundary conditions for rigid scatterer are redefined

in order to take into account the rigid body translation. 12 It is then shown that

by a limiting process, the results for a rigid sphere, a cavity or even a fluid

sphere can all be derived from the general solution of scattering due to an elastic

inclusion. The process can be applied further to deduce the results of the

scattering of sound in fluid. The rates of energy scattering are found, in all
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cases, to be inversely proportional to the fourth power of the incident wave

Ilength.

In the interests of brevity, only results which are to be compared with that

I in References 1, 2 or which are essential to carry out the limiting process are

given. For a detailed discussion and references, the reader is referred to the

I original work by Ying and Truell.

I H. BASIC EQUATIONS

IIn an elastic solid with waves propagating symmetrically about the z axis

(Figure 1), the displacement vector in spherical coordinates (r, 0, 0) can be

j expressed in terms of two displacement potentials $ and , i. e.,

I u = V4 + VX(e, )8*/80) (1)

where V is the gradient operator and j, is a unit vector along 0 coordinate

curve. Each potential can then be shown to satisfy a scalar wave equation

c2 V2 4b 8 = a /at 2  (2)I a
2 V 2 a 2 */at 2  (3)

r]1/2 1/2

where ca= [(, + 2p)/p , c = (PWP) are the velocities of compressiona

(longitudinal) waves and shear (transverse) waves respectively; A, p are Lame I s

constants, and p the density of the solid.

The stress components are related to the displacements, in dyadic notation,

5 as

A = (v u) + p(Vu + uV) (4)

where T , I represent the stress tensor and isotropic tensor respectively. Due

to axial symmetry, the displacement u4) as well as the stresses TrO , T0

vanish.

I

I
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When plane waves impinge on the surface of an inclusion embedded in an

infinitely extended elastic solid, two types of waves (compressional and shear)

are reflected back into the infinite medium and two waves are refracted into

the inclusion. For the convenience of ensuing discussion, the infinite solid is

designated as medium 1 and the spherical inclusion as medium 2. All material

constants such as X, IA, p etc. in each medium will be distinguished by subscript

1 or 2 accordingly. The potentials, displacements and stresses associated with

the incident waves will be designated by the superscript (I); those with the re-

flected waves by (r) and those with the refracted waves by (f).

I. INCIDENT, REFLECTED AND REFRACTED WAVES

Let the incident plane compressional waves traveling in the positive z

direction be represented by two potentials (Figure 1)

6( i(a1z - wt)
€,(i) = * e

0 ((5)

where a2 (= 27r/ wave length) is the wave number of compressional waves in

medium 1, and w is circular frequency. In order to be a solution of the wave

Equation (2), the wave number has the following value

aI = 
2 p / + 2 1

From (1) it is clear that 0 , a constant, has the dimension of (length)2 and
0 13

a 40 is the amplitude of the incident wave. In spherical coordinates,
10

#(I) 4D 1 (2n + 1), n na 1 r) n(cs),(6)
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in which

nJ(x) = ix Ja+1/2 (x )

is the spherical Bessel function of the first kind, Pn (X) is the Legendre polynomials.

In Equation (6) and sequel the time factor e -it is omitted whenever its occurrence

is apparent. By substituting (5) or (6) into (1) and (4), the displacements and

I stresses of the incident waves can be determined.

Expressions for the reflected and refracted waves can be obtained from the

solutions of the wave Equations (2), (3). In an infinite solid, only waves propa-

gating outward from the center will be considered. Thus the reflected waves

are given by

(r) Anhn(a 1 r) Pn(Cos 9) (7)

in=0

i (r) = hBnh (P1lr) Pn (cos 9) (8)

n70

with

h (k) = hn(1) (k)f Hn 1 2  (x)

being the spherical Hankel function of first kind. As there is no confusion with

the Hankel function of second kind which represents converging wave in this

study, the conventional superscript (1) is omitted.

The refracted waves, being confined in the spherical scatterer, are

I standing waves. They can be represented by

I

I

I



6

(f= - Cnjn(4G2 r) Pn(cos 0) (9)

n=0

M - DnJn C- 2r) Pn (cos 0) (10)

n=0

In (7) - (10),

2 2
i = W P + M ju )

2 = 1, 2 (11)

fi = W pi/,Ui '

and A , B , Cn , Dn are coefficients to be determined from the boundary condi-

tions at the surface of the inclusion.

In the medium 1, the resultant wavem are then determined by superposing

the incident and reflected waves whereas t;he refracted waves are the only ones

in medium 2. Displacements and stresses in each medium are summarized

below.

= 4,(i) (

1 (12)

= (i) (r),
1

u = 1 Z [ +An + Bn  12] Pn(Cos9)url r - 0 1 n 11 n 12

n=0

(13)

1 dP n(coon 9)--- I- ~+ "" '

U1  r -DO n20n 21 B 22J d

n0O
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r 2A 1 + [- 0 3 A£ 3 I+B 2 ] P(cos) (14)

2"0 4 n r41 n 4 dO
m=0

n02 (5

• o (16)

U 1 'D dPn (co 9)
=2 rL [Cn '23 n 24 J dO

i n=O

2 22

rr2 r2 [C n '33 n "34J n (17)

IT '2+D n
r0=2 2 Cn r43+ n 44 dOi rn=

i. where

I

I
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= -
n (2n + 1)[nj n(a 1 r) - 1 rJn+l(a.r)]

r 2 = - i n (2n + 1) jn (a ir)

-in(2n+1)[(n2 -n- p2 r2) jn(alr) + 2alr jn(ar)

4 = - i n (2n + 1)[(n - 1) jn(aIr) - IrJ n+l'(alr)]

11 nh n (a1r) a 1 r  h n+r (a r )

£21 = hn(a r)

= (n 1 n- r1r2 )h(ar) + 2arhn+
31 2 _ 1 1 n 1

£41 = (n - 1) hn(aIr) - a Irh n+(air)

12 = - n(n + 1) hn (P r)

£h = - (n + 1) hn(P1r) + 9 1rh +l(plr)

32 = -n(n + 1)[(n- 1)h(PlIr)-Prh (+l (lr)] (18)

32 n21 )h 1 1Pr n+1 1-'2 1 Pl2 )42 -(n-jI-r h(lr) - rhn 1 (lr)

13 = nJn( 2 r) - a2 rjn+l(a2r)

23 = j n(a2r)

= (n _ n 2 r 2 )j(ar)+2a rj
33 2 2 n 2 2 n+l( 2r)

£43 = (n - 1) jn(a 2 r) - a 2 rJ n+l(a 2 r)

£14 = "n(n+1)j n(P r)

£24 = -( n (P2 r) + P2rJn+ l( 2 r)

£34 = -n(n+1)[(n-1)jn(pzr)- P2r Jn+l(p2 r)]
2 1 f2 nflr

= - (n2 _- -pr-2 r 2 +(2r)-Pr
442 2 n 2 2~ ~r
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Note that 9 W = 6Re (6 il) and £ 14 = 6te ( 6 12) provided the subscripts of wave

I numbers ai, Pi are changed prbperly. All 9 's are dimensionless numbers

and A etc. have the same dimensions as 0 .In

i IV. ELASTIC INCLUSION

If the spherical inclusion of radius a, is elastic, and it is bound to the

I surrounding medium, the tractions and displacements must be continuous at

the interface. Thus at r = a, the continuity conditions are

I (i) + u(r) =u
(f

r r r

+i (r) (f

(19)

T (i) + T(r) = '(f)
rr rr rr

7(i) + T(r) 7 (f)

r0 r0 =  r0

Since the Legendre polynomials Pn(cos 0) and the associated Legendre polynomials

P l(cos 0) - d (CO s 0)
n d n

each form an orthogonal complete set, when (13), (14), (16) and (17) are sub-

Istituted into Equations (19), the coefficients of the Legendre polynomials on both

sides of (19) must be equal for each value of n. This results in four simultaneous

algebraic equations, sufficing to determine the four unknown coefficients A , B
I n n

C n, and D n. In matrix form, these equations are

E11 E 1 2 E13 E14 A[ nE1

E21 E22 E23 E24 Bn 22= 60 (20)

E 31 E32 pE3 3 pE 3 4  Cn 0 E3

E41 E42 pE4 3 pE4 4  Dn E 4

IJ
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where

E ij ij) r=a

and

1 (21)

Except for the limiting cases when the arguments of the spherical Bessel functions

become very small or very large, these equations can best be solved numerically.

The scattering of waves by small obstacles (aIa << 1) is generally known

as Rayleigh scattering. From (11) it follows that if a1 a << 1, a 2 and Pa

will all be very small. Thus the spherical Bessel and Hankel functions in (20)

can be approximated by the leading terms of their series expansions which are

j (x) = (2x)n _ -1) r (n+r)! 2r
n I~ r! (2n+2r+1)! x

rO

CO

eix r ()n- +1(n+r)! n-r
h (x) = -n+ I r! (n-r)! 2r

r=-O
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Thus for the case of Rayleigh scattering,

I A13(P/a) 2  1

A I 0 (1 - P/p 1 ) (a --a)S,

, n-1 n 2 2n-1
A n L( 2 n)! J Np 1 a)2 n-  1(a n >1, (22

N (4n - 1) p -1)

p - 1 n (n+l)p+ 2n - 21

B = - /an+ An/n n >0 •

The Coefficient B0 is not needed in the calculation of stress and displacements.

If % is set equal to (_ 1)ni/al , the above results agree with those of Reference 1.

It is worth to note here that

A 1 - 11, 2

where are the Poissons' s ratios of the media.

Li

I

I
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V. FLUID INCLUSION

An inviscid fluid will neither resist shearing stress nor support shear

waves. If a cavity in an elastic solid is filled with such a fluid, only compressional

waves E: e refracted into the fluid. The boundary conditions at r = a are reduced

from (19) to

(i) + u(r) = (f)

r r r

T(i) + T(r) 
( f  (23)

rr rr rr

T(i) + T(r) =0
r0 r0

The circumferential displacement u 0 in the solid might be different from that

in the fluid at the interface. Such a paradox in discontinuity is due to the assumed

zero viscosity.

The displacements and stresses in the elastic solid are obviously still the

same as (13), (14) with A , Bn satisfying (23). In the fluid, they can be obtained

from (16), (17) by taking the limiting values as u2 " 0.

It should be noted from (11) that as A2 0 0, P 2 ; but

2 2 2 (4

2 2 2 1 1I2 1

remains finite. By setting 12 = 0, D = 0 (no refracted shear wave), and taking

2 -33 1  333

with

f 1 (P/P 2 r 2 J (r) (25)33 2 211 n2
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one finds that the boundary conditions (23) require that An, B , Cn satisfy

three equations, i.e.,

E 11 E12 E13 An E1

E E E B = E (26)j 31 32 33 n 0 3

E41 E42 0 C .E4

2
These equations agree with that given by Einspruch and Truell.

The same equations can directly be deduced from the case of an elastic

inclusion. Recall that P2 - 0 as p2 - 0; hence the spherical Bessel func-

tions with argument (2 a in the matrix (20) can be approximated by the asymptotic

formula

1 n+1

(x - cos- (x - 7-- r
n x x 2

It is clear that as P2 a -0 ,

in(32 a) = 0(E)

p2a Jn+1 ( 2 a) = o(C 0

/A2 = (C

where c is an infinitesimal quantity and "o (c)" means "the order of magnitude

of c ". Applying these limits to all elements of the matrix, one finds that

E 14 = (C), pE3 4 = o(C2 )

pE 4 4  o (C), pE4 3 = ,(e2 )

. f

E = 0(C0 ), pE33  E f

233
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0
By neglecting all elements with order of magnitude higher than c Equations

(20) reduce to

El E2 El 0 An  E1
E11 E12 E13 0 An E1

E21 E22 E33 0(C) Bn  E2

f 0 (27)Ef 0 C 0 E3

31 32 33 n 3

E41 E42 0 0 Dn E4

For the determination of the coefficients A n, B n and C , these equations can

easily be reduced to (26).

For Rayleigh scattering, A n, B can be directly deduced from (22) bynn

taking the limiting values as p - 0, P2 - 00 . They have the following values
2,1

which check with those given by Einspruch and Truell. 2 ,1 4

Ao = - o  1- 11 (a2a)2
3

3P P 1/P1a + 4 1

2 13

A, (o (-p /P) (aa) 3
1 3 0 2 p1 ( 1a

A n in-I -F2nnI 2 2n-1 (28)
L (2n) 11 p

N 4n2 - 1

p -- 2n 2 + 1

1 n(2n -2) a

B n n+1 A/n, n >0.Bn - 1 (n/~l
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I
VI. RIGID SPHERE

I 1. Boundary Conditions

j When the inclUsion is much more rigid than the surrounding material, it

may be treated as a perfectly rigid sphere. By definition, the distance between

Sany two points in a rigid body remains constant at all times, but because of the

surrounding medium being elastic, the sphere will translate as a rigid body under

the impact of the incident waves. Unless the sphere is fixed in position by

external forces or other means, which is hardly conceivable when it is embedded

in an infinite solid, the displacements of the elastic medium should be equal to

the translation of the inclusion at the interface.

Let U denote the rigid body motion of the sphere along the direction ofZ

incident waves (z axis). The boundary conditions at r = a become

u ) + u(r) = U cos 0 = U P (cos 0)
r r z z

(29)
M 1() Usn0=UdP 1 coo 0)

u i0) + u  
Uz z dO

The translation U is to be determined from the equation of motion

~z

S~ z = (rrcos 0 - rr sin 0)a 2 sin Od d@ (30)

4 ,a32

where m = 4ra p being the mass of the sphere and the integral over the

spherical surface representing the force component acted on the sphere by the

surrounding medium.

1'

1.
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Restoring the time factor and substituting (14) into (30), one finds 15

31- (a a) + A h (ala) - 2Blhl (P81a)] e (31)z a 0 1( a 1 ll a (11)

with

Owing to the orthogonality of P (cos 0) and P 1(cos 0), the terms with n 1 in
n n

the series (14) vanish after integration.

The boundary conditions used in Reference 1 and others are special cases

of (29) with q = 0, which implies that the density of the sphere is infinitely large.

However no consideration of rigid body motion is needed if only standing waves11

are involved as in Nishimura and Jimbo' s work. In that case, the sphere,

even with finite density, is always being held in the equilibrium position by two

trains of waves propagating in opposite directions.

2. Solution

For n * 1, the coefficients An, B are determined from the matrix

equations

E 11E 12 AnE 111 E = b 0 n (32)

E 21E 22IBEI

Coefficients A1 , B1 are given by a different set of equations

e 1 e12 A IA 1  fe[1]
4b 0o (33)

Le 21 e 2 B 1 e 2
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with

I e1 1 = (1 - 77) hl(ala) - alah2 (ala)

I e2 1 = (1 - n) h1(ala)

S12 = - 2(1 - )h1 (,81a)

I e22 =- 2(1- 77)h1(pla) + ilah 2(14a)

eI = -3i[(1 - 1) jl(ala) -aJ2(a la)]

e= - 3i (1 - 7) j1 (la)

t If the scatterer is very small in comparison with the incident wave length,

~the coefficients are found as

A0 = ib (a a) 3
i 3 0 1

A1 = "b (1 - p2/Pl)(ofla)

I
A b 2 Np(l a)2n-1 n >1 (35)

I n 0(n! ~ aa

N = n(4n2 - 1)
I p n + (n + 1) (P 1 /al1)2

I

B (P1la1 n+11An/n n >0

A and B are identical with those given in Reference 1 except for n =1.

I
I
I
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3. Derivation from Solutions of Elastic Sphere

The lengthy calculations of the rigid body translation given in (.31) can be..

avoided if the solution of an elastic inclusion is known in advance. Caution

should be exercised however in deriving the results from Section IV. Although

it is well known that no waves propagate in a rigid solid, one cannot simply set

all C , Dn of the refracted waves to be zero in this study.

In (16) or (13) for constant r, there are two terms in the series having the

form

u blPl(cos 0) = b cos 0
r 1

(36)

u0  - c1 [dP1 (cos 0)/do] = cl sin 0

where b1 , c1 are constants. By transformation, the corresponding displacements

in z - q coordinates (Figure 1) can be shown as

1 1u = (b 1 - Cl)+(bl+Cl) COS2 0

U (b+c l) sin20
q 2 11

There is clearly a rigid translation i (b1 - cl) in the z - direction implied in

(36). Indeed, this rigid body translation can be separated from the deformation

if (36) is rewritten in the following form1 6

1 CO +1
(b + cos 0+-1( o

r 2 (bI  c) 2 (bI -C 1 ) cos 0
(36a)

1 1
u =1- (b+c) sin 0 - I(b 1 -c) sin 0
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By suppressing all terms (including n = 1) in the series expressions for u( f

Mr

u ) , the sphere is then assumed to be rigid and fixed in space. For a movable

sphere, this simple suppression will lead to erroneous result. In fact, the

Jsecond terms in (36a) are exactly what have been incorporated in setting up the

boundary conditions (29).

A limiting process analogous to that in Section V will now be used to

derive the rigid sphere solution. If the medium 2 is perfectly rigid, it is seen

i that

"2 Y 2

but P2 remains finite. Thus by taking only the leading terms of the series of

spherical Bessel functions, one finds

a 2a = o(e), P2a = o(),

p = o(E - 2 ),

Jn(a 2 a) = o°(En), P2aj n+l(P 2 a) = °(en+2)

If these limiting values are substituted into the matrix (20), it can be

shown that for n * 1;

E =  (En), i = 1, 2; 1 = 3, 4i

pEMk o =o( n-2), k, f = 3,4

for n = 1,

V E = o(E),

ii
pE! =o(e),

I It follows then, for n * 1, the matrix reduces to (32) when Eui are neglected

in comparison with pE k. For n = 1, the complete 4 x 4 matrix should be used

Ii
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with the spherical Bessel functions in the third and fourth columns being replaced

by the corresponding small argument approximations. Coefficients A1 , B1 thus

determined are found to be the same as that from Equations (33). Furthermore,

all coefficients for the case of Rayleigh scattering as given in (35) can directly

be deduced from (22) by letting p approach infinity.

Although in this limiting process, C n , D are treated as finite numbers,nn

the refracted waves still vanish because of the small values for P2a, a 2 a which

appear in the series representations of '2' *2 *

VII. SPHERICAL CAVITY

Unlike a rigid inclusion, the case of spherical cavity presents no compli-

cation in analysis. Coefficients A n, Bn are fixed by the boundary conditions at

r = a,

T(i) + (r)

rr rr

(37)

7 )+ 0r
rO rO

which yields two simultaneous equations

[E: 4 ] [Z] n o 0[E] (38)

These equations can also be derived from (20) by a limiting process (N2 - 0,

A2 - 0, P2 - 0) similar to that used in Section V.

With small a 1 a, An and Bn can be obtained by either solving Equation (38)

or by taking p - 0, p 2 " 0 in (22). They are listed below for reference.
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p 1- ) (/3)2N 4n 
2 _ I

1 2n 2 + 
1

i2n(n - 1) (Li

B = 31 /a 1 ) n+1 A /n n >0

VIII. SCATTERER IN FLUID

i By epplying an analogous limiting process of reducing the shear rigidity

of medium 1 ( 1 - 0) to the solutions given hitherto, the scattering of sound

j (compressional) waves in a nonviscous, compressible fluid can be obtained.

The obstacle could be an elastic sphere, a rigid sphere (fixed or movable), a

j cavity (bubble in liquid) or an acqueous sphere (hydrosol). Most of these

solutions have long been in existence. It is sufficient here, as an example, only

I to discuss the scattering of sound by a rigid sphere, which was first treated

by Rayleigh
7 and Lamb. 8

Because in the inviscid fluid, no shear wave can propagate, the shear

modulus IA -0 and the shear wave number /P1 --. By the application of

the asymptotic formula of spherical Hankel functions for large argument

h (x) H-) n+1 e ix

n x

I
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it can be shown that, in (32),

P a = o( - I ), hn(Pla) = 0(c);

E = 0()

E22 = (C

If E12 is neglected in comparison with E22' Equation (32) degenerates into,

An El1 = 0E1 (40)

and

An n n(a a) -,a aj 1 (a a)(4a
n -i(2n+l) nn(a1a) - a 1 ah (a1 a)

This can be compared with Rayleigh' s result for a fixed rigid sphere, which is

obtained from the boundary condition

u( i ) , u(r) 0  (41)
r r

For a movable sphere, Equation (40a) is still valid except for n = 1. The

equation for A1 should be deduced from (33) by applying the same limiting

process with the result

(1 -7) jl(a1 a) - a 1 aj 2 (, 1 a)

1 0 (1 - 17)h1 (a 1a) - a 1ah 2 (ala)

Equation (42) can be converted to the results given by Lamb8 who first took into

consideration the rigid translation of the sphere.
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For viscous fluid, there is a simple analogy between waves in an elastic

solid and a viscous fluid. A complete discussion has been given by Epstein. 17

I IX. SCATTERING CROSS SECTION

The scattering cross section is defined as the ratio of the total energy

scattered per unit time by the obstacle to the energy per unit area carried per

unit time by the incident wave. In the present case, the total energy propagated

across a spherical surface of radius b, concentric with the scatterer is 1,2

I Q(r) iW SST rU* + Tr - T* 0 u]b 2 sin dO 4 3
I rrr TrGu- rrUr- ro(43)

The energy carried by the incident wave per unit area isI
q(i) (T V- T *uz) dxdy (44)

= A Z Z(44

The superscript (r) and (i) of the stresses and displacements in (43), (44)

respectively are omitted, and an asterisk indicates complex conjugates. With

the values of T i, U. in (13) and (14) substituted into these equations the scattering

cross section is found to be

I00 
2

4(r) = 1 1 1i +n(n+l) 1 n (45)

2n- + 1 [n 2 Ib -

q(i) n + 00 1 1 0

i It follows then 7 has a dimension of an area, hence the name "cross section."

I By comparing the coefficients Ano Bn with various n' s given by (22), (28),

(35) and (39), it is seen that only the ones of n = 0, 1, 2 have the same order of

I magnitude for small a 1 a. With different kinds of spherical obstacles in an

elastic solid, the scattering cross sections all can be expressed, with the terms

of order higher than ceI 4 neglected, as

I
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2 4
- = (4 /9)g a (a 1 a) , 

(46)

in which g takes the following values:

(1) Elastic Sphere (A 1  1' A l I 2 ,2 ' P2  all finite)

F 3(f1/(1)2 2

3p ( 2 /a 2)2 - 4p + 4 [i+(La ji 1]5-
+ 40 [2+ 3 ,l 9-

4O0 1) [4p - 4 + (6p + 9) (At/1/gi)2

(2) Fluid Sphere (p = 2/A1 -)

2 1- 0

[ P - P2P/P a +41 3a1

+ 40 [2+ 3( ')] [4 ()-9-

a 11

(3) Rigid Sphere (p =2/m, -

+
3 a.Pl2 P2

("I

+ 0[ ,5 +6 0
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I (4) Cavity (p 0, P2 - 0)

I

+40 2+ 3 (L ] [4(-)9 y 2

Since q is a dimensionless quantity, it can be concluded that the scattering

cross sections are all proportional to the sixth power of the radius of the obstacle,

and inversely proportional to the fourth power of the incident wave length.

i.

I!

I
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z

Figure 1
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